
A First Definition of the Blob Complex

by Aaron Mazel-Gee, lifted directly from Morrison & Walker

0 Background

Recall that given an n-dimensional system of fields and local relations (F ,U), we can associated to an n-manifold
X its TQFT invariant :

X A(X) = F(X)/U(X).

Here U(X) is the space of local relations in F(X), i.e. it is generated by fields on X of the form u • r, where
u ∈ U(B) is a local relation on an embedded n-ball B ⊂ X and r ∈ F(X\B). So this is just the vector space of
fields on X, up to changing the field in any ball.

The blob complex can be thought of as a derived version of this construction. On a ball B, the blob complex
B∗(B) will just be a free resolution of H0(B∗(B)). And when we have a short exact sequence of boundary conditions
on ∂B, we obtain a long exact sequence in blob homology. In general, we will have H0(B∗(X)) = A(X), and the
higher blob homology groups will represent syzygies on the local relations not captured by the TQFT invariant
itself.

In most of follows, we will assume that X is boundaryless. Otherwise one should fix a boundary condition in
F(∂X) for once and for all, and then carry out the same constructions under the assumption that everything agrees
with that boundary condition.

1 Definition of the blob complex

A blob in X is just a generalization of an embedded n-ball. For this section, we will pretend that this is the
definition of a blob. In the next section we will explain the difference, and then the definitions given here will be
very nearly correct.

Roughly, the kth level of the blob complex B∗(X) will be the direct sum, over configurations of k blobs
{B1, . . . , Bk} in X, of the vector spaces of fields splittable over those particular blobs. The boundary map
∂ : Bk(X) → Bk−1(X) will just be given by (a signed sum of) erasing blobs from the picture, which certainly
preserves splittability over the remaining blobs. In this section we unwind exactly what we mean for k = 0, 1, 2 and
then return to the general case to give a full definition.

1.0 B0(X)

First, we define B0(X) = F(X).

1.1 B1(X)

We’ll want to quotient B0(X) by changing a field x ∈ F(X) by a field which splits over a blob and gives a local
relation there, i.e. we want B1(X) to be fields on X of the form u • r, where u ∈ U(B) and r ∈ F(X\B). Of course,
these must give the same boundary condition c ∈ F(∂B) = F(∂(X\B)). So, for a fixed such boundary condition
we get a vector space U(B; c)⊗F(X\B; c). But we want to let the boundary condition vary, so we sum over all c.
And we want to let the blob vary too, so we then sum over all B ⊂ X. Thus we define

B1(X) =
⊕
B⊂X

 ⊕
c∈F(∂B)

U(B; c)⊗F(X\B; c)

 ,

with ∂ : B1(X) → B0(X) given by ∂(B, u, r) = u • r. As promised, this gives us

A(X) = B0(X)/∂(B1(X)) = H0(B∗(X)).

1

1.2 B2(X)

We’ll discuss B2(X) before moving on to Bk(X), since this is the first place where we have to start worrying about
how our blobs relate to each other. Here we have two blobs B1, B2 ⊂ X, and they will either be disjoint or nested.
In both cases, we’ll want to quotient ker(∂ : B1(X) → B0(X)) by fields which can be split over two blobs, identifying
any two elements of B1 that were somehow mutually compatible.

For two disjoint blobs B1, B2 ⊂ X (actually they only need disjoint interiors), this is just a field x ∈ F(X)
from which we can simultaneously split off local relations on B1 and B2, i.e. x = u1 • u2 • r. Again, these
must agree on the boundary conditions c1 ∈ F(∂B1) and c2 ∈ F(∂B2), so for a fixed pair of such boundary
conditions we get a vector space U(B1; c1) ⊗ U(B2; c2) ⊗ F(X\(B1 ∪ B2); c1, c2). We make the identification
(B1, B2, u1, u2, r) = −(B2, B1, u2, u1, r), and we define ∂(B1, B2, u1, u2, r) = (B2, u2, u1 • r)− (B1, u1, u2 • r). Hold
on to that for a second.

For two nested (possibly equal) blobs B1 ⊂ B2 ⊂ X, we will want to kill a field x ∈ F(X) from which not
only can we split off local relations on B1 and B2, but we can do so compatibly. Note, however, that if a field
x ∈ F(X) restricts down to a local relation u1 ∈ U(B1) and splits over B2, then it must restrict to a local relation
u2 ∈ U(B2) ⊂ F(B2) as well since local relations are contagious, so we really just need to look for compatible fields
r′ ∈ F(B2\B1; c1, c2). So for a fixed pair of boundary conditions c1 ∈ F(∂B1) and c2 ∈ F(∂B2), we get a vector
space U(B1; c1)⊗F(B2\B1; c1, c2)⊗F(X\B2; c2). We define ∂(B1, B2, u, r′, r) = (B2, u • r′, r)− (B1, u, r′ • r).

Now that we have investigated both types of configurations of two blobs, we make the definition

B2(X) =

 ⊕
B1,B2⊂X

B◦1∩B◦2=∅

⊕
c1∈F(∂B1)
c2∈F(∂B2)

U(B1; c1)⊗ U(B2; c2)⊗F(X\(B1 ∪B2); c1, c2)


⊕ ⊕

B1⊂B2⊂X

⊕
c1∈F(∂B1)
c2∈F(∂B2)

U(B1; c1)⊗F(B2\B1; c1, c2)⊗F(X\B2; c2)

 .

1.3 Bk(X)

We define Bk(X) to be generated by fields on x along with configurations of k blobs that are all disjoint or nested
and over which x splits, such that if a blob Bi does not strictly contain any other blob (this is called a twig) then
x must restrict to a local relation in U(Bi). (Again, this last condition ensures that x restricts to a local relation
on any blob, by the condition that local relations form an ideal.) In symbols, if we let

• T ⊆ {1, . . . , k} be the indices of the twig blobs (for some particular configuration of blobs)

• Bϕ(i) be a largest blob contained in Bi (for i /∈ T)

• X ′ = X\(B1 ∪ . . . ∪Bk)

• c ∈ F(∂X ′) be the sum of the boundary conditions ci ∈ F(∂Bi)

then

Bk(X) =

 ⊕
B1,...,Bk⊂X
Bi,Bj disjoint

or nested

⊕
c∈F(∂X′)

(⊗
i∈T

U(Bi; ci)

)⊗(⊗
i/∈T

F(Bi\Bϕ(i); ci, cϕ(i))

)⊗
F(X ′; c)


/ permutations

of blobs
with signs.

The boundary map ∂ : Bk(X) → Bk−1(X), as stated before, is the alternating sum of erasing one of the balls.

2 Blobs

The following definitions are motivated by the fact that we would like the following two operations on blob config-
urations to yield blob configurations:

• For any (possibly empty) blob configuration on an n-ball B, we can add B itself as an outermost blob.

2

• If we obtain Xgl from X by gluing, then any blob configuration on X gives a blob configuration on Xgl.

However, allowing these operations gives blob configurations whose complements are not manifolds. For example,
suppose we have two 1×1×2 blocks that have each been decomposed into two blobs as in the picture, and suppose
we are planning to glue these two blocks together in the evident way.

Certainly we must allow {A} as a blob configuration in A∪B and {D} as a blob configuration in C ∪D. But then
we also must allow {A,D} as a blob configuration in (A ∪B) ∪face (C ∪D), whose complement is not a manifold.

Therefore, we define a gluing decomposition of a manifold X to be a sequence of manifolds M0 → M1 → . . . →
Mm = X such that each Mk is obtained from Mk−1 by gluing together a disjoint pair of homeomorphic (n − 1)-
manifolds in the boundary of Mk−1. So all the points of X are already contained in M0, and we just need to find a
sequence of gluings such that at every stage we still have a manifold. If we have a gluing decomposition that begins
as a disjoint union of balls, we call it a ball decomposition. Thus, the final 1× 2× 2 block in the above example can
be realized as the ball decomposition

A tB t C tD → (A ∪B) t (C ∪D) → A ∪B ∪ C ∪D.

Given a gluing decomposition M0 → . . . → Mm = X, we say that a field on X is splittable if it is the image of a
field on M0.

Now we can give a precise definition: a blob configuration in X is an ordered collection of k subsets {B1, . . . , Bk}
of X such that there exists a gluing decomposition M0 → . . . → Mm = X for which each Bi is the image in X of
some connected component M ′

j of some Mj , where M ′
j must be a ball. We say that the gluing decomposition is

compatible with the configuration.
Observe the following:

• Any two blobs must be nested or have disjoint interiors.

• Nested blobs may have boundaries that overlap (or even coincide).

• Blobs may meet ∂X.

• Through the sequence of gluings, M ′
j may have been glued to itself, and so blobs need not actually be embedded

balls.

• Complements of blob configurations need not be manifolds.

Remember that our old definition involved choosing fields on the complements of blob configurations. But we
can only choose fields on manifolds. Thus, in light of the final observation, we make a new, final definition: a k-blob
diagram on X is a configuration of k blobs {B1, . . . , Bk} on X and a field r ∈ F(X) which is splittable along some
gluing decomposition compatible with the configuration, such that the restriction to each twig Bi is a local relation,
or more precisely that the restriction to the associated ball M ′

j is a local relation.
When we write {B1, . . . , Bk} we mean a configuration of k blobs, and when we write ({B1, . . . , Bk}, r) we mean

a k-blob diagram. Now we can now make the succinct definitions

Bk(X) =

 ⊕
{B1,...,Bk}

{({B1, . . . , Bk}, r)}

/ permutations
of blobs
with signs

∂({B1, . . . , Bk}, r) =
k∑

i=1

(−1)i+1({B1, . . . , B̂i, . . . , Bk}, r).

It is immediate that ∂ really does take Bk(X) into Bk−1(X).

3

3 Basic properties

Throughout Morrison & Walker’s original paper, results are mostly proved using the following properties rather
than the actual definition of blob homology.

1. The blob complex is functorial with respect to homeomorphisms.

2. There is a natural isomorphism B∗(X t Y) ∼= B∗(X)⊗B∗(Y).

Proof. We can combine any pair of blob diagrams on X and Y to a blob diagram on X t Y by listing first
the blobs on X, then the blobs on Y . Up to sign, every blob diagram on X t Y arises in this way.

3. Let c ∈ F(∂B) be any boundary condition. If the natural quotient map p : B∗(B; c) → H0(B∗(B; c)) has
a splitting s : H0(B∗(B; c)) → B0(B; c), then these two maps induce a chain homotopy equivalence between
B∗(B; c) and the complex H0 = · · · → 0 → H0(B∗(B; c)) → 0 → · · · .

Proof. By assumption ps = idH0 , so we just need a collection of maps h : Bk(B; c) → Bk+1(B; c) such that
∂h + h∂ = idB∗(B;c) − sp. For k ≥ 1 we define hk(({B1, . . . , Bk}, r)) = ({B1, . . . , Bk, B}, r), and we define
h0(r) = ({B}, r − s(p(r))). This gives the diagram

· · · - B3(B; c) - B2(B; c) - B1(B; c) - B0(B; c) - 0

· · · - B3(B; c)

id

?
-

�

h2

B2(B; c)

id

?
-

�

h1

B1(B; c)

id

?
-

�

h0

B0(B; c)

id−sp

?
- 0.

It is obvious that ∂h + h∂ = id− sp on Bk(B; c) for all k 6= 1. At k = 1 we have

(∂h1 + h0∂)({B1}, r) = ∂(({B1, B}, r)) + h0(r)
= ({B1}, r)− ({B}, r) + ({B}, r − s(p(r)))
= ({B1}, r) + ({B},−s(p(r))).

But note that p(r) = 0 by definition of blob homology, so in fact this map is the identity on B1(B; c).

Assuming (F ,U) is enriched over Vect, we will always have such a splitting. But note that even when
there is no such splitting, we can still let h0 = 0 and get a homotopy equivalence between B∗(B; c) and
· · · → 0 → U(B; c) → F(B; c)) → 0 → · · · .

4. If X is a disjoint union of balls, then B∗(X; c) is contractible.

Proof. This follows directly from Properties 2 and 3.

5. Suppose ∂X = Y ∪ Y ∪Z. Let Xgl be the result of gluing the two copies of Y together, and write ∂Xgl = Zgl.
Suppose c ∈ F(X) restricts to the same boundary condition a ∈ F(Y) on both copies of Y . Then we can
necessarily glue the restriction b ∈ F(Z) of c to itself to get bgl ∈ F(Zgl). For any such situation, there is a
chain map

gl : B∗(X; a, a, b) → B∗(Xgl; bgl)

which is natural with respect to the actions of diffeomorphisms and iterated gluings.

4

4 A combinatorial aside

Blob configurations are rather combinatorial in nature. In this section we describe a functorial, simplicial set-like
construction which associates to any blob configuration what we will call a cone-product polyhedron. We denote by
P the collection of these, and we denote a typical object by the letter ρ.

Note that this construction is ignorant of whether nested blobs have intersecting boundary.
From a blob configuration b we build a simplicial complex p(b) as follows:

• Let p(∅) = pt, where ∅ denotes a 0-blob diagram.

• If b and b′ are non-overlapping blob diagrams (i.e. the interiors of their blobs are disjoint), let p(b t b′) =
p(b)× p(b′) (note that this rule makes the previous rule acceptable).

• If b is obtained from b by adding an outer blob which encloses all the others, let p(b) = cone(p(b)).

Thus, assuming our diagram has any blobs at all, we start with an edge for each twig blob, take a Cartesian
product whenever we need to combine two configurations, and take the cone whenever a new blob encloses the
existing configuration. So for example, a diagram of k nested blobs yields a k-simplex, while a diagram of k disjoint
blobs yields a k-cube. If two (or more) blobs are equal, this still works if we consider them as being nested in some
arbitrary way. However, we might hope to use this to obtain something like a sheaf over the configuration space
ConfB(X) of blobs on X, in which case the issue might become more serious.

Cone-product polyhedra arising in this way can be given a hint of simplicial flavor as follows. On the vertex of p(b)
associated to the blob Bi we can keep track of the local relation ui ∈ U(Bi), and on (whatever arises in p(b) coming
from) the interior of a cone associated to adding the blob Bi we can keep track of the field xi ∈ F(Bi\{· · · }). On the
interior of a product p(b)×p(b′) coming from bt b′ we should probably put something like r ∈ F(X\(supp(bt b′))),
but I couldn’t prove it. Maybe this is an indication that we shouldn’t be taking products, because then we’d end
up with disjoint simplicial sets.

Assume in what follows that no two blobs are equal. We can then strengthen the above construction to commute
with taking the boundary, but we must make a new definition of “boundary” for our cone-product polyhedra. Let
ΣP denote the free abelian group on P. (This should probabl be modified if we decide not to take products after all,
as was idly mused in the paragraph above.) Note that throughout the construction of a cone-product polyhedron
we can keep track of a distinguished point ∗, namely the point associated to the 0-blob diagram. We define a
homomorphism δ : ΣP → ΣP by, for any ρ ∈ P, setting δ(ρ) to be a signed sum of those faces in ∂ρ which contain
∗, except that we define δ(∗) = ∗. This gives us that p(∂b) = δp(b), since up to signs this is true when we modify b
and p(b) using our three operations:

• If b = ∅ is the 0-blob diagram, then

p(∂∅) = p(∅) = ∗
δ(p(∅)) = δ(∗) = ∗.

• If b and b′ are non-overlapping blob diagrams, then

p(∂(b t b′)) = p((∂b) t b′ + (−1)|b|b t (∂b′)) = p(∂b)× b′ + (−1)|b|p(b)× p(∂b′)
δp(b t b′) = δ(p(b)× p(b′)) = δ(p(b))× p(b′)± p(b)× δ(p(b′))

so the statement follows by induction on |b| and |b′|.

• If |b| = k, then

p(∂(b)) = p

(
k∑

i=1

(−1)i+1bî + (−1)kb

)
=

k∑
i=1

(−1)i+1cone(p(bî)) + (−1)kp(b)

δp(b) = δ(cone(p(b))) =
k∑

i=1

±cone((p(bî)))± p(b).

Said differently, p : (B∗, ∂) → (ΣP, δ) is a homomorphism of differential groups. Presumably there should be a way
to carry over the information on blobs to ΣP in such a way that we can compute H∗(B∗(X)) entirely from its image
in (a souped-up version of) ΣP.

5

