# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1215290657 0 # Node ID 0535a42fb804c952c8366631c9110dc50ab833c6 # Parent 538f38ddf39502d3094a60cefb2439fd72d86de5 small tweaks to Ainf module defn diff -r 538f38ddf395 -r 0535a42fb804 blob1.tex --- a/blob1.tex Sat Jul 05 20:01:03 2008 +0000 +++ b/blob1.tex Sat Jul 05 20:44:17 2008 +0000 @@ -1039,14 +1039,18 @@ The definition of a module follows closely the definition of an algebra or category. \begin{defn} \label{defn:topological-module}% -A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ consists of the data +A topological $A_\infty$-(left-)module $M$ over a topological $A_\infty$ category $A$ +consists of the following data. \begin{enumerate} -\item a functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces, -\item along with an `evaluation' map $\ev_K : \CD{K} \tensor M(K) \to M(K)$ -\item and for each interval $J$ and interval $K$ a marked point on the upper boundary, a gluing map -$\gl_{J,K} : A(J) \tensor M(K) \to M(J \cup K)$ +\item A functor $K \mapsto M(K)$ from $1$-manifolds diffeomorphic to the standard interval, with a marked point on a upper boundary, to complexes of vector spaces. +\item For each pair of such marked intervals, +an `evaluation' chain map $\ev_{K\to K'} : \CD{K \to K'} \tensor M(K) \to M(K')$. +\item For each decomposition $K = J\cup K'$ of the marked interval +$K$ into an unmarked interval $J$ and a marked interval $K'$, a gluing map +$\gl_{J,K'} : A(J) \tensor M(K') \to M(K)$. \end{enumerate} -satisfying the obvious conditions analogous to those in Definition \ref{defn:topological-algebra}. +The above data is required to satisfy +conditions analogous to those in Definition \ref{defn:topological-algebra}. \end{defn} Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over