# HG changeset patch # User Kevin Walker # Date 1277358206 25200 # Node ID 0daa4983d2294e30fc66b75b222c2178664e9b3d # Parent a7b53f6a339db390b3431521b2fd33d59848aab5 figures for n+1-cat diff -r a7b53f6a339d -r 0daa4983d229 diagrams/tempkw/jun23a.pdf Binary file diagrams/tempkw/jun23a.pdf has changed diff -r a7b53f6a339d -r 0daa4983d229 diagrams/tempkw/jun23b.pdf Binary file diagrams/tempkw/jun23b.pdf has changed diff -r a7b53f6a339d -r 0daa4983d229 diagrams/tempkw/jun23c.pdf Binary file diagrams/tempkw/jun23c.pdf has changed diff -r a7b53f6a339d -r 0daa4983d229 diagrams/tempkw/jun23d.pdf Binary file diagrams/tempkw/jun23d.pdf has changed diff -r a7b53f6a339d -r 0daa4983d229 text/ncat.tex --- a/text/ncat.tex Wed Jun 23 18:37:25 2010 -0700 +++ b/text/ncat.tex Wed Jun 23 22:43:26 2010 -0700 @@ -1967,7 +1967,14 @@ (Here we are overloading notation and letting $D$ denote both a decorated and an undecorated manifold.) We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$ -(see Figure xxxx). +(see Figure \ref{jun23a}). +\begin{figure}[t] +\begin{equation*} +\mathfig{.6}{tempkw/jun23a} +\end{equation*} +\caption{$Y\times I$ sliced open} +\label{jun23a} +\end{figure} Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$ which agree on their boundaries, we can evaluate \[ @@ -2008,7 +2015,14 @@ \cS(A\cup B\cup \ol{B}) \stackrel{\id\ot\psi}{\longrightarrow} \cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) . \] -(See Figure xxxx.) +(See Figure \ref{jun23b}.) +\begin{figure}[t] +\begin{equation*} +\mathfig{.5}{tempkw/jun23b} +\end{equation*} +\caption{Moving $B$ from top to bottom} +\label{jun23b} +\end{figure} Let $D' = B\cap C$. Using the inner products there is an adjoint map \[ @@ -2022,6 +2036,15 @@ \cS(C\cup \ol{B}\cup B) \stackrel{f'\ot\id}{\longrightarrow} \cS(A\cup B) . \] +(See Figure \ref{jun23c}.) +\begin{figure}[t] +\begin{equation*} +\mathfig{.5}{tempkw/jun23c} +\end{equation*} +\caption{Moving $B$ from bottom to top} +\label{jun23c} +\end{figure} +Let $D' = B\cap C$. It is not hard too show that the above two maps are mutually inverse. \begin{lem} @@ -2049,7 +2072,14 @@ The second movie move replaces to successive pushes in the same direction, across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$. -(See Figure xxxx.) +(See Figure \ref{jun23d}.) +\begin{figure}[t] +\begin{equation*} +\mathfig{.9}{tempkw/jun23d} +\end{equation*} +\caption{A movie move} +\label{jun23d} +\end{figure} Invariance under this movie move follows from the compatibility of the inner product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.