# HG changeset patch # User Kevin Walker # Date 1277258211 25200 # Node ID 40df54ede7feee830d0138ec54680a7d5f21b6f2 # Parent b1da2a454ee76c579aeffea917ed353a1a3ad163 misc diff -r b1da2a454ee7 -r 40df54ede7fe text/deligne.tex --- a/text/deligne.tex Tue Jun 22 18:05:09 2010 -0700 +++ b/text/deligne.tex Tue Jun 22 18:56:51 2010 -0700 @@ -195,7 +195,7 @@ \stackrel{f_k}{\to} \bc_*(N_0) \] (Recall that the maps $\id\ot\alpha_i$ were defined in \nn{need ref}.) -\nn{issue: haven't we only defined $\id\ot\alpha_i$ when $\alpha_i$ is closed?} +\nn{need to double check case where $\alpha_i$'s are not closed.} It is easy to check that the above definition is compatible with the equivalence relations and also the operad structure. We can reinterpret the above as a chain map diff -r b1da2a454ee7 -r 40df54ede7fe text/ncat.tex --- a/text/ncat.tex Tue Jun 22 18:05:09 2010 -0700 +++ b/text/ncat.tex Tue Jun 22 18:56:51 2010 -0700 @@ -64,7 +64,7 @@ They could be topological or PL or smooth. %\nn{need to check whether this makes much difference} (If smooth, ``homeomorphism" should be read ``diffeomorphism", and we would need -to be fussier about corners.) +to be fussier about corners and boundaries.) For each flavor of manifold there is a corresponding flavor of $n$-category. We will concentrate on the case of PL unoriented manifolds. @@ -1522,8 +1522,7 @@ (See Figure \ref{fig:lmar}.) \begin{figure}[t]$$ \definecolor{arcolor}{rgb}{.75,.4,.1} -\begin{tikzpicture} -\pgfsetlinewidth{1pt} +\begin{tikzpicture}[line width=1pt] \fill (0,0) circle (.1); \draw (0,0) -- (2,0); \draw (1,0.1) -- (1,-0.1); @@ -1534,8 +1533,7 @@ \draw (0,1) -- (2,1); \end{tikzpicture} \qquad -\begin{tikzpicture} -\pgfsetlinewidth{1pt} +\begin{tikzpicture}[line width=1pt] \fill (0,0) circle (.1); \draw (0,0) -- (2,0); \draw (1,0.1) -- (1,-0.1); @@ -1546,8 +1544,7 @@ \draw (0,1) -- (1,1); \end{tikzpicture} \qquad -\begin{tikzpicture} -\pgfsetlinewidth{1pt} +\begin{tikzpicture}[line width=1pt] \fill (0,0) circle (.1); \draw (0,0) -- (3,0); \foreach \x in {0.5, 1.0, 1.25, 1.5, 2.0, 2.5} { @@ -1590,8 +1587,7 @@ where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals which are dropped off the right side. -(Either $\cbar'$ or $\cbar''$ might be empty.) -\nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.} +(If no such subintervals are dropped, then $\cbar''$ is empty.) Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$ appearing in Equation \eqref{eq:tensor-product-boundary}, we have \begin{eqnarray*} @@ -1649,6 +1645,11 @@ \[ g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ . \] +\nn{...} +More generally, we have a chain map +\[ + \hom_\cC(\cX_\cC \to \cY_\cC) \ot \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ . +\] \nn{not sure whether to do low degree examples or try to state the general case; ideally both, but maybe just low degrees for now.}