# HG changeset patch # User Kevin Walker # Date 1275006956 25200 # Node ID 418919afd07731ce005f8df0f08d1bc52e8c5848 # Parent 79f7b1bd7b1ac68101c0091e42bc0fa9365b9d83 small preliminary changes to Deligne section diff -r 79f7b1bd7b1a -r 418919afd077 text/deligne.tex --- a/text/deligne.tex Tue May 25 16:50:55 2010 -0700 +++ b/text/deligne.tex Thu May 27 17:35:56 2010 -0700 @@ -11,7 +11,7 @@ We will state this more precisely below as Proposition \ref{prop:deligne}, and just sketch a proof. First, we recall the usual Deligne conjecture, explain how to think of it as a statement about blob complexes, and begin to generalize it. -\def\mapinf{\Maps_\infty} +%\def\mapinf{\Maps_\infty} The usual Deligne conjecture \nn{need refs} gives a map \[ @@ -25,11 +25,11 @@ of the blob complex of the interval. \nn{need to make sure we prove this above}. So the 1-dimensional Deligne conjecture can be restated as -\begin{eqnarray*} - C_*(FG_k)\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots - \otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\ - & \hspace{-5em} \to \mapinf(\bc^C_*(I), \bc^C_*(I)) . -\end{eqnarray*} +\[ + C_*(FG_k)\otimes \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots + \otimes \hom(\bc^C_*(I), \bc^C_*(I)) + \to \hom(\bc^C_*(I), \bc^C_*(I)) . +\] See Figure \ref{delfig1}. \begin{figure}[!ht] $$\mathfig{.9}{deligne/intervals}$$ @@ -39,12 +39,12 @@ of Figure \ref{delfig1} and ending at the topmost interval. The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph. We remove the bottom interval of the bigon and replace it with the top interval. -To map this topological operation to an algebraic one, we need, for each hole, element of -$\mapinf(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$. +To map this topological operation to an algebraic one, we need, for each hole, an element of +$\hom(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$. So for each fixed fat graph we have a map \[ - \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots - \otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) \to \mapinf(\bc^C_*(I), \bc^C_*(I)) . + \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots + \otimes \hom(\bc^C_*(I), \bc^C_*(I)) \to \hom(\bc^C_*(I), \bc^C_*(I)) . \] If we deform the fat graph, corresponding to a 1-chain in $C_*(FG_k)$, we get a homotopy between the maps associated to the endpoints of the 1-chain. @@ -65,8 +65,10 @@ \caption{A fat graph}\label{delfig2}\end{figure} The components of the $n$-dimensional fat graph operad are indexed by tuples $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$. -Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to +\nn{not quite true: this is coarser than components} +Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all homeomorphic to the $n$-ball is equivalent to the little $n{+}1$-disks operad. +\nn{what about rotating in the horizontal directions?} If $M$ and $N$ are $n$-manifolds sharing the same boundary, we define @@ -82,9 +84,9 @@ \label{prop:deligne} There is a collection of maps \begin{eqnarray*} - C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes -\mapinf(\bc_*(M_{k}), \bc_*(N_{k})) & \\ - & \hspace{-11em}\to \mapinf(\bc_*(M_0), \bc_*(N_0)) + C_*(FG^n_{\overline{M}, \overline{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes +\hom(\bc_*(M_{k}), \bc_*(N_{k})) & \\ + & \hspace{-11em}\to \hom(\bc_*(M_0), \bc_*(N_0)) \end{eqnarray*} which satisfy an operad type compatibility condition. \nn{spell this out} \end{prop} diff -r 79f7b1bd7b1a -r 418919afd077 text/intro.tex --- a/text/intro.tex Tue May 25 16:50:55 2010 -0700 +++ b/text/intro.tex Thu May 27 17:35:56 2010 -0700 @@ -257,6 +257,7 @@ \end{property} Finally, we state two more properties, which we will not prove in this paper. +\nn{revise this; expect that we will prove these in the paper} \begin{property}[Mapping spaces] Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps