# HG changeset patch # User Scott Morrison # Date 1284955919 18000 # Node ID 4f142fcd386e1c81aa52e029f2d36b255df785aa # Parent 5ab4581dc082b45ba65245d4cbe703fad2d8143f hopefully getting signs right in Lemma 6.3 diff -r 5ab4581dc082 -r 4f142fcd386e text/evmap.tex --- a/text/evmap.tex Sun Sep 19 23:01:49 2010 -0500 +++ b/text/evmap.tex Sun Sep 19 23:11:59 2010 -0500 @@ -279,37 +279,32 @@ \[ h(y) = e(y - r(y)) + c(r(y)) . \] -\nn{up to sign, at least} We must now verify that $h$ does the job it was intended to do. For $x\in \btc_{ij}$ with $i\ge 2$ we have -\nn{ignoring signs} \begin{align*} - \bd h(x) + h(\bd x) &= \bd(e(x)) + e(\bd x) \\ - &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x) + e(\bd_t x) \\ - &= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\ - &= x . + \bd h(x) + h(\bd x) &= \bd(e(x)) + e(\bd x) && \\ + &= \bd_b(e(x)) + (-1)^{i+1} \bd_t(e(x)) + e(\bd_b x) + (-1)^i e(\bd_t x) && \\ + &= \bd_b(e(x)) + e(\bd_b x) && \text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\ + &= x . && \end{align*} For $x\in \btc_{1j}$ we have -\nn{ignoring signs} \begin{align*} - \bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) + e(\bd_t x) \\ - &= \bd_b(e(x)) + e(\bd_b x) \quad\quad\text{(since $r(\bd_b x) = 0$)} \\ - &= x . + \bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) - e(\bd_t x) && \\ + &= \bd_b(e(x)) + e(\bd_b x) && \text{(since $r(\bd_b x) = 0$)} \\ + &= x . && \end{align*} For $x\in \btc_{0j}$ with $j\ge 1$ we have -\nn{ignoring signs} \begin{align*} - \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(e(x - r(x))) + \bd_t(c(r(x))) + + \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) - \bd_t(e(x - r(x))) - \bd_t(c(r(x))) + e(\bd_t x - r(\bd_t x)) + c(r(\bd_t x)) \\ - &= x - r(x) + \bd_t(c(r(x))) + c(r(\bd_t x)) \\ + &= x - r(x) - \bd_t(c(r(x))) + c(r(\bd_t x)) \\ &= x - r(x) + r(x) \\ &= x. \end{align*} Here we have used the fact that $\bd_b(c(r(x))) = 0$ since $c(r(x))$ is a $0$-blob diagram, as well as that $\bd_t(e(r(x))) = e(r(\bd_t x))$ \nn{explain why this is true?} and $c(r(\bd_t x)) - \bd_t(c(r(x))) = r(x)$ \nn{explain?}. For $x\in \btc_{00}$ we have -\nn{ignoring signs} \begin{align*} \bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(c(r(x))) \\ &= x - r(x) + r(x) - r(x)\\