# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1248807159 0 # Node ID 60bb1039be5096e3346554da46cf32a95b00b209 # Parent dd4b4ac15023b6d43ad6ab9d6aa7bbebb4b852d0 ... diff -r dd4b4ac15023 -r 60bb1039be50 text/kw_macros.tex --- a/text/kw_macros.tex Tue Jul 28 15:33:33 2009 +0000 +++ b/text/kw_macros.tex Tue Jul 28 18:52:39 2009 +0000 @@ -22,6 +22,7 @@ \def\pd#1#2{\frac{\partial #1}{\partial #2}} \def\lf{\overline{\cC}} \def\ot{\otimes} +\def\inv{^{-1}} %\def\nn#1{{{\it \small [#1]}}} \def\nn#1{{{\color[rgb]{.2,.5,.6} \small [#1]}}} diff -r dd4b4ac15023 -r 60bb1039be50 text/ncat.tex --- a/text/ncat.tex Tue Jul 28 15:33:33 2009 +0000 +++ b/text/ncat.tex Tue Jul 28 18:52:39 2009 +0000 @@ -566,12 +566,15 @@ \nn{start with (less general) tensor products; maybe change this later} +Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$. +(If $k=1$ and manifolds are oriented, then one should be +a left module and the other a right module.) +We will define an $n{-}1$-category $\cM\ot_\cC\cM'$, which depend (functorially) +on a choice of 1-ball (interval) $J$. + Define a {\it doubly marked $k$-ball} to be a triple $(B, N, N')$, where $B$ is a $k$-ball and $N$ and $N'$ are disjoint $k{-}1$-balls in $\bd B$. -Let $\cM$ and $\cM'$ be modules for an $n$-category $\cC$. -(If $k=1$ and manifolds are oriented, then one should be -a left module and the other a right module.) Let $D = (B, N, N')$ be a doubly marked $k$-ball, $1\le k \le n$. We will define a set $\cM\ot_\cC\cM'(D)$. (If $k = n$ and our $k$-categories are enriched, then @@ -596,7 +599,7 @@ $\cC$, $\cM$ and $\cM'$ determine a functor $\psi$ from $\cJ(D)$ to the category of sets (possibly with additional structure if $k=n$). -For a decomposition $x = (X_a, M_b, M'_c)$ in $\cJ(D)$, define $\psi(x)$ to subset +For a decomposition $x = (X_a, M_b, M'_c)$ in $\cJ(D)$, define $\psi(x)$ to be the subset \[ \psi(x) \sub (\prod_a \cC(X_a)) \prod (\prod_b \cM(M_b)) \prod (\prod_c \cM'(M'_c)) \] @@ -611,10 +614,54 @@ $\psi(x)\to \cM\ot_\cC\cM'(D)$, these maps are compatible with the refinement maps above, and $\cM\ot_\cC\cM'(D)$ is universal with respect to these properties. +Define a {\it marked $k$-annulus} to be a manifold homeomorphic +to $S^{k-1}\times I$, with its entire boundary ``marked". +Define the boundary of a doubly marked $k$-ball $(B, N, N')$ to be the marked +$k{-}1$-annulus $\bd B \setmin(N\cup N')$. + +Using a colimit construction similar to the one above, we can define a set +$\cM\ot_\cC\cM'(A)$ for any marked $k$-annulus $A$ (for $k < n$). + +$\cM\ot_\cC\cM'$ is (among other things) a functor from the category of +doubly marked $k$-balls ($k\le n$) and homeomorphisms to the category of sets. +We have other functors, also denoted $\cM\ot_\cC\cM'$, from the category of +marked $k$-annuli ($k < n$) and homeomorphisms to the category of sets. + +For each marked $k$-ball $D$ there is a restriction map +\[ + \bd : \cM\ot_\cC\cM(D) \to \cM\ot_\cC\cM(\bd D) . +\] +These maps comprise a natural transformation of functors. +\nn{possible small problem: might need to define $\cM$ of a singly marked annulus} + +For $c \in \cM\ot_\cC\cM(\bd D)$, let +\[ + \cM\ot_\cC\cM(D; c) \deq \bd\inv(c) . +\] + Note that if $k=n$ and we fix boundary conditions $c$ on the unmarked boundary of $D$, then $\cM\ot_\cC\cM'(D; c)$ will be an object in the enriching category (e.g.\ vector space or chain complex). -\nn{say this more precisely?} + +Let $J$ be a doubly marked 1-ball (i.e. an interval, where we think of both endpoints +as marked). +For $X$ a plain $k$-ball ($k \le n-1$) or $k$-sphere ($k \le n-2$), define +\[ + \cM\ot_\cC\cM'(X) \deq \cM\ot_\cC\cM'(X\times J) . +\] +We claim that $\cM\ot_\cC\cM'$ has the structure of an $n{-}1$-category. +We have already defined restriction maps $\bd : \cM\ot_\cC\cM'(X) \to +\cM\ot_\cC\cM'(\bd X)$. +The only data for the $n{-}1$-category that we have not defined yet are the product +morphisms. +\nn{so next define those} + +\nn{need to check whether any of the steps in verifying that we have +an $n{-}1$-category are non-trivial.} + + + + \medskip \hrule @@ -627,7 +674,6 @@ Stuff that remains to be done (either below or in an appendix or in a separate section or in a separate paper): \begin{itemize} -\item tensor products \item traditional $n$-cat defs (e.g. *-1-cat, pivotal 2-cat) imply our def of plain $n$-cat \item conversely, our def implies other defs \item do same for modules; maybe an appendix on relating topological