# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1225059659 0 # Node ID 75c9b874dea749df64f4ffa7fa079779b2b2d521 # Parent b7ade62bea27e2a3ec4fe9f94728f3ad07613ada ... diff -r b7ade62bea27 -r 75c9b874dea7 blob1.tex --- a/blob1.tex Sun Oct 26 21:08:54 2008 +0000 +++ b/blob1.tex Sun Oct 26 22:20:59 2008 +0000 @@ -1432,10 +1432,10 @@ Note that $\Sigma^0(M)$ is a point. Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$. -Let $C_*(X)$ denote the singular chain complex of the space $X$. +Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$. \begin{prop} -$\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M))$. +$\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$. \end{prop} \begin{proof} @@ -1497,6 +1497,36 @@ \end{proof} +\begin{prop} +The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$. +\end{prop} + +\begin{proof} +The actions agree in degree 0, and both are compatible with gluing. +(cf. uniqueness statement in \ref{CDprop}.) +\end{proof} + +\medskip + +In view of \ref{hochthm}, we have proved that $HH_*(k[t]) \cong C_*(\Sigma^\infty(S^1), k)$, +and that the cyclic homology of $k[t]$ is related to the action of rotations +on $C_*(\Sigma^\infty(S^1), k)$. +\nn{probably should put a more precise statement about cyclic homology and $S^1$ actions in the Hochschild section} +Let us check this directly. + +We can define a flow on $\Sigma^j(S^1)$ by having the points repel each other. +The fixed points of this flow are the equally spaced configurations. +This defines a map from $\Sigma^j(S^1)$ to $S^1/j$ ($S^1$ modulo a $2\pi/j$ rotation.). +The fiber of this map is $\Delta^{j-1}$, the $(j-1)$-simplex, +and the holonomy of the $\Delta^{j-1}$ bundle +over $S^1$ is the cyclic permutation of its $j$ vertices. + + + + + +\nn{...} +