# HG changeset patch # User Scott Morrison # Date 1317928835 25200 # Node ID 77a80b7eb98e345aaea861f63561f637374b434f # Parent 2efd26072c91c0bd79cf3e799d6f99843ed395b4 definition-izing the blob complex for an A_infty cat, and stating assumptions more prominently in S7.2 diff -r 2efd26072c91 -r 77a80b7eb98e RefereeReport.pdf Binary file RefereeReport.pdf has changed diff -r 2efd26072c91 -r 77a80b7eb98e text/a_inf_blob.tex --- a/text/a_inf_blob.tex Thu Oct 06 12:11:47 2011 -0700 +++ b/text/a_inf_blob.tex Thu Oct 06 12:20:35 2011 -0700 @@ -2,9 +2,13 @@ \section{The blob complex for \texorpdfstring{$A_\infty$}{A-infinity} \texorpdfstring{$n$}{n}-categories} \label{sec:ainfblob} -Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the +Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the following anticlimactically tautological definition of the blob -complex $\bc_*(M;\cC)$ to be the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}. +complex. +\begin{defn} +The blob complex + $\bc_*(M;\cC)$ of an $n$-manifold $n$ with coefficients in an $A_\infty$ $n$-category is the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}. +\end{defn} We will show below in Corollary \ref{cor:new-old} @@ -335,7 +339,7 @@ \subsection{A gluing theorem} \label{sec:gluing} -Next we prove a gluing theorem. +Next we prove a gluing theorem. Throughout this section fix a particular $n$-dimensional system of fields $\cE$ and local relations. Each blob complex below is with respect to this $\cE$. Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$. We will need an explicit collar on $Y$, so rewrite this as $X = X_1\cup (Y\times J) \cup X_2$. @@ -364,7 +368,7 @@ \begin{thm} \label{thm:gluing} -When $k=n$ above, $\bc(X)$ is homotopy equivalent to $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$. +Suppose $X$ is an $n$-manifold, and $X = X_1\cup (Y\times J) \cup X_2$ (i.e. just as with $k=n$ above). Then $\bc(X)$ is homotopy equivalent to the $A_\infty$ tensor product $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$. \end{thm} \begin{proof}