# HG changeset patch # User Scott Morrison # Date 1285646222 25200 # Node ID 77a80f91e21478ad993a3c7245b2ccec9f713efd # Parent b138ee4a5938c599327e3c7bf58125342cd62e0b last minute changes from friday, to submit to the arxiv diff -r b138ee4a5938 -r 77a80f91e214 build.xml --- a/build.xml Fri Sep 24 15:32:55 2010 -0700 +++ b/build.xml Mon Sep 27 20:57:02 2010 -0700 @@ -41,7 +41,7 @@ diff -r b138ee4a5938 -r 77a80f91e214 code/signs.nb --- a/code/signs.nb Fri Sep 24 15:32:55 2010 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1668 +0,0 @@ -(* Content-type: application/mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 6.0' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 145, 7] -NotebookDataLength[ 51807, 1659] -NotebookOptionsPosition[ 49044, 1566] -NotebookOutlinePosition[ 49407, 1582] -CellTagsIndexPosition[ 49364, 1579] -WindowFrame->Normal -ContainsDynamic->False*) - -(* Beginning of Notebook Content *) -Notebook[{ -Cell[BoxData[ - RowBox[{"Clear", "[", - RowBox[{"d", ",", "tm", ",", "m"}], "]"}]], "Input", - CellChangeTimes->{{3.4241980742571344`*^9, 3.424198074928099*^9}, { - 3.424198111630875*^9, 3.424198112381955*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"tm", "[", "x_", "]"}], ":=", "x"}]], "Input", - CellChangeTimes->{{3.424198093104235*^9, 3.4241981152961454`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"m", "[", "x_", "]"}], ":=", - RowBox[{"d", "[", "x", "]"}]}]], "Input", - CellChangeTimes->{{3.424198093104235*^9, 3.4241981152961454`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.424197939102792*^9, 3.4241979434390273`*^9}, { - 3.424198082939619*^9, 3.424198084061232*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", "b"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}]}], "]"}]}], "-", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b"}], "]"}]}]], "Output", - CellChangeTimes->{ - 3.424197943959776*^9, {3.424198070712037*^9, 3.4241981177697024`*^9}, - 3.4241981527399874`*^9, {3.424198220988123*^9, 3.4241982242928753`*^9}, { - 3.4241984914269953`*^9, 3.424198497575837*^9}, {3.4241986744701986`*^9, - 3.424198684594757*^9}, 3.4241987900664177`*^9, {3.4241989830138626`*^9, - 3.4241990466954317`*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.424198928445397*^9, 3.4241989306886225`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "-", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}]}]], "Output", - CellChangeTimes->{3.4241989309990687`*^9, 3.424199050130371*^9}] -}, Open ]], - -Cell[BoxData[ - RowBox[{ - RowBox[{"d", "[", - RowBox[{"a", ":", - RowBox[{"t", "[", "___", "]"}]}], "]"}], ":=", - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"k", "=", - RowBox[{"Length", "[", "a", "]"}]}], "}"}], ",", - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"i", "=", "1"}], "k"], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"j", "=", "1"}], - RowBox[{"i", "-", "1"}]], - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], - "]"}]}]], - RowBox[{"MapAt", "[", - RowBox[{"d", ",", "a", ",", "i"}], "]"}]}]}]}], "]"}]}]], "Input", - CellChangeTimes->{{3.4241985045058017`*^9, 3.4241986214940224`*^9}, { - 3.4241986537403903`*^9, 3.424198663494416*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"t", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.4241986645559425`*^9, 3.4241986670695567`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}]}]], "Output", - CellChangeTimes->{3.424198667420061*^9, 3.4241987978676353`*^9}] -}, Open ]], - -Cell[BoxData[ - RowBox[{ - RowBox[{"d", "[", "X_Plus", "]"}], ":=", - RowBox[{"d", "/@", "X"}]}]], "Input", - CellChangeTimes->{{3.4241988074414015`*^9, 3.424198812658904*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"d", "[", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n_."], " ", "X_"}], "]"}], ":=", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n"], " ", - RowBox[{"d", "[", "X", "]"}]}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"s_\[Sigma]", " ", "X_"}], "]"}], ":=", - RowBox[{"s", " ", - RowBox[{"d", "[", "X", "]"}]}]}]}], "Input", - CellChangeTimes->{{3.424199070639862*^9, 3.424199126960848*^9}, { - 3.424201311281747*^9, 3.4242013146165423`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", "_", "]"}], "]"}], ":=", "0"}]], "Input", - CellChangeTimes->{{3.4241988199694157`*^9, 3.4241988233342543`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"___", ",", "0", ",", "___"}], "]"}], ":=", "0"}]], "Input", - CellChangeTimes->{{3.424198831185544*^9, 3.424198836773579*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"X___", ",", "Y_Plus", ",", "Z__"}], "]"}], ":=", - RowBox[{ - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"X", ",", "#", ",", "Z"}], "]"}], "&"}], "/@", - "Y"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"X__", ",", "Y_Plus", ",", "Z___"}], "]"}], ":=", - RowBox[{ - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"X", ",", "#", ",", "Z"}], "]"}], "&"}], "/@", - "Y"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"X___", ",", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n_."], "Y_"}], ",", "Z___"}], "]"}], ":=", - - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n"], - RowBox[{"tm", "[", - RowBox[{"X", ",", "Y", ",", "Z"}], "]"}]}]}]}], "Input", - CellChangeTimes->{{3.4242002106090574`*^9, 3.4242002710960336`*^9}, { - 3.4242009022035217`*^9, 3.4242009251565266`*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X___", ",", "Y_Plus", ",", "Z__"}], "]"}], ":=", - RowBox[{ - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X", ",", "#", ",", "Z"}], "]"}], "&"}], "/@", - "Y"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X__", ",", "Y_Plus", ",", "Z___"}], "]"}], ":=", - RowBox[{ - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X", ",", "#", ",", "Z"}], "]"}], "&"}], "/@", - "Y"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X___", ",", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n_."], "Y_"}], ",", "Z___"}], "]"}], ":=", - - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n"], - RowBox[{"t", "[", - RowBox[{"X", ",", "Y", ",", "Z"}], "]"}]}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X___", ",", - RowBox[{"s_\[Sigma]", " ", "Y_"}], ",", "Z___"}], "]"}], ":=", - RowBox[{"s", " ", - RowBox[{"t", "[", - RowBox[{"X", ",", "Y", ",", "Z"}], "]"}]}]}]}], "Input", - CellChangeTimes->{{3.424201175196066*^9, 3.4242012093451695`*^9}, { - 3.424201303861077*^9, 3.424201306564965*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X__", ",", - RowBox[{"t", "[", "Y__", "]"}], ",", "Z___"}], "]"}], ":=", - RowBox[{"t", "[", - RowBox[{"X", ",", "Y", ",", "Z"}], "]"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"t", "[", - RowBox[{"X___", ",", - RowBox[{"t", "[", "Y__", "]"}], ",", "Z__"}], "]"}], ":=", - RowBox[{"t", "[", - RowBox[{"X", ",", "Y", ",", "Z"}], "]"}]}]}], "Input", - CellChangeTimes->{{3.42420197886168*^9, 3.424201999771747*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"deg", "[", - RowBox[{"d", "[", "X_", "]"}], "]"}], ":=", - RowBox[{ - RowBox[{"deg", "[", "X", "]"}], "-", "1"}]}]], "Input", - CellChangeTimes->{{3.4241991779742017`*^9, 3.4241991852346416`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"deg", "[", "a_m", "]"}], ":=", - RowBox[{ - RowBox[{"Length", "[", "a", "]"}], "-", "2", "+", - RowBox[{"Plus", "@@", - RowBox[{"(", - RowBox[{"deg", "/@", - RowBox[{"List", "@@", "a"}]}], ")"}]}]}]}]], "Input", - CellChangeTimes->{{3.4242003314828653`*^9, 3.4242003740440655`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"deg", "[", "a_tm", "]"}], ":=", - RowBox[{ - RowBox[{"Length", "[", "a", "]"}], "-", "1", "+", - RowBox[{"Plus", "@@", - RowBox[{"(", - RowBox[{"deg", "/@", - RowBox[{"List", "@@", "a"}]}], ")"}]}]}]}]], "Input", - CellChangeTimes->{{3.4242003910885744`*^9, 3.4242003932016125`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"d", "[", - RowBox[{"a", ":", - RowBox[{"HoldPattern", "[", - RowBox[{"tm", "[", "___", "]"}], "]"}]}], "]"}], ":=", - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"k", "=", - RowBox[{"Length", "[", "a", "]"}]}], "}"}], ",", "\[IndentingNewLine]", - - RowBox[{ - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"l", "=", "1"}], - RowBox[{"k", "-", "1"}]], - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"l", ",", - RowBox[{"List", "@@", "a"}]}], "]"}], " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"Take", "[", - RowBox[{"a", ",", "l"}], "]"}], ",", - RowBox[{"Drop", "[", - RowBox[{"a", ",", "l"}], "]"}]}], "]"}]}]}], "+", - "\[IndentingNewLine]", - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"l", "=", "1"}], "k"], - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"lp", "=", "0"}], - RowBox[{"l", "-", "1"}]], - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"l1", "=", "lp"}], ",", - RowBox[{"l2", "=", - RowBox[{"k", "-", "l", "+", "1"}]}], ",", - RowBox[{"l3", "=", - RowBox[{"l", "-", "1", "-", "lp"}]}]}], "}"}], ",", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"l2", - RowBox[{"(", - RowBox[{"k", "-", "1", "+", - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"j", "=", "1"}], "lp"], - RowBox[{"deg", "[", - RowBox[{ - "a", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], - "]"}]}]}], ")"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"k", "-", "l"}], ")"}], - RowBox[{"(", "lp", ")"}]}]}]], - RowBox[{"tm", "@@", - RowBox[{"(", - RowBox[{ - RowBox[{"Take", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", "lp"}], "]"}], "~", "Join", - "~", - RowBox[{"{", - RowBox[{"m", "@@", - RowBox[{"Take", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"lp", "+", "1"}], ",", - RowBox[{"lp", "+", "k", "-", "l", "+", "1"}]}], "}"}]}], - "]"}]}], "}"}], "~", "Join", "~", - RowBox[{"Drop", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", - RowBox[{"lp", "+", "k", "-", "l", "+", "1"}]}], "]"}]}], - ")"}]}]}]}], "]"}]}]}]}]}], "\[IndentingNewLine]", - "]"}]}]], "Input", - CellChangeTimes->{{3.4241976743520994`*^9, 3.4241979358681407`*^9}, { - 3.4241980205799503`*^9, 3.4241980693100204`*^9}, {3.4241981831937776`*^9, - 3.424198219375805*^9}, {3.4241984876916237`*^9, 3.424198488572891*^9}, { - 3.4241987823553295`*^9, 3.424198785980542*^9}, {3.4241989378989906`*^9, - 3.424198966930736*^9}, {3.4241990027121873`*^9, 3.424199045193272*^9}, { - 3.424200498352813*^9, 3.4242005144659824`*^9}, {3.4242006132580385`*^9, - 3.424200613448312*^9}, {3.42420072089281*^9, 3.4242007272219105`*^9}, { - 3.424200772507027*^9, 3.424200782811845*^9}, {3.4242012813687344`*^9, - 3.424201292494733*^9}, {3.4242071329028273`*^9, 3.424207333311*^9}, { - 3.4242075895995245`*^9, 3.424207624329464*^9}}], - -Cell[BoxData[ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"k", "-", "l", "+", "1"}], ")"}], - RowBox[{"(", - RowBox[{"k", "-", "1", "+", - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"j", "=", "1"}], "lp"], - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], - "]"}]}]}], ")"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"k", "-", "l"}], ")"}], - RowBox[{"(", "lp", ")"}]}]}]]], "Input"], - -Cell[BoxData[ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"l1", "+", "l2"}], ")"}], "l3"}], "+", - RowBox[{"l2", " ", - RowBox[{"(", - RowBox[{"Plus", "@@", - RowBox[{"(", - RowBox[{"deg", "/@", - RowBox[{"Take", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", "l1"}], "]"}]}], ")"}]}], - ")"}]}]}]]], "Input"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], "]"}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t"}], ")"}], ",", "Together"}], - "]"}]], "Input", - CellChangeTimes->{{3.424198799299694*^9, 3.424198802804734*^9}, { - 3.4241991375360546`*^9, 3.4241991665077133`*^9}, {3.424199203320648*^9, - 3.4241992055338306`*^9}}], - -Cell[BoxData["0"], "Output", - CellChangeTimes->{{3.424198803315469*^9, 3.424198837724947*^9}, { - 3.4241990626684*^9, 3.424199205944421*^9}, 3.424200074182886*^9, - 3.4242001944958878`*^9, 3.424200409054408*^9, {3.4242004997448144`*^9, - 3.4242005193029375`*^9}, 3.424200728914344*^9, 3.424200784414149*^9, - 3.424200932707384*^9, 3.4242013241802945`*^9, 3.4242014646823263`*^9, { - 3.4242073102378225`*^9, 3.424207336445507*^9}, {3.42420760386003*^9, - 3.4242076281149073`*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.424200732269168*^9, 3.424200734181918*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}]}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", "b"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}]}], "]"}]}], "-", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b"}], "]"}]}]], "Output", - CellChangeTimes->{3.4242007344122496`*^9, 3.424200785946352*^9, - 3.4242009332481613`*^9, 3.4242011847097454`*^9, 3.424201395322592*^9, - 3.42420146061648*^9, 3.4242074562277455`*^9, 3.4242076049616146`*^9}] -}, Open ]], - -Cell[BoxData[ - RowBox[{"Clear", "[", "\[Sigma]", "]"}]], "Input", - CellChangeTimes->{{3.424201810469544*^9, 3.4242018117614017`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"l_", ",", "a_List"}], "]"}], ":=", - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"k", "=", - RowBox[{"Length", "[", "a", "]"}]}], "}"}], ",", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"k", "-", "l", "+", "1"}], ")"}], - RowBox[{"(", - RowBox[{"Plus", "@@", - RowBox[{"(", - RowBox[{"deg", "/@", - RowBox[{"Take", "[", - RowBox[{"a", ",", "l"}], "]"}]}], ")"}]}], ")"}]}], "+", "l"}]]}], - "]"}]}]], "Input", - CellChangeTimes->{{3.424206850386589*^9, 3.4242069563589697`*^9}, { - 3.4242070973617215`*^9, 3.4242070975419807`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.4242005789086466`*^9, 3.424200581302088*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"3", " ", - RowBox[{"deg", "[", "a", "]"}]}]}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}], ")"}]}]}]], " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}]}], ")"}]}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}]}]], "Output", - CellChangeTimes->{ - 3.4242005816826353`*^9, 3.424200616232315*^9, 3.424200747741416*^9, - 3.4242007892711325`*^9, 3.424200933939155*^9, 3.4242011853306384`*^9, - 3.4242014129078784`*^9, 3.4242014668153934`*^9, 3.424201520983283*^9, - 3.424201813834382*^9, 3.4242019528943405`*^9, {3.42420693098248*^9, - 3.424206957600755*^9}, 3.4242070989840546`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t", "|", "_m"}], ")"}], ",", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Together", "[", "#", "]"}], "/.", - RowBox[{"{", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "_"}]], "\[Rule]", "1"}], "}"}]}], ")"}], "&"}]}], - "]"}]], "Input", - CellChangeTimes->{{3.424198799299694*^9, 3.424198802804734*^9}, { - 3.4241991375360546`*^9, 3.4241991665077133`*^9}, {3.424199203320648*^9, - 3.4241992221176767`*^9}, {3.4242004382664127`*^9, - 3.4242004391877375`*^9}, {3.4242005411643724`*^9, 3.4242005437080307`*^9}, - 3.4242008174216113`*^9, {3.4242020485218463`*^9, 3.4242020686007185`*^9}}],\ - - -Cell[BoxData["0"], "Output", - CellChangeTimes->{ - 3.4241992227786274`*^9, {3.42420019620835*^9, 3.4242002421444035`*^9}, - 3.4242002726983376`*^9, 3.4242003764174786`*^9, 3.424200409885603*^9, - 3.424200440639826*^9, {3.424200503289912*^9, 3.424200544218765*^9}, { - 3.424200814537464*^9, 3.4242008178021584`*^9}, 3.424200934660192*^9, { - 3.4242011874136333`*^9, 3.42420121426224*^9}, 3.4242015234968977`*^9, - 3.4242019690475683`*^9, 3.4242020049091344`*^9, 3.4242020689311934`*^9, { - 3.4242069335261374`*^9, 3.424206960825392*^9}, 3.424207099955451*^9, { - 3.4242076078457613`*^9, 3.4242076316199474`*^9}}] -}, Open ]], - -Cell[BoxData[ - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"1", ",", - RowBox[{"{", - RowBox[{"_", ",", "_", ",", "_", ",", "_"}], "}"}]}], "]"}], ":=", - RowBox[{"-", "1"}]}]], "Input", - CellChangeTimes->{{3.4242021358173714`*^9, 3.424202143248056*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"2", ",", - RowBox[{"{", - RowBox[{"a_", ",", "b_", ",", "_", ",", "_"}], "}"}]}], "]"}], ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"3", ",", - RowBox[{"{", - RowBox[{"_", ",", "_", ",", "_", ",", "_"}], "}"}]}], "]"}], ":=", - RowBox[{"-", "1"}]}]}], "Input", - CellChangeTimes->{{3.424202215401808*^9, 3.4242022541975937`*^9}}], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"1", ",", "a_List"}], "]"}], ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"Length", "[", "a", "]"}], - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], - "]"}]}], "+", "1"}]]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"2", ",", "a_List"}], "]"}], ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Length", "[", "a", "]"}], "+", "1"}], ")"}], - RowBox[{"(", - RowBox[{ - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], - "]"}], "+", - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], - "]"}]}], ")"}]}]]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"3", ",", "a_List"}], "]"}], ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"Length", "[", "a", "]"}], ")"}], - RowBox[{"(", - RowBox[{ - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], - "]"}], "+", - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], - "]"}], "+", - RowBox[{"deg", "[", - RowBox[{"a", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], - "]"}]}], ")"}]}], "+", "1"}]]}]}], "Input", - CellChangeTimes->{{3.4242025340600157`*^9, 3.4242026162481966`*^9}, { - 3.424202652159835*^9, 3.4242026904248576`*^9}, {3.424202735649888*^9, - 3.424202777089475*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"\[Sigma]", "[", - RowBox[{"k_Integer", ",", "a_List"}], "]"}], ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Length", "[", "a", "]"}], "+", "k", "+", "1"}], ")"}], - RowBox[{"(", - RowBox[{"Plus", "@@", - RowBox[{"(", - RowBox[{"deg", "/@", - RowBox[{"Take", "[", - RowBox[{"a", ",", "k"}], "]"}]}], ")"}]}], ")"}]}], "+", - "k"}]]}]], "Input", - CellChangeTimes->{{3.424202789427216*^9, 3.424202836054262*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", "c", ",", "d"}], "]"}], "]"}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t", "|", "_m"}], ")"}], ",", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Together", "[", "#", "]"}], "//.", - RowBox[{"{", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"n_Integer", " ", "x_"}]], "\[RuleDelayed]", - SuperscriptBox[ - RowBox[{"(", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n"], ")"}], "x"]}], "}"}]}], ")"}], - "&"}]}], "]"}]], "Input", - CellChangeTimes->{{3.424198799299694*^9, 3.424198802804734*^9}, { - 3.4241991375360546`*^9, 3.4241991665077133`*^9}, {3.424199203320648*^9, - 3.4241992221176767`*^9}, {3.4242004382664127`*^9, - 3.4242004391877375`*^9}, {3.4242005411643724`*^9, 3.4242005437080307`*^9}, - 3.4242008174216113`*^9, {3.4242020485218463`*^9, 3.424202081188819*^9}, { - 3.424202169736144*^9, 3.4242021956233683`*^9}, {3.4242022722535567`*^9, - 3.424202330757682*^9}, 3.4242025057092495`*^9}], - -Cell[BoxData["0"], "Output", - CellChangeTimes->{ - 3.4242020826108637`*^9, 3.4242021449905615`*^9, 3.424202196805067*^9, { - 3.4242022356809683`*^9, 3.424202255329221*^9}, {3.4242023014355183`*^9, - 3.4242023313986034`*^9}, 3.424202506440301*^9, 3.424207107165819*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{ - "a", ",", "b", ",", "c", ",", "d", ",", "e", ",", "f", ",", "g"}], - "]"}], "]"}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t", "|", "_m"}], ")"}], ",", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Together", "[", "#", "]"}], "//.", - RowBox[{"{", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"n_Integer", " ", "x_"}]], "\[RuleDelayed]", - SuperscriptBox[ - RowBox[{"(", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "n"], ")"}], "x"]}], "}"}]}], ")"}], - "&"}]}], "]"}]], "Input", - CellChangeTimes->{{3.424198799299694*^9, 3.424198802804734*^9}, { - 3.4241991375360546`*^9, 3.4241991665077133`*^9}, {3.424199203320648*^9, - 3.4241992221176767`*^9}, {3.4242004382664127`*^9, - 3.4242004391877375`*^9}, {3.4242005411643724`*^9, 3.4242005437080307`*^9}, - 3.4242008174216113`*^9, {3.4242020485218463`*^9, 3.424202081188819*^9}, { - 3.424202169736144*^9, 3.4242021956233683`*^9}, {3.4242022722535567`*^9, - 3.424202330757682*^9}, {3.4242025057092495`*^9, 3.4242025139210577`*^9}, { - 3.424202854761162*^9, 3.4242028737084064`*^9}}], - -Cell[BoxData["0"], "Output", - CellChangeTimes->{ - 3.4242025147923107`*^9, 3.4242025962594547`*^9, 3.4242027035837793`*^9, - 3.4242027793827724`*^9, {3.4242028405106707`*^9, 3.4242028777942815`*^9}, - 3.4242071121730194`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"-", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "]"}]], "Input", - CellChangeTimes->{{3.4242016238211565`*^9, 3.424201638492253*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"-", - RowBox[{"m", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "b", "]"}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{ - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "]"}]}], ")"}]}], - "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}]], "Output", - CellChangeTimes->{{3.4242016302504015`*^9, 3.424201639203275*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"-", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t", "|", "_m"}], ")"}], ",", - "Together"}], "]"}]], "Input", - CellChangeTimes->{{3.4242016637085123`*^9, 3.4242016950435696`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"-", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]]}], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"t", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "]"}]}], "-", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}]], "Output", - CellChangeTimes->{{3.4242016665425873`*^9, 3.424201695384059*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Collect", "[", - RowBox[{ - RowBox[{"d", "[", - RowBox[{"d", "[", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", "c", ",", "d"}], "]"}], "]"}], "]"}], ",", - RowBox[{"(", - RowBox[{"_tm", "|", "_d", "|", "_t", "|", "_m"}], ")"}], ",", - "Together"}], "]"}]], "Input", - CellChangeTimes->{{3.424200829108416*^9, 3.4242008345862927`*^9}, - 3.4242009398075933`*^9}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"-", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"3", " ", - RowBox[{"deg", "[", "a", "]"}]}]]}], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c", ",", "d"}], "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}], "+", - RowBox[{"2", " ", - RowBox[{"deg", "[", "b", "]"}]}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", - RowBox[{"m", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}], ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}], "+", - RowBox[{"deg", "[", "c", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c", ",", - RowBox[{"d", "[", "d", "]"}]}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", - RowBox[{"d", "[", "c", "]"}], ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "b", "]"}], ",", "c", ",", "d"}], "]"}]}], "]"}]}], - "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"b", ",", "c", ",", "d"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"b", ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}], ",", "d"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{"2", "+", - RowBox[{"deg", "[", "b", "]"}]}], ")"}]}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"b", ",", - RowBox[{"m", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}], ",", "d"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "b", "]"}], "+", - RowBox[{"deg", "[", "c", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c", ",", - RowBox[{"d", "[", "d", "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"b", ",", - RowBox[{"d", "[", "c", "]"}], ",", "d"}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "b", "]"}], ",", "c", ",", "d"}], "]"}]}]}], - "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], ",", "d"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}], "+", - RowBox[{"2", " ", - RowBox[{"deg", "[", "b", "]"}]}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", - RowBox[{"m", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}], "+", - RowBox[{"deg", "[", "c", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", - RowBox[{"d", "[", "d", "]"}]}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"c", ",", "d"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "c", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"c", ",", - RowBox[{"d", "[", "d", "]"}]}], "]"}]}], "-", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "c", "]"}], ",", "d"}], "]"}]}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "c", "]"}], ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}]}], "]"}], ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}], ",", "d"}], "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", "b"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}]}], "]"}]}], "-", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b"}], "]"}]}], ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "-", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b"}], "]"}], ",", - RowBox[{"tm", "[", - RowBox[{"c", ",", "d"}], "]"}]}], "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}], ",", "d"}], - "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}], ",", "d"}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", "\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}], ",", "d"}], "]"}]}], - "-", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}], ",", "d"}], - "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{"a", ",", - RowBox[{"tm", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{"\[Sigma]", " ", - RowBox[{"t", "[", - RowBox[{ - RowBox[{"tm", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}]}], ")"}]}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "+", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", "+", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"tm", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "+", - RowBox[{"tm", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}]}], ",", - "d"}], "]"}]}]}]], "Output", - CellChangeTimes->{{3.424200829779381*^9, 3.424200835517632*^9}, { - 3.4242009367532015`*^9, 3.4242009403483715`*^9}}] -}, Open ]], - -Cell[BoxData[ - RowBox[{ - RowBox[{"d", "[", - RowBox[{"a", ":", - RowBox[{"HoldPattern", "[", - RowBox[{"m", "[", "___", "]"}], "]"}]}], "]"}], ":=", - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"k", "=", - RowBox[{"Length", "[", "a", "]"}]}], "}"}], ",", "\[IndentingNewLine]", - - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"r", "=", "0"}], "k"], - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"s", "=", "1"}], - RowBox[{"k", "-", "r"}]], - RowBox[{"With", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"t", "=", - RowBox[{"k", "-", "r", "-", "s"}]}], "}"}], ",", - RowBox[{"If", "[", - RowBox[{ - RowBox[{ - RowBox[{"t", "<", "0"}], "\[Or]", - RowBox[{ - RowBox[{"r", "+", "t"}], "\[Equal]", "0"}]}], ",", "0", ",", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"1", "+", "r", "+", - RowBox[{"s", " ", "t"}]}]], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"s", - RowBox[{"(", - RowBox[{ - UnderoverscriptBox["\[Sum]", - RowBox[{"j", "=", "1"}], "r"], - RowBox[{"deg", "[", - RowBox[{ - "a", "\[LeftDoubleBracket]", "j", "\[RightDoubleBracket]"}], - "]"}]}], ")"}]}]], - RowBox[{"m", "@@", - RowBox[{"(", - RowBox[{ - RowBox[{"Take", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", "r"}], "]"}], "~", "Join", - "~", - RowBox[{"{", - RowBox[{"m", "@@", - RowBox[{"Take", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"r", "+", "1"}], ",", - RowBox[{"r", "+", "s"}]}], "}"}]}], "]"}]}], "}"}], "~", - "Join", "~", - RowBox[{"Drop", "[", - RowBox[{ - RowBox[{"List", "@@", "a"}], ",", - RowBox[{"r", "+", "s"}]}], "]"}]}], ")"}]}]}]}], "]"}]}], - "]"}]}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", - CellChangeTimes->{{3.4241996616096354`*^9, 3.424199684522582*^9}, { - 3.4241997338535166`*^9, 3.4241998383938384`*^9}, {3.4241998737747135`*^9, - 3.424199918098448*^9}, {3.424199948492152*^9, 3.424199948542224*^9}, { - 3.424199990071941*^9, 3.4242000045327344`*^9}, {3.4242000530124445`*^9, - 3.4242000564173408`*^9}, {3.4242001313150387`*^9, 3.4242001706716304`*^9}}],\ - - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.4241999216135025`*^9, 3.424199923626397*^9}, { - 3.424200009630064*^9, 3.424200011002037*^9}, 3.4242000641184144`*^9}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", - RowBox[{"m", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}]}], "]"}]}], "+", - RowBox[{"m", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b"}], "]"}]}]], "Output", - CellChangeTimes->{{3.424199923936843*^9, 3.424199949763981*^9}, { - 3.4242000053739443`*^9, 3.424200011452685*^9}, {3.4242000598322515`*^9, - 3.424200064418846*^9}, 3.4242001734556336`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"d", "[", - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}]], "Input", - CellChangeTimes->{{3.4242000997796926`*^9, 3.4242000998497934`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"2", " ", - RowBox[{"deg", "[", "a", "]"}]}]], " ", - RowBox[{"m", "[", - RowBox[{"a", ",", - RowBox[{"m", "[", - RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "-", - RowBox[{"m", "[", - RowBox[{ - RowBox[{"m", "[", - RowBox[{"a", ",", "b"}], "]"}], ",", "c"}], "]"}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{ - RowBox[{"deg", "[", "a", "]"}], "+", - RowBox[{"deg", "[", "b", "]"}]}]], " ", - RowBox[{"m", "[", - RowBox[{"a", ",", "b", ",", - RowBox[{"d", "[", "c", "]"}]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - RowBox[{"deg", "[", "a", "]"}]], " ", - RowBox[{"m", "[", - RowBox[{"a", ",", - RowBox[{"d", "[", "b", "]"}], ",", "c"}], "]"}]}], "-", - RowBox[{"m", "[", - RowBox[{ - RowBox[{"d", "[", "a", "]"}], ",", "b", ",", "c"}], "]"}]}]], "Output", - CellChangeTimes->{3.4242001001702547`*^9, 3.42420017736125*^9}] -}, Open ]] -}, -WindowSize->{1007, 555}, -WindowMargins->{{34, Automatic}, {32, Automatic}}, -ShowSelection->True, -FrontEndVersion->"6.0 for Microsoft Windows (32-bit) (June 19, 2007)", -StyleDefinitions->"Default.nb" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[568, 21, 209, 4, 31, "Input"], -Cell[780, 27, 148, 3, 31, "Input"], -Cell[931, 32, 175, 4, 31, "Input"], -Cell[CellGroupData[{ -Cell[1131, 40, 224, 5, 31, "Input"], -Cell[1358, 47, 878, 24, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[2273, 76, 185, 4, 31, "Input"], -Cell[2461, 82, 1530, 50, 50, "Output"] -}, Open ]], -Cell[4006, 135, 908, 27, 54, "Input"], -Cell[CellGroupData[{ -Cell[4939, 166, 186, 4, 31, "Input"], -Cell[5128, 172, 719, 23, 30, "Output"] -}, Open ]], -Cell[5862, 198, 175, 4, 31, "Input"], -Cell[6040, 204, 586, 18, 52, "Input"], -Cell[6629, 224, 177, 4, 31, "Input"], -Cell[6809, 230, 183, 4, 31, "Input"], -Cell[6995, 236, 977, 32, 72, "Input"], -Cell[7975, 270, 1206, 39, 92, "Input"], -Cell[9184, 311, 490, 13, 52, "Input"], -Cell[9677, 326, 234, 6, 31, "Input"], -Cell[9914, 334, 332, 9, 31, "Input"], -Cell[10249, 345, 333, 9, 31, "Input"], -Cell[10585, 356, 3647, 95, 216, "Input"], -Cell[14235, 453, 564, 19, 40, "Input"], -Cell[14802, 474, 435, 16, 31, "Input"], -Cell[CellGroupData[{ -Cell[15262, 494, 454, 12, 31, "Input"], -Cell[15719, 508, 489, 7, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[16245, 520, 173, 4, 31, "Input"], -Cell[16421, 526, 887, 27, 30, "Output"] -}, Open ]], -Cell[17323, 556, 133, 2, 31, "Input"], -Cell[17459, 560, 770, 24, 33, "Input"], -Cell[CellGroupData[{ -Cell[18254, 588, 185, 4, 31, "Input"], -Cell[18442, 594, 2301, 73, 50, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[20780, 672, 934, 24, 33, "Input"], -Cell[21719, 699, 621, 9, 30, "Output"] -}, Open ]], -Cell[22355, 711, 266, 7, 31, "Input"], -Cell[22624, 720, 607, 18, 52, "Input"], -Cell[23234, 740, 1818, 54, 72, "Input"], -Cell[25055, 796, 592, 19, 31, "Input"], -Cell[CellGroupData[{ -Cell[25672, 819, 1246, 31, 33, "Input"], -Cell[26921, 852, 271, 4, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[27229, 861, 1368, 34, 33, "Input"], -Cell[28600, 897, 229, 4, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[28866, 906, 253, 7, 31, "Input"], -Cell[29122, 915, 1177, 40, 33, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[30336, 960, 418, 12, 31, "Input"], -Cell[30757, 974, 1389, 48, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[32183, 1027, 412, 11, 31, "Input"], -Cell[32598, 1040, 11493, 371, 235, "Output"] -}, Open ]], -Cell[44106, 1414, 2771, 74, 167, "Input"], -Cell[CellGroupData[{ -Cell[46904, 1493, 248, 5, 31, "Input"], -Cell[47155, 1500, 537, 15, 30, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[47729, 1520, 186, 4, 31, "Input"], -Cell[47918, 1526, 1110, 37, 30, "Output"] -}, Open ]] -} -] -*) - -(* End of internal cache information *) diff -r b138ee4a5938 -r 77a80f91e214 diagrams/tempkw/zo1.pdf Binary file diagrams/tempkw/zo1.pdf has changed diff -r b138ee4a5938 -r 77a80f91e214 diagrams/tempkw/zo3.pdf Binary file diagrams/tempkw/zo3.pdf has changed diff -r b138ee4a5938 -r 77a80f91e214 diagrams/tempkw/zo4.pdf Binary file diagrams/tempkw/zo4.pdf has changed diff -r b138ee4a5938 -r 77a80f91e214 diagrams/tempkw/zo5.pdf Binary file diagrams/tempkw/zo5.pdf has changed diff -r b138ee4a5938 -r 77a80f91e214 gadgets-external.pdf Binary file gadgets-external.pdf has changed diff -r b138ee4a5938 -r 77a80f91e214 text/appendixes/smallblobs.tex --- a/text/appendixes/smallblobs.tex Fri Sep 24 15:32:55 2010 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,185 +0,0 @@ -%!TEX root = ../../blob1.tex -\section{The small blob complex} -\label{appendix:small-blobs} - -Before proving Theorem \ref{thm:small-blobs}, we need a lemma allowing us to choose a convenient action of families of diffeomorphisms. -Say that an open cover $\cV$ is strictly subordinate to $\cU$ if the closure of every open set of $\cV$ is contained in some open set of $\cU$. - -\begin{lem} -\label{lem:CH-small-blobs} -Fix an open cover $\cU$, and a sequence $\cV_k$ of open covers which are each strictly subordinate to $\cU$. For a given $k$, consider $\cG_k$ the subspace of $C_k(\Homeo(M)) \tensor \bc_*(M)$ spanned by $f \tensor b$, where $f:P^k \times M \to M$ is a $k$-parameter family of homeomorphisms such that for each $p \in P$, $f(p, -)$ makes $b$ small with respect to $\cV_k$. We can choose an up-to-homotopy representative $\ev$ of the chain map of Theorem \ref{thm:evaluation} which gives the action of families of homeomorphisms, which restricts to give a map -$$\ev : \cG_k \subset C_k(\Homeo(M)) \tensor \bc_*(M) \to \bc^{\cU}_*(M)$$ -for each $k$. -\end{lem} -\begin{rem} -We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller. -\end{rem} -\begin{proof} -This follows from Remark \ref{rem:for-small-blobs} following the proof of -Theorem \ref{thm:CH}. -\end{proof} - -\begin{proof}[Proof of Theorem \ref{thm:small-blobs}] -We begin by describing the homotopy inverse in small degrees, to illustrate the general technique. -We will construct a chain map $s: \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity. - -On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. -%\nn{KW: For some systems of fields this is not true. -%For example, consider a planar algebra with boxes of size greater than zero. -%So I think we should do the homotopy even in degree zero. -%But as noted above, maybe it's best to ignore this.} -Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity. - -When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ ``makes $\beta$ small" if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism ``makes $\beta$ $\epsilon$-small" if the image of each ball is contained in some open ball of radius $\epsilon$. - -On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term ``makes $\beta$ small", while the other term ``gets the boundary right". First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by -$$s(b) = \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$ -Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. To be precise, this action is via the chain map identified in Lemma \ref{lem:CH-small-blobs} with $\cV_0$ the open cover by $\epsilon/2$-balls and $\cV_1$ the open cover by $\frac{3\epsilon}{4}$-balls. From this, it is immediate that $s(b) \in \bc^{\cU}_1(M)$, as desired. - -We now check that $s$, as defined so far, is a chain map, calculating -\begin{align*} -\bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) - (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\ - & = \restrict{\phi_\beta}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) \\ - & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\ - & = s(\bdy b) -\end{align*} -Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. - -The homotopy $h$ is defined by $$h(b) = \phi_\eset(b)$$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $$h(b) = \phi_\beta(b) - \phi_{\eset \prec \beta}(\bdy b)$$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs). We then calculate -\begin{align*} -(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) - \phi_{\eset \prec \beta}(\bdy b)) + \phi_\eset(\bdy b) \\ - & = \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) - (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\ - & = \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) + \phi_\beta(\bdy b) - \phi_\eset(\bdy b) + \phi_\eset(\bdy b) \\ - & = \restrict{\phi_\beta}{x_0=0}(b) - b - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\ - & = (i \circ s - \id)(b). -\end{align*} - - -In order to define $s$ on arbitrary blob diagrams, we first fix a sequence of strictly subordinate covers for $\cU$. First choose an $\epsilon > 0$ so every $\epsilon$ ball is contained in some open set of $\cU$. For $k \geq 1$, let $\cV_{k}$ be the open cover of $M$ by $\epsilon (1-2^{-k})$ balls, and $\cV_0 = \cU$. Certainly $\cV_k$ is strictly subordinate to $\cU$. We now chose the chain map $\ev$ provided by Lemma \ref{lem:CH-small-blobs} for the open covers $\cV_k$ strictly subordinate to $\cU$. Note that $\cV_1$ and $\cV_2$ have already implicitly appeared in the description above. - -Next, we choose a ``shrinking system" for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations -$\beta_1 \prec \cdots \prec \beta_n$, an $n$ parameter family of diffeomorphisms -$\phi_{\beta_1 \prec \cdots \prec \beta_n} : \Delta^{n+1} \to \Diff{M}$, such that -\begin{itemize} -\item for any $x$ with $x_0 = 0$, $\phi_{\beta_1 \prec \cdots \prec \beta_n}(x)(\beta_1)$ is subordinate to $\cV_{n+1}$, and -\item for each $i = 1, \ldots, n$, -\begin{align*} -\phi_{\beta_1 \prec \cdots \prec \beta_n}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_n) = \\ &\phi_{\beta_1 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_n}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_n). -\end{align*} -\end{itemize} -Again, we've already made the choices for $\phi_{\beta}$ and for $\phi_{\eset \prec \beta}$, where $\beta$ is a single ball. It's not immediately obvious that it's possible to make such choices, but it follows readily from the following. - -\begin{lem} -\label{lem:extend-small-homeomorphisms} -Fix a collection of disjoint embedded balls $\beta$ in $M$ and some open cover $\cV$. Suppose we have a map $f : X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ $\cV$-small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ $\cV$-small. -\end{lem} -\begin{proof} -Fix a metric on $M$, and pick $\epsilon > 0$ so every $\epsilon$ ball in $M$ is contained in some open set of $\cV$. First construct a family of homeomorphisms $g_s : M \to M$, $s \in [1,\infty)$ so $g_1$ is the identity, and $g_s(\beta_i) \subset \beta_i$ and $\rad g_s(\beta_i) \leq \frac{1}{s} \rad \beta_i$ for each ball $\beta_i$. -There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$. - -If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ $\cV$-small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ $\cV$-small for all $x \in X$. -\end{proof} - -In fact, the application of this Lemma would allow us to choose the families of diffeomorphisms $\phi_{\beta_1 \prec \cdots \prec \beta_n}$ so that for any $x$ with $x_0 = 0$, $\phi_{\beta_1 \prec \cdots \prec \beta_n}(x)(\beta_1)$ is subordinate to any fixed open cover, for example $\cV_1$ (that is, the covering by $\epsilon/2$ balls), not just $\cV_{n+1}$, which is a weaker condition. Regardless, because of the way we have chosen the $\ev$ map, we only ensure that $\ev(\restrict{\phi_{\beta_1 \prec \cdots \prec \beta_n}}{x_0 = 0} \tensor \beta_1) \in \bc_{\deg \beta_1 + n}^{\cU}(M)$, so the distinction is not important. - -We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $\bdy b_\cS = \sum_{i \notin \cS} (-1)^{i+1+\card{\setc{j \in \cS}{j < i}}} b_{\cS \cup \{i\}}$. -Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. - -\newcommand{\length}[1]{\operatorname{length}(#1)} - -We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. We have -$$s(b) = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$ -where the sum is over sequences without repeats $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$ (we're using $\Delta$ here to indicate the generalized diagonal, where any two entries coincide), $\sigma(i)$ is defined blow, $i(b)$ denotes the increasing sequence of blob configurations -$$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$ -and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased. -The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by -$$h(b) = \sum_{m=0}^{k} \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$ - - The signs $\sigma: \{1, \ldots, k\}^{m} \setminus \Delta \to \Integer/2\Integer$ are defined by -$$\sigma(i)= \lceil\frac{m-1}{2}\rceil +o(i) + \sum i$$ -where $o(i)$ is the number of transpositions required to bring $i$ into increasing order. Given a sequence $a \in \{1, \ldots, k\}^{m-1} \setminus \Delta$ and $1 \leq b \leq k$ with $b \not \in a$, denote by $a \!\downarrow_b\in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$ the sequence obtained by reducing by 1 each entry of $a$ which is greater than $b$. We'll need the identities -\begin{align} -\sigma(ab) & = \sigma(a\!\downarrow_b) +m + b+1 \label{eq:sigma(ab)}\\ -% & = \sigma(a) + m+b + 1 + \card{\setc{x \in a}{x > b}} \\ -\intertext{and} -\sigma(ba) & = \sigma(a\!\downarrow_b) + b \notag \\ - & = \sigma(a) + m+b + 1+\card{\setc{x \in a}{x < b}}. \label{eq:sigma(ba)} -\end{align} - -Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint). -Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus -\begin{align*} -s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\ - & \quad + (-1)^{\sigma(1)} \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_1) + (-1)^{\sigma(2)} \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_2) + \\ - & \quad + (-1)^{\sigma(12)} \restrict{\phi_{\eset \prec \beta_2 \prec \beta}}{x_0 = 0}(b_{12}) + (-1)^{\sigma(21)} \restrict{\phi_{\eset \prec \beta_1 \prec \beta}}{x_0 = 0}(b_{12}). -\end{align*} - -As in the $k=1$ case, the first term, corresponding to $i(b) = \eset$, makes the all balls in $\beta$ $\cV_1$-small. However, if this were the only term $s$ would not be a chain map, because we have no control over $\restrict{\phi_{\beta}}{x_0 = 0}(\bdy b)$. This necessitates the other terms, which fix the boundary at successively higher codimensions. - -It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement. The red, blue and orange $2$-cells there correspond to the $m=0$, $m=1$ and $m=2$ terms respectively, while the $3$-cells (only one of each type is shown) correspond to the terms in the homotopy $h$. -\begin{figure}[!ht] -$$\mathfig{0.5}{smallblobs/tent}$$ -\caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.} -\label{fig:erectly-a-tent-badly} -\end{figure} - -Now -\begin{align*} -\bdy s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(\bdy b) + \\ - & \quad + (-1)^{\sigma(1)} \left( \restrict{\phi_{\beta}}{x_0 = 0}(b_1) - \restrict{\phi_{\beta_1}}{x_0 = 0}(b_1) - \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) \right) + \\ - & \quad + (-1)^{\sigma(2)} \left( \restrict{\phi_{\beta}}{x_0 = 0}(b_2) - \restrict{\phi_{\beta_2}}{x_0 = 0}(b_2) - \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) \right) + \\ - & \quad + (-1)^{\sigma(12)} \left( \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_2}}{x_0 = 0}(b_{12}) \right) + \\ - & \quad + (-1)^{\sigma(21)} \left( \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_1}}{x_0 = 0}(b_{12}) \right), \\ -\intertext{while} -s(\bdy(b)) & = s(b_1) - s(b_2) \\ - & = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) . -\end{align*} -This gives what we want, since $\sigma() = 0,\sigma(1)=1, \sigma(2)=0, \sigma(21)=1$ and $\sigma(12)=0$. - -We now return to the general case. Certainly, the image of $s$ in fact lies in $\bc^{\cU}_*(M)$: each of the families of diffeomorphisms $\phi_{i(b)}$ has been chosen so with $x_0=0$ they pointwise make $b_i$ sufficiently small that the $\ev$ map we've chosen has image in $\bc^{\cU}_*(M)$. - -We need to check that $s$ is a chain map. -\begin{align*} -\bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\ -\intertext{and begin by expanding out $\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})$,} - & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg(\sum_{p=1}^{m+1} (-1)^{\sigma(i)+p+1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = x_p = 0}\tensor b_i\right) \Bigg) + \\ - & \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) -\end{align*} -Now, write $s_{p-1,p}(i)$ to indicate the sequence obtained from $i$ by transposing its $p-1$-th and $p$-th entries and note that for $2 \leq p \leq m$, -\begin{align*} -\restrict{\phi_{i(b)}}{x_0=x_p=0} & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta}}{x_0=x_p=0} \\ - & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta_{i_{p-1} i_p \cdots i_m} \prec \beta_{i_{p+1} \cdots i_m} \prec \cdots \prec \beta}}{x_0=0} \\ - & = \restrict{\phi_{s_{p-1,p}(i)(b)}}{x_0=x_p=0}. -\end{align*} -Since $\sigma(i) = - \sigma(s_{p-1,p}(i))$, we can cancel out in pairs all the terms above except those with $p=1$ or $p=m+1$. Thus -\begin{align*} -\bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg((-1)^{\sigma(i)} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{\most(i)\!\downarrow_{i_m}(b_{i_m})}}{x_0 = 0}\tensor b_i\right)\Bigg) + \\ - & \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) -\end{align*} -where we use the notations $\rest(i_1 i_2 \cdots i_m) = (i_2 \cdots i_m)$ and $\most(i_1 \cdots i_{m-1} i_m) = (i_1 \cdots i_{m-1})$. Next, we note that $b_i = (b_{i_1})_{\rest(i)} = (b_{i_m})_{\most(i)}$, and then rewrite the sum of $i$ as a double sum over $i_1$ and $\rest(i)$, with $i = i_1\rest(i)$, for the first term, and as a double sum over $\most(i)$ and $i_m$, with $i = \most(i)i_m$, for the second term. -\begin{align*} -\bdy(s(b)) & = \sum_{m=0}^{k} \Bigg( \sum_{\rest(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_{i_1\rest(i)}\right) \Bigg)+ \\ - & \qquad \Bigg( \sum_{\most(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_m = 1 \\ i_1 \not\in \most(i)}}^{k} (-1)^{\sigma(\most(i) i_m) + m} \ev\left(\restrict{\phi_{\most(i)\!\downarrow_{i_m}(b_{i_m})}}{x_0 = 0}\tensor b_{\most(i) i_m}\right)\Bigg) + \\ - & \qquad \Bigg( \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)\Bigg) -\end{align*} -We will show that the first and third rows cancel, and that the second row gives with $s(\bdy b)$. -First, -\begin{align*} -\sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} b_{i_1\rest(i)} & = - \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(\rest(i))+m+1+i_1 + \card{\setc{x \in \rest(i)}{x0$, and -of course $\Sigma^0(S^1)$ is a point. -Thus the singular homology $H_i(\Sigma^\infty(S^1))$ has infinitely many generators for $i=0,1$ -and is zero for $i\ge 2$. -Note that the $j$-grading here matches with the $t$-grading on the algebraic side. - -By Proposition \ref{ktchprop}, -the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$. -Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$. -If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree -0, $\z/j \z$ in odd degrees, and 0 in positive even degrees. -The point $\Sigma^0(S^1)$ contributes the homology of $BS^1$ which is $\z$ in even -degrees and 0 in odd degrees. -This agrees with the calculation in \cite[\S 3.1.7]{MR1600246}. - -\medskip - -Next we consider the case $C = k[t_1, \ldots, t_m]$, commutative polynomials in $m$ variables. -Let $\Sigma_m^\infty(M)$ be the $m$-colored infinite symmetric power of $M$, that is, configurations -of points on $M$ which can have any of $m$ distinct colors but are otherwise indistinguishable. -The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers -corresponding to the number of points of each color of a configuration. -A proof similar to that of \ref{sympowerprop} shows that - -\begin{prop} -$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$. -\end{prop} - -According to \cite[3.2.2]{MR1600246}, -\[ - HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] . -\] -Let us check that this is also the singular homology of $\Sigma_m^\infty(S^1)$. -We will content ourselves with the case $k = \z$. -One can define a flow on $\Sigma_m^\infty(S^1)$ where points of the -same color repel each other and points of different colors do not interact. -This shows that a component $X$ of $\Sigma_m^\infty(S^1)$ is homotopy equivalent -to the torus $(S^1)^l$, where $l$ is the number of non-zero entries in the $m$-tuple -corresponding to $X$. -The homology calculation we desire follows easily from this. - -%\nn{say something about cyclic homology in this case? probably not necessary.} - -\medskip - -Next we consider the case $C$ is the truncated polynomial -algebra $k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$. -Define $\Delta_l \sub \Sigma^\infty(M)$ to be configurations of points in $M$ with $l$ or -more of the points coinciding. - -\begin{prop} -$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$ -(relative singular chains with coefficients in $k$). -\end{prop} - -\begin{proof} -\nn{...} -\end{proof} - -\medskip -\hrule -\medskip - -Still to do: -\begin{itemize} -\item compare the topological computation for truncated polynomial algebra with \cite{MR1600246} -\item multivariable truncated polynomial algebras (at least mention them) -\end{itemize} - diff -r b138ee4a5938 -r 77a80f91e214 text/intro.tex --- a/text/intro.tex Fri Sep 24 15:32:55 2010 -0700 +++ b/text/intro.tex Mon Sep 27 20:57:02 2010 -0700 @@ -93,6 +93,7 @@ \begin{figure}[!ht] {\center +\beginpgfgraphicnamed{gadgets-external}% \begin{tikzpicture}[align=center,line width = 1.5pt] \newcommand{\xa}{2} \newcommand{\xb}{8} @@ -129,6 +130,7 @@ \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs); \draw[<->] (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs); \end{tikzpicture} +\endpgfgraphicnamed{gadgets-external}% } \caption{The main gadgets and constructions of the paper.} diff -r b138ee4a5938 -r 77a80f91e214 text/obsolete/comm_alg.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/text/obsolete/comm_alg.tex Mon Sep 27 20:57:02 2010 -0700 @@ -0,0 +1,193 @@ +%!TEX root = ../blob1.tex + +\section{Commutative algebras as \texorpdfstring{$n$}{n}-categories} +\label{sec:comm_alg} + +If $C$ is a commutative algebra it +can also be thought of as an $n$-category whose $j$-morphisms are trivial for +$j0$, and +of course $\Sigma^0(S^1)$ is a point. +Thus the singular homology $H_i(\Sigma^\infty(S^1))$ has infinitely many generators for $i=0,1$ +and is zero for $i\ge 2$. +Note that the $j$-grading here matches with the $t$-grading on the algebraic side. + +By Proposition \ref{ktchprop}, +the cyclic homology of $k[t]$ is the $S^1$-equivariant homology of $\Sigma^\infty(S^1)$. +Up to homotopy, $S^1$ acts by $j$-fold rotation on $\Sigma^j(S^1) \simeq S^1/j$. +If $k = \z$, $\Sigma^j(S^1)$ contributes the homology of an infinite lens space: $\z$ in degree +0, $\z/j \z$ in odd degrees, and 0 in positive even degrees. +The point $\Sigma^0(S^1)$ contributes the homology of $BS^1$ which is $\z$ in even +degrees and 0 in odd degrees. +This agrees with the calculation in \cite[\S 3.1.7]{MR1600246}. + +\medskip + +Next we consider the case $C = k[t_1, \ldots, t_m]$, commutative polynomials in $m$ variables. +Let $\Sigma_m^\infty(M)$ be the $m$-colored infinite symmetric power of $M$, that is, configurations +of points on $M$ which can have any of $m$ distinct colors but are otherwise indistinguishable. +The components of $\Sigma_m^\infty(M)$ are indexed by $m$-tuples of natural numbers +corresponding to the number of points of each color of a configuration. +A proof similar to that of \ref{sympowerprop} shows that + +\begin{prop} +$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$. +\end{prop} + +According to \cite[3.2.2]{MR1600246}, +\[ + HH_n(k[t_1, \ldots, t_m]) \cong \Lambda^n(k^m) \otimes k[t_1, \ldots, t_m] . +\] +Let us check that this is also the singular homology of $\Sigma_m^\infty(S^1)$. +We will content ourselves with the case $k = \z$. +One can define a flow on $\Sigma_m^\infty(S^1)$ where points of the +same color repel each other and points of different colors do not interact. +This shows that a component $X$ of $\Sigma_m^\infty(S^1)$ is homotopy equivalent +to the torus $(S^1)^l$, where $l$ is the number of non-zero entries in the $m$-tuple +corresponding to $X$. +The homology calculation we desire follows easily from this. + +%\nn{say something about cyclic homology in this case? probably not necessary.} + +\medskip + +Next we consider the case $C$ is the truncated polynomial +algebra $k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$. +Define $\Delta_l \sub \Sigma^\infty(M)$ to be configurations of points in $M$ with $l$ or +more of the points coinciding. + +\begin{prop} +$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$ +(relative singular chains with coefficients in $k$). +\end{prop} + +\begin{proof} +\nn{...} +\end{proof} + +\medskip +\hrule +\medskip + +Still to do: +\begin{itemize} +\item compare the topological computation for truncated polynomial algebra with \cite{MR1600246} +\item multivariable truncated polynomial algebras (at least mention them) +\end{itemize} + diff -r b138ee4a5938 -r 77a80f91e214 text/obsolete/smallblobs.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/text/obsolete/smallblobs.tex Mon Sep 27 20:57:02 2010 -0700 @@ -0,0 +1,185 @@ +%!TEX root = ../../blob1.tex +\section{The small blob complex} +\label{appendix:small-blobs} + +Before proving Theorem \ref{thm:small-blobs}, we need a lemma allowing us to choose a convenient action of families of diffeomorphisms. +Say that an open cover $\cV$ is strictly subordinate to $\cU$ if the closure of every open set of $\cV$ is contained in some open set of $\cU$. + +\begin{lem} +\label{lem:CH-small-blobs} +Fix an open cover $\cU$, and a sequence $\cV_k$ of open covers which are each strictly subordinate to $\cU$. For a given $k$, consider $\cG_k$ the subspace of $C_k(\Homeo(M)) \tensor \bc_*(M)$ spanned by $f \tensor b$, where $f:P^k \times M \to M$ is a $k$-parameter family of homeomorphisms such that for each $p \in P$, $f(p, -)$ makes $b$ small with respect to $\cV_k$. We can choose an up-to-homotopy representative $\ev$ of the chain map of Theorem \ref{thm:evaluation} which gives the action of families of homeomorphisms, which restricts to give a map +$$\ev : \cG_k \subset C_k(\Homeo(M)) \tensor \bc_*(M) \to \bc^{\cU}_*(M)$$ +for each $k$. +\end{lem} +\begin{rem} +We can't quite do the same with all $\cV_k$ just equal to $\cU$, but we can get by if we give ourselves arbitrarily little room to maneuver, by making the blobs we act on slightly smaller. +\end{rem} +\begin{proof} +This follows from Remark \ref{rem:for-small-blobs} following the proof of +Theorem \ref{thm:CH}. +\end{proof} + +\begin{proof}[Proof of Theorem \ref{thm:small-blobs}] +We begin by describing the homotopy inverse in small degrees, to illustrate the general technique. +We will construct a chain map $s: \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity. + +On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. +%\nn{KW: For some systems of fields this is not true. +%For example, consider a planar algebra with boxes of size greater than zero. +%So I think we should do the homotopy even in degree zero. +%But as noted above, maybe it's best to ignore this.} +Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity. + +When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ ``makes $\beta$ small" if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$. Further, we'll say a homeomorphism ``makes $\beta$ $\epsilon$-small" if the image of each ball is contained in some open ball of radius $\epsilon$. + +On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term ``makes $\beta$ small", while the other term ``gets the boundary right". First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small --- in fact, not just small with respect to $\cU$, but $\epsilon/2$-small, where $\epsilon > 0$ is such that every $\epsilon$-ball is contained in some open set of $\cU$. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ $\frac{3\epsilon}{4}$-small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\beta(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\eset(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by +$$s(b) = \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$ +Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. To be precise, this action is via the chain map identified in Lemma \ref{lem:CH-small-blobs} with $\cV_0$ the open cover by $\epsilon/2$-balls and $\cV_1$ the open cover by $\frac{3\epsilon}{4}$-balls. From this, it is immediate that $s(b) \in \bc^{\cU}_1(M)$, as desired. + +We now check that $s$, as defined so far, is a chain map, calculating +\begin{align*} +\bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) - (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\ + & = \restrict{\phi_\beta}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) \\ + & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\ + & = s(\bdy b) +\end{align*} +Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. + +The homotopy $h$ is defined by $$h(b) = \phi_\eset(b)$$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $$h(b) = \phi_\beta(b) - \phi_{\eset \prec \beta}(\bdy b)$$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs). We then calculate +\begin{align*} +(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) - \phi_{\eset \prec \beta}(\bdy b)) + \phi_\eset(\bdy b) \\ + & = \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) - (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\ + & = \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) + \phi_\beta(\bdy b) - \phi_\eset(\bdy b) + \phi_\eset(\bdy b) \\ + & = \restrict{\phi_\beta}{x_0=0}(b) - b - \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\ + & = (i \circ s - \id)(b). +\end{align*} + + +In order to define $s$ on arbitrary blob diagrams, we first fix a sequence of strictly subordinate covers for $\cU$. First choose an $\epsilon > 0$ so every $\epsilon$ ball is contained in some open set of $\cU$. For $k \geq 1$, let $\cV_{k}$ be the open cover of $M$ by $\epsilon (1-2^{-k})$ balls, and $\cV_0 = \cU$. Certainly $\cV_k$ is strictly subordinate to $\cU$. We now chose the chain map $\ev$ provided by Lemma \ref{lem:CH-small-blobs} for the open covers $\cV_k$ strictly subordinate to $\cU$. Note that $\cV_1$ and $\cV_2$ have already implicitly appeared in the description above. + +Next, we choose a ``shrinking system" for $\left(\cU,\{\cV_k\}_{k \geq 1}\right)$, namely for each increasing sequence of blob configurations +$\beta_1 \prec \cdots \prec \beta_n$, an $n$ parameter family of diffeomorphisms +$\phi_{\beta_1 \prec \cdots \prec \beta_n} : \Delta^{n+1} \to \Diff{M}$, such that +\begin{itemize} +\item for any $x$ with $x_0 = 0$, $\phi_{\beta_1 \prec \cdots \prec \beta_n}(x)(\beta_1)$ is subordinate to $\cV_{n+1}$, and +\item for each $i = 1, \ldots, n$, +\begin{align*} +\phi_{\beta_1 \prec \cdots \prec \beta_n}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_n) = \\ &\phi_{\beta_1 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_n}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_n). +\end{align*} +\end{itemize} +Again, we've already made the choices for $\phi_{\beta}$ and for $\phi_{\eset \prec \beta}$, where $\beta$ is a single ball. It's not immediately obvious that it's possible to make such choices, but it follows readily from the following. + +\begin{lem} +\label{lem:extend-small-homeomorphisms} +Fix a collection of disjoint embedded balls $\beta$ in $M$ and some open cover $\cV$. Suppose we have a map $f : X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ $\cV$-small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ $\cV$-small. +\end{lem} +\begin{proof} +Fix a metric on $M$, and pick $\epsilon > 0$ so every $\epsilon$ ball in $M$ is contained in some open set of $\cV$. First construct a family of homeomorphisms $g_s : M \to M$, $s \in [1,\infty)$ so $g_1$ is the identity, and $g_s(\beta_i) \subset \beta_i$ and $\rad g_s(\beta_i) \leq \frac{1}{s} \rad \beta_i$ for each ball $\beta_i$. +There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$. + +If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ $\cV$-small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ $\cV$-small for all $x \in X$. +\end{proof} + +In fact, the application of this Lemma would allow us to choose the families of diffeomorphisms $\phi_{\beta_1 \prec \cdots \prec \beta_n}$ so that for any $x$ with $x_0 = 0$, $\phi_{\beta_1 \prec \cdots \prec \beta_n}(x)(\beta_1)$ is subordinate to any fixed open cover, for example $\cV_1$ (that is, the covering by $\epsilon/2$ balls), not just $\cV_{n+1}$, which is a weaker condition. Regardless, because of the way we have chosen the $\ev$ map, we only ensure that $\ev(\restrict{\phi_{\beta_1 \prec \cdots \prec \beta_n}}{x_0 = 0} \tensor \beta_1) \in \bc_{\deg \beta_1 + n}^{\cU}(M)$, so the distinction is not important. + +We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $\bdy b_\cS = \sum_{i \notin \cS} (-1)^{i+1+\card{\setc{j \in \cS}{j < i}}} b_{\cS \cup \{i\}}$. +Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. + +\newcommand{\length}[1]{\operatorname{length}(#1)} + +We've finally reached the point where we can define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. We have +$$s(b) = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$ +where the sum is over sequences without repeats $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m \leq k$ (we're using $\Delta$ here to indicate the generalized diagonal, where any two entries coincide), $\sigma(i)$ is defined blow, $i(b)$ denotes the increasing sequence of blob configurations +$$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$ +and, as usual, $b_i$ denotes $b$ with blobs $i_1, \ldots, i_m$ erased. +The homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ is similarly given by +$$h(b) = \sum_{m=0}^{k} \sum_{i} (-1)^{\sigma(i)} \ev(\phi_{i(b)}, b_i).$$ + + The signs $\sigma: \{1, \ldots, k\}^{m} \setminus \Delta \to \Integer/2\Integer$ are defined by +$$\sigma(i)= \lceil\frac{m-1}{2}\rceil +o(i) + \sum i$$ +where $o(i)$ is the number of transpositions required to bring $i$ into increasing order. Given a sequence $a \in \{1, \ldots, k\}^{m-1} \setminus \Delta$ and $1 \leq b \leq k$ with $b \not \in a$, denote by $a \!\downarrow_b\in \{1, \ldots, k-1\}^{m-1} \setminus \Delta$ the sequence obtained by reducing by 1 each entry of $a$ which is greater than $b$. We'll need the identities +\begin{align} +\sigma(ab) & = \sigma(a\!\downarrow_b) +m + b+1 \label{eq:sigma(ab)}\\ +% & = \sigma(a) + m+b + 1 + \card{\setc{x \in a}{x > b}} \\ +\intertext{and} +\sigma(ba) & = \sigma(a\!\downarrow_b) + b \notag \\ + & = \sigma(a) + m+b + 1+\card{\setc{x \in a}{x < b}}. \label{eq:sigma(ba)} +\end{align} + +Before completing the proof, we unpack this definition for $b \in \bc_2(M)$, a $2$-blob. We'll write $\beta$ for the underlying balls (either nested or disjoint). +Now $s$ is the sum of $5$ terms, split into three groups depending on with the length of the sequence $i$ is $0, 1$ or $2$. Thus +\begin{align*} +s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(b) + \\ + & \quad + (-1)^{\sigma(1)} \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_1) + (-1)^{\sigma(2)} \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_2) + \\ + & \quad + (-1)^{\sigma(12)} \restrict{\phi_{\eset \prec \beta_2 \prec \beta}}{x_0 = 0}(b_{12}) + (-1)^{\sigma(21)} \restrict{\phi_{\eset \prec \beta_1 \prec \beta}}{x_0 = 0}(b_{12}). +\end{align*} + +As in the $k=1$ case, the first term, corresponding to $i(b) = \eset$, makes the all balls in $\beta$ $\cV_1$-small. However, if this were the only term $s$ would not be a chain map, because we have no control over $\restrict{\phi_{\beta}}{x_0 = 0}(\bdy b)$. This necessitates the other terms, which fix the boundary at successively higher codimensions. + +It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement. The red, blue and orange $2$-cells there correspond to the $m=0$, $m=1$ and $m=2$ terms respectively, while the $3$-cells (only one of each type is shown) correspond to the terms in the homotopy $h$. +\begin{figure}[!ht] +$$\mathfig{0.5}{smallblobs/tent}$$ +\caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.} +\label{fig:erectly-a-tent-badly} +\end{figure} + +Now +\begin{align*} +\bdy s(b) & = (-1)^{\sigma()} \restrict{\phi_{\beta}}{x_0 = 0}(\bdy b) + \\ + & \quad + (-1)^{\sigma(1)} \left( \restrict{\phi_{\beta}}{x_0 = 0}(b_1) - \restrict{\phi_{\beta_1}}{x_0 = 0}(b_1) - \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) \right) + \\ + & \quad + (-1)^{\sigma(2)} \left( \restrict{\phi_{\beta}}{x_0 = 0}(b_2) - \restrict{\phi_{\beta_2}}{x_0 = 0}(b_2) - \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) \right) + \\ + & \quad + (-1)^{\sigma(12)} \left( \restrict{\phi_{\beta_2 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_2}}{x_0 = 0}(b_{12}) \right) + \\ + & \quad + (-1)^{\sigma(21)} \left( \restrict{\phi_{\beta_1 \prec \beta}}{x_0 = 0}(b_{12}) - \restrict{\phi_{\eset \prec \beta}}{x_0 = 0}(b_{12}) + \restrict{\phi_{\eset \prec \beta_1}}{x_0 = 0}(b_{12}) \right), \\ +\intertext{while} +s(\bdy(b)) & = s(b_1) - s(b_2) \\ + & = \restrict{\phi_{\beta_1}}{x_0=0}(b_1) - \restrict{\phi_{\eset \prec \beta_1}}{x_0=0}(b_{12}) - \restrict{\phi_{\beta_2}}{x_0=0}(b_2) + \restrict{\phi_{\eset \prec \beta_2}}{x_0=0}(b_{12}) . +\end{align*} +This gives what we want, since $\sigma() = 0,\sigma(1)=1, \sigma(2)=0, \sigma(21)=1$ and $\sigma(12)=0$. + +We now return to the general case. Certainly, the image of $s$ in fact lies in $\bc^{\cU}_*(M)$: each of the families of diffeomorphisms $\phi_{i(b)}$ has been chosen so with $x_0=0$ they pointwise make $b_i$ sufficiently small that the $\ev$ map we've chosen has image in $\bc^{\cU}_*(M)$. + +We need to check that $s$ is a chain map. +\begin{align*} +\bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i)} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\ +\intertext{and begin by expanding out $\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})$,} + & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg(\sum_{p=1}^{m+1} (-1)^{\sigma(i)+p+1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = x_p = 0}\tensor b_i\right) \Bigg) + \\ + & \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) +\end{align*} +Now, write $s_{p-1,p}(i)$ to indicate the sequence obtained from $i$ by transposing its $p-1$-th and $p$-th entries and note that for $2 \leq p \leq m$, +\begin{align*} +\restrict{\phi_{i(b)}}{x_0=x_p=0} & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta}}{x_0=x_p=0} \\ + & = \restrict{\phi_{\beta_{i_1\cdots i_m} \prec \beta_{i_2 \cdots i_m} \prec \cdots \prec \beta_{i_{p-1} i_p \cdots i_m} \prec \beta_{i_{p+1} \cdots i_m} \prec \cdots \prec \beta}}{x_0=0} \\ + & = \restrict{\phi_{s_{p-1,p}(i)(b)}}{x_0=x_p=0}. +\end{align*} +Since $\sigma(i) = - \sigma(s_{p-1,p}(i))$, we can cancel out in pairs all the terms above except those with $p=1$ or $p=m+1$. Thus +\begin{align*} +\bdy(s(b)) & = \sum_{m=0}^{k} \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} \Bigg((-1)^{\sigma(i)} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_i\right) + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{\most(i)\!\downarrow_{i_m}(b_{i_m})}}{x_0 = 0}\tensor b_i\right)\Bigg) + \\ + & \qquad + (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) +\end{align*} +where we use the notations $\rest(i_1 i_2 \cdots i_m) = (i_2 \cdots i_m)$ and $\most(i_1 \cdots i_{m-1} i_m) = (i_1 \cdots i_{m-1})$. Next, we note that $b_i = (b_{i_1})_{\rest(i)} = (b_{i_m})_{\most(i)}$, and then rewrite the sum of $i$ as a double sum over $i_1$ and $\rest(i)$, with $i = i_1\rest(i)$, for the first term, and as a double sum over $\most(i)$ and $i_m$, with $i = \most(i)i_m$, for the second term. +\begin{align*} +\bdy(s(b)) & = \sum_{m=0}^{k} \Bigg( \sum_{\rest(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} \ev\left(\restrict{\phi_{\rest(i)(b)}}{x_0 = 0}\tensor b_{i_1\rest(i)}\right) \Bigg)+ \\ + & \qquad \Bigg( \sum_{\most(i) \in \{1, \ldots, k\}^{m-1} \setminus \Delta} \sum_{\substack{i_m = 1 \\ i_1 \not\in \most(i)}}^{k} (-1)^{\sigma(\most(i) i_m) + m} \ev\left(\restrict{\phi_{\most(i)\!\downarrow_{i_m}(b_{i_m})}}{x_0 = 0}\tensor b_{\most(i) i_m}\right)\Bigg) + \\ + & \qquad \Bigg( \sum_{i \in \{1, \ldots, k\}^{m} \setminus \Delta} (-1)^{\sigma(i) + m} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right)\Bigg) +\end{align*} +We will show that the first and third rows cancel, and that the second row gives with $s(\bdy b)$. +First, +\begin{align*} +\sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(i_1\rest(i))} b_{i_1\rest(i)} & = + \sum_{\substack{i_1 = 1 \\ i_1 \not\in \rest(i)}}^{k} (-1)^{\sigma(\rest(i))+m+1+i_1 + \card{\setc{x \in \rest(i)}{x