# HG changeset patch # User Scott Morrison # Date 1275624996 25200 # Node ID 7a5a73ec89617cb568c50cf3e7d4fa0d57b380c1 # Parent 9bf409eb5040298b3d07ad095efc8d46e45af9b7 replacing axioms with lemmas in the module section; still out of sync with the ncat axioms diff -r 9bf409eb5040 -r 7a5a73ec8961 preamble.tex --- a/preamble.tex Thu Jun 03 20:58:39 2010 -0700 +++ b/preamble.tex Thu Jun 03 21:16:36 2010 -0700 @@ -70,6 +70,7 @@ \newtheorem{question}{Question} \newtheorem{property}{Property} \newtheorem{axiom}{Axiom} +\newtheorem{module-axiom}{Module Axiom} %\newenvironment{axiom-numbered}[2]{\textbf{Axiom #1(#2)}\it}{} %\newenvironment{preliminary-axiom}[2]{\textbf{Axiom #1 [preliminary] (#2)}\it}{} \newtheorem{example}[prop]{Example} diff -r 9bf409eb5040 -r 7a5a73ec8961 text/ncat.tex --- a/text/ncat.tex Thu Jun 03 20:58:39 2010 -0700 +++ b/text/ncat.tex Thu Jun 03 21:16:36 2010 -0700 @@ -90,12 +90,12 @@ construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$ to spheres (and any other manifolds): -\begin{prop} -\label{axiom:spheres} +\begin{lem} +\label{lem:spheres} For each $1 \le k \le n$, we have a functor $\cl{\cC}_{k-1}$ from the category of $k{-}1$-spheres and homeomorphisms to the category of sets and bijections. -\end{prop} +\end{lem} We postpone the proof \todo{} of this result until after we've actually given all the axioms. Note that defining this functor for some $k$ only requires the data described in Axiom \ref{axiom:morphisms} at level $k$, along with the data described in the other Axioms at lower levels. @@ -142,10 +142,11 @@ domain and range, but the converse meets with our approval. That is, given compatible domain and range, we should be able to combine them into the full boundary of a morphism. -The following proposition follows from the colimit construction used to define $\cl{\cC}_{k-1}$ +The following lemma follows from the colimit construction used to define $\cl{\cC}_{k-1}$ on spheres. -\begin{prop}[Boundary from domain and range] +\begin{lem}[Boundary from domain and range] +\label{lem:domain-and-range} Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$, $B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}). Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the @@ -157,7 +158,7 @@ which is natural with respect to the actions of homeomorphisms. (When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product becomes a normal product.) -\end{prop} +\end{lem} \begin{figure}[!ht] $$ @@ -787,10 +788,11 @@ A homeomorphism between marked $k$-balls is a homeomorphism of balls which restricts to a homeomorphism of markings. -\mmpar{Module axiom 1}{Module morphisms} +\begin{module-axiom}[Module morphisms] {For each $0 \le k \le n$, we have a functor $\cM_k$ from the category of marked $k$-balls and homeomorphisms to the category of sets and bijections.} +\end{module-axiom} (As with $n$-categories, we will usually omit the subscript $k$.) @@ -810,16 +812,20 @@ Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$. Call such a thing a {marked $k{-}1$-hemisphere}. -\mmpar{Module axiom 2}{Module boundaries (hemispheres)} +\begin{lem} +\label{lem:hemispheres} {For each $0 \le k \le n-1$, we have a functor $\cM_k$ from the category of marked $k$-hemispheres and homeomorphisms to the category of sets and bijections.} +\end{lem} +The proof is exactly analogous to that of Lemma \ref{lem:spheres}, and we omit the details. We use the same type of colimit construction. In our example, let $\cM(H) \deq \cD(H\times\bd W \cup \bd H\times W)$. -\mmpar{Module axiom 3}{Module boundaries (maps)} +\begin{module-axiom}[Module boundaries (maps)] {For each marked $k$-ball $M$ we have a map of sets $\bd: \cM(M)\to \cM(\bd M)$. These maps, for various $M$, comprise a natural transformation of functors.} +\end{module-axiom} Given $c\in\cM(\bd M)$, let $\cM(M; c) \deq \bd^{-1}(c)$. @@ -827,7 +833,7 @@ then $\cM(M; c)$ should be an object in that category for each marked $n$-ball $M$ and $c\in \cC(\bd M)$. -\mmpar{Module axiom 4}{Boundary from domain and range} +\begin{lem}[Boundary from domain and range] {Let $H = M_1 \cup_E M_2$, where $H$ is a marked $k$-hemisphere ($0\le k\le n-1$), $M_i$ is a marked $k$-ball, and $E = M_1\cap M_2$ is a marked $k{-}1$-hemisphere. Let $\cM(M_1) \times_{\cM(E)} \cM(M_2)$ denote the fibered product of the @@ -837,16 +843,19 @@ \gl_E : \cM(M_1) \times_{\cM(E)} \cM(M_2) \hookrightarrow \cM(H) \] which is natural with respect to the actions of homeomorphisms.} +\end{lem} +Again, this is in exact analogy with Lemma \ref{lem:domain-and-range}. Let $\cM(H)_E$ denote the image of $\gl_E$. We will refer to elements of $\cM(H)_E$ as ``splittable along $E$" or ``transverse to $E$". -\mmpar{Module axiom 5}{Module to category restrictions} +\begin{module-axiom}[Module to category restrictions] {For each marked $k$-hemisphere $H$ there is a restriction map $\cM(H)\to \cC(H)$. ($\cC(H)$ means apply $\cC$ to the underlying $k$-ball of $H$.) These maps comprise a natural transformation of functors.} +\end{module-axiom} Note that combining the various boundary and restriction maps above (for both modules and $n$-categories) @@ -873,7 +882,7 @@ First, we can compose two module morphisms to get another module morphism. -\mmpar{Module axiom 6}{Module composition} +\begin{module-axiom}[Module composition] {Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls (with $0\le k\le n$) and $Y = M_1\cap M_2$ is a marked $k{-}1$-ball. Let $E = \bd Y$, which is a marked $k{-}2$-hemisphere. @@ -888,14 +897,14 @@ to the intersection of the boundaries of $M$ and $M_i$. If $k < n$ we require that $\gl_Y$ is injective. (For $k=n$, see below.)} - +\end{module-axiom} Second, we can compose an $n$-category morphism with a module morphism to get another module morphism. We'll call this the action map to distinguish it from the other kind of composition. -\mmpar{Module axiom 7}{$n$-category action} +\begin{module-axiom}[$n$-category action] {Let $M = X \cup_Y M'$, where $M$ and $M'$ are marked $k$-balls ($0\le k\le n$), $X$ is a plain $k$-ball, and $Y = X\cap M'$ is a $k{-}1$-ball. @@ -910,9 +919,11 @@ to the intersection of the boundaries of $X$ and $M'$. If $k < n$ we require that $\gl_Y$ is injective. (For $k=n$, see below.)} +\end{module-axiom} -\mmpar{Module axiom 8}{Strict associativity} +\begin{module-axiom}[Strict associativity] {The composition and action maps above are strictly associative.} +\end{module-axiom} Note that the above associativity axiom applies to mixtures of module composition, action maps and $n$-category composition. @@ -951,7 +962,7 @@ \cite{MR1718089}.) %\nn{need to double-check that this is true.} -\mmpar{Module axiom 9}{Product/identity morphisms} +\begin{module-axiom}[Product/identity morphisms] {Let $M$ be a marked $k$-ball and $D$ be a plain $m$-ball, with $k+m \le n$. Then we have a map $\cM(M)\to \cM(M\times D)$, usually denoted $a\mapsto a\times D$ for $a\in \cM(M)$. If $f:M\to M'$ and $\tilde{f}:M\times D \to M'\times D'$ are maps such that the diagram @@ -960,6 +971,7 @@ M \ar[r]^{f} & M' } \] commutes, then we have $\tilde{f}(a\times D) = f(a)\times D'$.} +\end{module-axiom} \nn{Need to add compatibility with various things, as in the n-cat version of this axiom above.} @@ -969,10 +981,11 @@ modules for plain $n$-categories or $A_\infty$ $n$-categories. In the plain case we require -\mmpar{Module axiom 10a}{Extended isotopy invariance in dimension $n$} +\begin{module-axiom}[\textup{\textbf{[topological version]}} Extended isotopy invariance in dimension $n$] {Let $M$ be a marked $n$-ball and $f: M\to M$ be a homeomorphism which restricts to the identity on $\bd M$ and is extended isotopic (rel boundary) to the identity. Then $f$ acts trivially on $\cM(M)$.} +\end{module-axiom} \nn{need to rephrase this, since extended isotopies don't correspond to homeomorphisms.} @@ -982,7 +995,8 @@ For $A_\infty$ modules we require -\mmpar{Module axiom 10b}{Families of homeomorphisms act} +\addtocounter{module-axiom}{-1} +\begin{module-axiom}[\textup{\textbf{[$A_\infty$ version]}} Families of homeomorphisms act] {For each marked $n$-ball $M$ and each $c\in \cM(\bd M)$ we have a map of chain complexes \[ C_*(\Homeo_\bd(M))\ot \cM(M; c) \to \cM(M; c) . @@ -994,6 +1008,7 @@ a diagram like the one in Proposition \ref{CHprop} commutes. \nn{repeat diagram here?} \nn{restate this with $\Homeo(M\to M')$? what about boundary fixing property?}} +\end{module-axiom} \medskip