# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1256271161 0 # Node ID 7a880cdaac70416103529a04cbbd8222b3d82a7f # Parent 15a34e2f3b39284bb7433c249dd2634a8d7eb258 ... diff -r 15a34e2f3b39 -r 7a880cdaac70 text/a_inf_blob.tex --- a/text/a_inf_blob.tex Thu Oct 22 04:51:16 2009 +0000 +++ b/text/a_inf_blob.tex Fri Oct 23 04:12:41 2009 +0000 @@ -168,9 +168,50 @@ \end{proof} \medskip + +Next we prove a gluing theorem. +Let $X$ be a closed $k$-manifold with a splitting $X = X'_1\cup_Y X'_2$. +We will need an explicit collar on $Y$, so rewrite this as +$X = X_1\cup (Y\times J) \cup X_2$. +\nn{need figure} +Given this data we have: \nn{need refs to above for these} +\begin{itemize} +\item An $A_\infty$ $n{-}k$-category $\bc(X)$, which assigns to an $m$-ball +$D$ fields on $D\times X$ (for $m+k < n$) or the blob complex $\bc_*(D\times X; c)$ +(for $m+k = n$). \nn{need to explain $c$}. +\item An $A_\infty$ $n{-}k{+}1$-category $\bc(Y)$, defined similarly. +\item Two $\bc(Y)$ modules $\bc(X_1)$ and $\bc(X_2)$, which assign to a marked +$m$-ball $(D, H)$ either fields on $(D\times Y) \cup (H\times X_i)$ (if $m+k < n$) +or the blob complex $\bc_*((D\times Y) \cup (H\times X_i))$ (if $m+k = n$). +\end{itemize} + +\begin{thm} +$\bc(X) \cong \bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$. +\end{thm} + +\begin{proof} +The proof is similar to that of Theorem \ref{product_thm}. +\nn{need to say something about dimensions less than $n$, +but for now concentrate on top dimension.} + +Let $\cT$ denote the $n{-}k$-category $\bc(X_1) \otimes_{\bc(Y), J} \bc(X_2)$. +Let $D$ be an $n{-}k$-ball. +There is an obvious map from $\cT(D)$ to $\bc_*(D\times X)$. +To get a map in the other direction, we replace $\bc_*(D\times X)$ with a subcomplex +$\cS_*$ which is adapted to a fine open cover of $D\times X$. +For sufficiently small $j$ (depending on the cover), we can find, for each $j$-blob diagram $b$ +on $D\times X$, a decomposition of $J$ such that $b$ splits on the corresponding +decomposition of $D\times X$. +The proof that these two maps are inverse to each other is the same as in +Theorem \ref{product_thm}. +\end{proof} + + +\medskip \hrule \medskip \nn{to be continued...} \medskip +\nn{still to do: fiber bundles, general maps}