# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1244663759 0 # Node ID 8ef65f3bea2bcb464cdf5b82292c66da7160a917 # Parent 0fb44b5068f5ac97f8b480ce1fbadc3c4c09ac61 small changes diff -r 0fb44b5068f5 -r 8ef65f3bea2b blob1.tex --- a/blob1.tex Sun Jun 07 18:41:00 2009 +0000 +++ b/blob1.tex Wed Jun 10 19:55:59 2009 +0000 @@ -25,6 +25,8 @@ \versioninfo +\noop{ + \section*{Todo} \subsection*{What else?...} @@ -46,11 +48,8 @@ \item dimension $n+1$ (generalized Deligne conjecture?) \item should be clear about PL vs Diff; probably PL is better (or maybe not) -\item say what we mean by $n$-category, $A_\infty$ or $E_\infty$ $n$-category \item something about higher derived coend things (derived 2-coend, e.g.) \item shuffle product vs gluing product (?) -\item commutative algebra results -\item $A_\infty$ blob complex \item connection between $A_\infty$ operad and topological $A_\infty$ cat defs \end{itemize} \item lower priority @@ -61,6 +60,7 @@ \end{itemize} \end{itemize} +} %end \noop \section{Introduction} @@ -164,7 +164,9 @@ \begin{property}[Skein modules] \label{property:skein-modules}% -The $0$-th blob homology of $X$ is the usual skein module associated to $X$. (See \S \ref{sec:local-relations}.) +The $0$-th blob homology of $X$ is the usual +(dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$ +by $(\cF,\cU)$. (See \S \ref{sec:local-relations}.) \begin{equation*} H_0(\bc_*^{\cF,\cU}(X)) \iso A^{\cF,\cU}(X) \end{equation*} @@ -198,8 +200,10 @@ \bc_*(X_1) \otimes \bc_*(X_2) \ar[u]_{\gl_Y} } \end{equation*} +\nn{should probably say something about associativity here (or not?)} \end{property} + \begin{property}[Gluing formula] \label{property:gluing}% \mbox{}% <-- gets the indenting right @@ -220,6 +224,8 @@ \end{itemize} \end{property} +\nn{add product formula? $n$-dimensional fat graph operad stuff?} + Properties \ref{property:functoriality}, \ref{property:gluing-map} and \ref{property:skein-modules} will be immediate from the definition given in \S \ref{sec:blob-definition}, and we'll recall them at the appropriate points there. \todo{Make sure this gets done.} Properties \ref{property:disjoint-union} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}. diff -r 0fb44b5068f5 -r 8ef65f3bea2b text/A-infty.tex --- a/text/A-infty.tex Sun Jun 07 18:41:00 2009 +0000 +++ b/text/A-infty.tex Wed Jun 10 19:55:59 2009 +0000 @@ -10,6 +10,9 @@ \subsection{Topological $A_\infty$ categories} In this section we define a notion of `topological $A_\infty$ category' and sketch an equivalence with the usual definition of $A_\infty$ category. We then define `topological $A_\infty$ modules', and their morphisms and tensor products. +\nn{And then we generalize all of this to $A_\infty$ $n$-categories [is this the +best name for them?]} + \begin{defn} \label{defn:topological-Ainfty-category}% A \emph{topological $A_\infty$ category} $\cC$ has a set of objects $\Obj(\cC)$, and for each interval $J$ and objects $a,b \in \Obj(\cC)$, a chain complex $\cC(J;a,b)$, along with diff -r 0fb44b5068f5 -r 8ef65f3bea2b text/gluing.tex --- a/text/gluing.tex Sun Jun 07 18:41:00 2009 +0000 +++ b/text/gluing.tex Wed Jun 10 19:55:59 2009 +0000 @@ -42,7 +42,8 @@ \end{thm} Before proving this theorem, we embark upon a long string of definitions. -For expository purposes, we begin with the $n=1$ special cases,\scott{Why are we treating the $n>1$ cases at all?} and define +For expository purposes, we begin with the $n=1$ special cases, +and define first topological $A_\infty$-algebras, then topological $A_\infty$-categories, and then topological $A_\infty$-modules over these. We then turn to the general $n$ case, defining topological $A_\infty$-$n$-categories and their modules. \nn{Something about duals?}