# HG changeset patch # User Scott Morrison # Date 1277595088 25200 # Node ID a02a6158f3bddc4db1131c797bd851d9356a23e4 # Parent 979fbe9a14e849689a86b215da7516596e6f37b3 Breaking up 'properties' in the intro into smaller subsections, converting many properties back to theorems, and numbering according to where they occur in the text. Not completely done, e.g. the action map which needs statements made consistent. diff -r 979fbe9a14e8 -r a02a6158f3bd text/a_inf_blob.tex --- a/text/a_inf_blob.tex Fri Jun 25 09:48:24 2010 -0700 +++ b/text/a_inf_blob.tex Sat Jun 26 16:31:28 2010 -0700 @@ -42,7 +42,7 @@ \nn{need to settle on notation; proof and statement are inconsistent} -\begin{thm} \label{product_thm} +\begin{thm} \label{thm:product} Given a topological $n$-category $C$ and a $n{-}k$-manifold $F$, recall from Example \ref{ex:blob-complexes-of-balls} that there is an $A_\infty$ $k$-category $C^{\times F}$ defined by \begin{equation*} @@ -57,7 +57,7 @@ \end{thm} -\begin{proof}%[Proof of Theorem \ref{product_thm}] +\begin{proof} We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}. First we define a map @@ -214,7 +214,7 @@ collection of acyclic subcomplexes, so by the usual MoAM argument these two maps are homotopic. -This concludes the proof of Theorem \ref{product_thm}. +This concludes the proof of Theorem \ref{thm:product}. \end{proof} \nn{need to prove a version where $E$ above has dimension $m] (BC) -- node[left] {$H_0$} node[right] {c.f. Property \ref{property:skein-modules}} (A); +\draw[->] (BC) -- node[left] {$H_0$} node[right] {c.f. Theorem \ref{thm:skein-modules}} (A); \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs); \draw (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs); @@ -217,7 +217,7 @@ complexes and isomorphisms between them. \end{property} As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*^\cC(X)$; -this action is extended to all of $C_*(\Homeo(X))$ in Property \ref{property:evaluation} below. +this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below. The blob complex is also functorial (indeed, exact) with respect to $\cC$, although we will not address this in detail here. @@ -256,8 +256,17 @@ \end{equation} \end{property} -\begin{property}[Skein modules] -\label{property:skein-modules}% +Properties \ref{property:functoriality} will be immediate from the definition given in +\S \ref{sec:blob-definition}, and we'll recall it at the appropriate point there. +Properties \ref{property:disjoint-union}, \ref{property:gluing-map} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}. + +\subsection{Specializations} +\label{sec:specializations} + +The blob complex is a simultaneous generalization of the TQFT skein module construction and of Hochschild homology. + +\begin{thm}[Skein modules] +\label{thm:skein-modules}% The $0$-th blob homology of $X$ is the usual (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$ by $\cC$. @@ -265,23 +274,30 @@ \begin{equation*} H_0(\bc_*^{\cC}(X)) \iso A^{\cC}(X) \end{equation*} -\end{property} +\end{thm} -\todo{Somehow, the Hochschild homology thing isn't a "property". -Let's move it and call it a theorem? -S} -\begin{property}[Hochschild homology when $X=S^1$] -\label{property:hochschild}% +\newtheorem*{thm:hochschild}{Theorem \ref{thm:hochschild}} + +\begin{thm:hochschild}[Hochschild homology when $X=S^1$] The blob complex for a $1$-category $\cC$ on the circle is quasi-isomorphic to the Hochschild complex. \begin{equation*} \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).} \end{equation*} -\end{property} +\end{thm:hochschild} + +Theorem \ref{thm:skein-modules} is immediate from the definition, and +Theorem \ref{thm:hochschild} is established in \S \ref{sec:hochschild}. +We also note Appendix \ref{sec:comm_alg} which describes the blob complex when $\cC$ is a one of certain commutative algebras thought of as an $n$-category. + + +\subsection{Structure of the blob complex} +\label{sec:structure} In the following $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$. -\begin{property}[$C_*(\Homeo(-))$ action]\mbox{}\\ +\begin{thm}[$C_*(\Homeo(-))$ action]\mbox{}\\ \vspace{-0.5cm} -\label{property:evaluation}% +\label{thm:evaluation}% \begin{enumerate} \item There is a chain map \begin{equation*} @@ -311,7 +327,7 @@ } \end{equation*} \end{enumerate} -\end{property} +\end{thm} Since the blob complex is functorial in the manifold $X$, this is equivalent to having chain maps $$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$ @@ -322,8 +338,8 @@ Below, we talk about the blob complex associated to a topological $n$-category, implicitly passing first to the system of fields. Further, in \S \ref{sec:ncats} we also have the notion of an $A_\infty$ $n$-category. -\begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category] -\label{property:blobs-ainfty} +\begin{thm}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category] +\label{thm:blobs-ainfty} Let $\cC$ be a topological $n$-category. Let $Y$ be an $n{-}k$-manifold. There is an $A_\infty$ $k$-category $\bc_*(Y;\cC)$, defined on each $m$-ball $D$, for $0 \leq m < k$, @@ -331,8 +347,8 @@ $$\bc_*(Y;\cC)(D) = \bc_*(Y \times D; \cC).$$ (When $m=k$ the subsets with fixed boundary conditions form a chain complex.) These sets have the structure of an $A_\infty$ $k$-category, with compositions coming from the gluing map in -Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Property \ref{property:evaluation}. -\end{property} +Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Theorem \ref{thm:evaluation}. +\end{thm} \begin{rem} Perhaps the most interesting case is when $Y$ is just a point; then we have a way of building an $A_\infty$ $n$-category from a topological $n$-category. We think of this $A_\infty$ $n$-category as a free resolution. @@ -342,24 +358,26 @@ instead of a topological $n$-category; this is described in \S \ref{sec:ainfblob}. The definition is in fact simpler, almost tautological, and we use a different notation, $\cl{\cC}(M)$. -\begin{property}[Product formula] -\label{property:product} +\newtheorem*{thm:product}{Theorem \ref{thm:product}} + +\begin{thm:product}[Product formula] Let $W$ be a $k$-manifold and $Y$ be an $n-k$ manifold. Let $\cC$ be an $n$-category. -Let $\bc_*(Y;\cC)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology (see Property \ref{property:blobs-ainfty}). +Let $\bc_*(Y;\cC)$ be the $A_\infty$ $k$-category associated to $Y$ via blob homology (see Theorem \ref{thm:blobs-ainfty}). Then \[ \bc_*(Y\times W; \cC) \simeq \cl{\bc_*(Y;\cC)}(W). \] -\end{property} +\end{thm:product} We also give a generalization of this statement for arbitrary fibre bundles, in \S \ref{moddecss}, and a sketch of a statement for arbitrary maps. Fix a topological $n$-category $\cC$, which we'll omit from the notation. Recall that for any $(n-1)$-manifold $Y$, the blob complex $\bc_*(Y)$ is naturally an $A_\infty$ category. (See Appendix \ref{sec:comparing-A-infty} for the translation between topological $A_\infty$ $1$-categories and the usual algebraic notion of an $A_\infty$ category.) -\begin{property}[Gluing formula] -\label{property:gluing}% +\newtheorem*{thm:gluing}{Theorem \ref{thm:gluing}} + +\begin{thm:gluing}[Gluing formula] \mbox{}% <-- gets the indenting right \begin{itemize} \item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob complex of $X$ is naturally an @@ -371,32 +389,37 @@ \bc_*(X_\text{glued}) \simeq \bc_*(X_\text{cut}) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y)}} \selfarrow \end{equation*} \end{itemize} -\end{property} +\end{thm:gluing} + +Theorem \ref{thm:evaluation} is proved in +in \S \ref{sec:evaluation}, Theorem \ref{thm:blobs-ainfty} appears as Example \ref{ex:blob-complexes-of-balls} in \S \ref{sec:ncats}, +and Theorem \ref{thm:product} is proved in \S \ref{ss:product-formula}, with Theorem \ref{thm:gluing} then a relatively straightforward consequence of the proof, explained in \S \ref{sec:gluing}. -Finally, we prove two theorems which we consider as applications. +\subsection{Applications} +\label{sec:applications} +Finally, we give two theorems which we consider as applications. -\begin{thm}[Mapping spaces] +\newtheorem*{thm:map-recon}{Theorem \ref{thm:map-recon}} + +\begin{thm:map-recon}[Mapping spaces] Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps $B^n \to T$. (The case $n=1$ is the usual $A_\infty$-category of paths in $T$.) Then $$\bc_*(X, \pi^\infty_{\le n}(T)) \simeq \CM{X}{T}.$$ -\end{thm} +\end{thm:map-recon} -This says that we can recover the (homotopic) space of maps to $T$ via blob homology from local data. +This says that we can recover the (homotopic) space of maps to $T$ via blob homology from local data. The proof appears in \S \ref{sec:map-recon}. -\begin{thm}[Higher dimensional Deligne conjecture] -\label{thm:deligne} +\newtheorem*{thm:deligne}{Theorem \ref{thm:deligne}} + +\begin{thm:deligne}[Higher dimensional Deligne conjecture] The singular chains of the $n$-dimensional fat graph operad act on blob cochains. -\end{thm} +\end{thm:deligne} See \S \ref{sec:deligne} for a full explanation of the statement, and an outline of the proof. -Properties \ref{property:functoriality} and \ref{property:skein-modules} will be immediate from the definition given in -\S \ref{sec:blob-definition}, and we'll recall them at the appropriate points there. -Properties \ref{property:disjoint-union}, \ref{property:gluing-map} and \ref{property:contractibility} are established in \S \ref{sec:basic-properties}. -Property \ref{property:hochschild} is established in \S \ref{sec:hochschild}, Property \ref{property:evaluation} -in \S \ref{sec:evaluation}, Property \ref{property:blobs-ainfty} as Example \ref{ex:blob-complexes-of-balls} in \S \ref{sec:ncats}, -and Properties \ref{property:product} and \ref{property:gluing} in \S \ref{sec:ainfblob} as consequences of Theorem \ref{product_thm}. + + \subsection{Future directions} \label{sec:future} @@ -425,6 +448,6 @@ \subsection{Thanks and acknowledgements} We'd like to thank David Ben-Zvi, Kevin Costello, Chris Douglas, -Michael Freedman, Vaughan Jones, Justin Roberts, Chris Schommer-Pries, Peter Teichner \nn{and who else?} for many interesting and useful conversations. +Michael Freedman, Vaughan Jones, Alexander Kirillov, Justin Roberts, Chris Schommer-Pries, Peter Teichner \nn{and who else?} for many interesting and useful conversations. During this work, Kevin Walker has been at Microsoft Station Q, and Scott Morrison has been at Microsoft Station Q and the Miller Institute for Basic Research at UC Berkeley. diff -r 979fbe9a14e8 -r a02a6158f3bd text/ncat.tex --- a/text/ncat.tex Fri Jun 25 09:48:24 2010 -0700 +++ b/text/ncat.tex Sat Jun 26 16:31:28 2010 -0700 @@ -789,7 +789,7 @@ where $\bc^\cE_*$ denotes the blob complex based on $\cE$. \end{example} -This example will be essential for Theorem \ref{product_thm} below, which allows us to compute the blob complex of a product. +This example will be essential for Theorem \ref{thm:product} below, which allows us to compute the blob complex of a product. Notice that with $F$ a point, the above example is a construction turning a topological $n$-category $\cC$ into an $A_\infty$ $n$-category which we'll denote by $\bc_*(\cC)$. We think of this as providing a `free resolution'