# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1252983339 0 # Node ID a044fda184009bed96389e813c5275d68f36f136 # Parent b0fc3660fa89282b848015845ea9cce3b0527bce ... diff -r b0fc3660fa89 -r a044fda18400 text/a_inf_blob.tex --- a/text/a_inf_blob.tex Wed Aug 26 23:10:55 2009 +0000 +++ b/text/a_inf_blob.tex Tue Sep 15 02:55:39 2009 +0000 @@ -91,7 +91,15 @@ Then filtration degree 1 chains associated to the four anti-refinemnts $KL\to K$, $KL\to L$, $K'L\to L$ and $K'L\to K'$ give the desired chain connecting $(a, K)$ and $(a, K')$ -(see Figure xxxx). +(see Figure \ref{zzz4}). + +\begin{figure}[!ht] +\begin{equation*} +\mathfig{.63}{tempkw/zz4} +\end{equation*} +\caption{Connecting $K$ and $K'$ via $L$} +\label{zzz4} +\end{figure} Consider a different choice of decomposition $L'$ in place of $L$ above. This leads to a cycle consisting of filtration degree 1 stuff. @@ -99,9 +107,17 @@ Choose a decomposition $M$ which has common refinements with each of $K$, $KL$, $L$, $K'L$, $K'$, $K'L'$, $L'$ and $KL'$. \nn{need to also require that $KLM$ antirefines to $KM$, etc.} -Then we have a filtration degree 2 chain, as shown in Figure yyyy, which does the trick. +Then we have a filtration degree 2 chain, as shown in Figure \ref{zzz5}, which does the trick. +(Each small triangle in Figure \ref{zzz5} can be filled with a filtration degree 2 chain.) For example, .... +\begin{figure}[!ht] +\begin{equation*} +\mathfig{1.0}{tempkw/zz5} +\end{equation*} +\caption{Filling in $K$-$KL$-$L$-$K'L$-$K'$-$K'L'$-$L'$-$KL'$-$K$} +\label{zzz5} +\end{figure} \end{proof} diff -r b0fc3660fa89 -r a044fda18400 text/kw_macros.tex --- a/text/kw_macros.tex Wed Aug 26 23:10:55 2009 +0000 +++ b/text/kw_macros.tex Tue Sep 15 02:55:39 2009 +0000 @@ -55,7 +55,6 @@ \applytolist{declaremathop}{pr}{im}{gl}{ev}{coinv}{tr}{rot}{Eq}{obj}{mor}{ob}{Rep}{Tet}{cat}{Maps}{Diff}{Homeo}{sign}{supp}{Nbd}{res}; - %%%%%% end excerpt diff -r b0fc3660fa89 -r a044fda18400 text/ncat.tex --- a/text/ncat.tex Wed Aug 26 23:10:55 2009 +0000 +++ b/text/ncat.tex Tue Sep 15 02:55:39 2009 +0000 @@ -432,8 +432,17 @@ of $y$, or write $x \le y$, if each ball of $y$ is a union of balls of $x$. This defines a partial ordering $\cJ(W)$, which we will think of as a category. (The objects of $\cJ(W)$ are permissible decompositions of $W$, and there is a unique -morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.) -\nn{need figures} +morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$. +See Figure \ref{partofJfig}.) + +\begin{figure}[!ht] +\begin{equation*} +\mathfig{.63}{tempkw/zz2} +\end{equation*} +\caption{A small part of $\cJ(W)$} +\label{partofJfig} +\end{figure} + $\cC$ determines a functor $\psi_\cC$ from $\cJ(W)$ to the category of sets @@ -604,9 +613,17 @@ We require two sorts of composition (gluing) for modules, corresponding to two ways of splitting a marked $k$-ball into two (marked or plain) $k$-balls. -First, we can compose two module morphisms to get another module morphism. +(See Figure \ref{zzz3}.) -\nn{need figures for next two axioms} +\begin{figure}[!ht] +\begin{equation*} +\mathfig{.63}{tempkw/zz3} +\end{equation*} +\caption{Module composition (top); $n$-category action (bottom)} +\label{zzz3} +\end{figure} + +First, we can compose two module morphisms to get another module morphism. \xxpar{Module composition:} {Let $M = M_1 \cup_Y M_2$, where $M$, $M_1$ and $M_2$ are marked $k$-balls ($0\le k\le n$) @@ -624,6 +641,8 @@ If $k < n$ we require that $\gl_Y$ is injective. (For $k=n$, see below.)} + + Second, we can compose an $n$-category morphism with a module morphism to get another module morphism. We'll call this the action map to distinguish it from the other kind of composition. @@ -649,7 +668,16 @@ Note that the above associativity axiom applies to mixtures of module composition, action maps and $n$-category composition. -See Figure xxxx. +See Figure \ref{zzz1b}. + +\begin{figure}[!ht] +\begin{equation*} +\mathfig{1}{tempkw/zz1b} +\end{equation*} +\caption{Two examples of mixed associativity} +\label{zzz1b} +\end{figure} + The above three axioms are equivalent to the following axiom, which we state in slightly vague form. @@ -762,7 +790,6 @@ This defines a partial ordering $\cJ(W)$, which we will think of as a category. (The objects of $\cJ(D)$ are permissible decompositions of $W$, and there is a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.) -\nn{need figures} $\cN$ determines a functor $\psi_\cN$ from $\cJ(W)$ to the category of sets