# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1246979652 0 # Node ID af6b7205560cd42482ccbfd9b29f3b56d03c237e # Parent cf67ae4abeb19c3dcf5b1de5e2bbb42928202c09 ... diff -r cf67ae4abeb1 -r af6b7205560c text/evmap.tex --- a/text/evmap.tex Tue Jul 07 01:54:22 2009 +0000 +++ b/text/evmap.tex Tue Jul 07 15:14:12 2009 +0000 @@ -169,6 +169,7 @@ \[ N_{i,k}(p\ot b) \deq \Nbd_{k\ep_i}(|b|) \cup \Nbd_{4^k\delta_i}(|p|). \] +\nn{not currently correct; maybe need to split $k$ into two parameters} In other words, we use the metric to choose nested neighborhoods of $|b|\cup |p|$ (parameterized by $k$), with $\ep_i$ controlling the size of the buffer around $|b|$ and $\delta_i$ controlling the size of the buffer around $|p|$. @@ -193,9 +194,9 @@ $G_*^{i,m}$ is a subcomplex where it is easy to define the evaluation map. The parameter $m$ controls the number of iterated homotopies we are able to construct -(see Lemma \ref{mhtyLemma}). +(see Lemma \ref{m_order_hty}). The larger $i$ is (i.e.\ the smaller $\ep_i$ is), the better $G_*^{i,m}$ approximates all of -$CD_*(X)\ot \bc_*(X)$ (see Lemma \ref{xxxlemma}). +$CD_*(X)\ot \bc_*(X)$ (see Lemma \ref{Gim_approx}). Next we define a chain map (dependent on some choices) $e: G_*^{i,m} \to \bc_*(X)$. Let $p\ot b \in G_*^{i,m}$. @@ -260,7 +261,7 @@ \nn{maybe this lemma should be subsumed into the next lemma. probably it should.} \end{proof} -\begin{lemma} +\begin{lemma} \label{m_order_hty} Let $\tilde{e} : G_*^{i,m} \to \bc_*(X)$ be a chain map constructed like $e$ above, but with different choices of $V$ (and hence also different choices of $x'$) at each step. If $m \ge 1$ then $e$ and $\tilde{e}$ are homotopic. @@ -319,7 +320,7 @@ (depending on $b$, $n = \deg(p)$ and $m$). \nn{not the same $n$ as the dimension of the manifolds; fix this} -\begin{lemma} +\begin{lemma} \label{Gim_approx} Fix a blob diagram $b$, a homotopy order $m$ and a degree $n$ for $CD_*(X)$. Then there exists a constant $k_{bmn}$ such that for all $i \ge k_{bmn}$ there exists another constant $j_i$ such that for all $j \ge j_i$ and all $p\in CD_n(X)$