# HG changeset patch # User Kevin Walker # Date 1283373261 25200 # Node ID b236746e8e4daad5f351fd81d8c81869d1c4a51f # Parent 8e055b7c0768f2d5a2f76e7589e3b309ec18ea91 futzing with figures (\begin{center|equation} to \centering) diff -r 8e055b7c0768 -r b236746e8e4d text/a_inf_blob.tex --- a/text/a_inf_blob.tex Tue Aug 31 21:09:31 2010 -0700 +++ b/text/a_inf_blob.tex Wed Sep 01 13:34:21 2010 -0700 @@ -113,8 +113,7 @@ give the desired chain connecting $(a, K)$ and $(a, K')$ (see Figure \ref{zzz4}). -\begin{figure}[!ht] -\begin{equation*} +\begin{figure}[t] \centering \begin{tikzpicture} \foreach \x/\label in {-3/K, 0/L, 3/K'} { \node(\label) at (\x,0) {$\label$}; @@ -125,7 +124,6 @@ \draw[->] (\la \lb) -- (\lb); } \end{tikzpicture} -\end{equation*} \caption{Connecting $K$ and $K'$ via $L$} \label{zzz4} \end{figure} @@ -139,11 +137,7 @@ Then we have 2-simplices, as shown in Figure \ref{zzz5}, which do the trick. (Each small triangle in Figure \ref{zzz5} can be filled with a 2-simplex.) -\begin{figure}[!ht] -%\begin{equation*} -%\mathfig{1.0}{tempkw/zz5} -%\end{equation*} -\begin{equation*} +\begin{figure}[t] \centering \begin{tikzpicture} \node(M) at (0,0) {$M$}; \foreach \angle/\label in {0/K', 45/K'L, 90/L, 135/KL, 180/K, 225/KL', 270/L', 315/K'L'} { @@ -174,7 +168,6 @@ \draw[->] (KL) to[bend right=10] (K); \draw[->] (KL) to[bend left=10] (L); \end{tikzpicture} -\end{equation*} \caption{Filling in $K$-$KL$-$L$-$K'L$-$K'$-$K'L'$-$L'$-$KL'$-$K$} \label{zzz5} \end{figure} diff -r 8e055b7c0768 -r b236746e8e4d text/appendixes/comparing_defs.tex --- a/text/appendixes/comparing_defs.tex Tue Aug 31 21:09:31 2010 -0700 +++ b/text/appendixes/comparing_defs.tex Wed Sep 01 13:34:21 2010 -0700 @@ -137,7 +137,7 @@ We will define a ``horizontal" composition later. \begin{figure}[t] -\begin{center} +\centering \begin{tikzpicture} \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}} @@ -183,7 +183,6 @@ \draw[->, thick, blue!50!green] (A) -- node[black, above] {$\cong$} (B); \end{tikzpicture} -\end{center} \caption{Vertical composition of 2-morphisms} \label{fzo1} \end{figure} @@ -204,7 +203,7 @@ Define 2-morphsims $a \to a\bullet \id_x$ and $a\bullet \id_x \to a$ as shown in Figure \ref{fzo2}. \begin{figure}[t] -\begin{center} +\centering \begin{tikzpicture} \newcommand{\rr}{6} \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}} @@ -274,7 +273,6 @@ \draw[->] (A) -- (B); \draw[->] (A) -- (C); \end{tikzpicture} -\end{center} \caption{Producing weak identities from half pinched products} \label{fzo2} \end{figure} @@ -284,7 +282,7 @@ on $a$ and $a\bullet \id_x$, as defined above. Figure \ref{fzo3} shows one case. \begin{figure}[t] -\begin{center} +\centering \begin{tikzpicture} \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}} @@ -400,14 +398,13 @@ \draw[->, thick, blue!50!green] (B) -- node[black, above] {$=$} (C); \end{tikzpicture} -\end{center} \caption{Composition of weak identities, 1} \label{fzo3} \end{figure} In the first step we have inserted a copy of $(x\times I)\times I$. Figure \ref{fzo4} shows the other case. \begin{figure}[t] -\begin{center} +\centering \begin{tikzpicture} \newcommand{\vertex}{node[circle,fill=black,inner sep=1pt] {}} @@ -502,7 +499,6 @@ \draw[->, thick, blue!50!green] ($(B) + (1,0)$) -- node[black, above] {$=$} (C); \end{tikzpicture} -\end{center} \caption{Composition of weak identities, 2} \label{fzo4} \end{figure} diff -r 8e055b7c0768 -r b236746e8e4d text/ncat.tex --- a/text/ncat.tex Tue Aug 31 21:09:31 2010 -0700 +++ b/text/ncat.tex Wed Sep 01 13:34:21 2010 -0700 @@ -1639,7 +1639,7 @@ More specifically, $D\to D'$ is an antirefinement if $D'$ is obtained from $D$ by gluing subintervals together and/or omitting some of the rightmost subintervals. (See Figure \ref{fig:lmar}.) -\begin{figure}[t]$$ +\begin{figure}[t] \centering \definecolor{arcolor}{rgb}{.75,.4,.1} \begin{tikzpicture}[line width=1pt] \fill (0,0) circle (.1); @@ -1679,7 +1679,6 @@ } \end{tikzpicture} -$$ \caption{Antirefinements of left-marked intervals}\label{fig:lmar}\end{figure} Now we define the chain complex $\hom_\cC(\cX_\cC \to \cY_\cC)$. @@ -1735,7 +1734,7 @@ These are required to commute with gluing; for each subdivision $K = I_1\cup\cdots\cup I_q$ the following diagram commutes: \[ \xymatrix{ - \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_0}\ot \id} + \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[r]^{h_{I_1}\ot \id} \ar[d]_{\gl} & \cY(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_q) \ar[d]^{\gl} \\ \cX(K) \ar[r]^{h_{K}} & \cY(K) @@ -1875,8 +1874,7 @@ (see Figure \ref{feb21b}). These restrictions are 0-morphisms $(a, b)$ of $\cA$ and $\cB$. -\begin{figure}[t] -$$ +\begin{figure}[t] \centering \begin{tikzpicture}[blue,line width=2pt] \draw (0,1) -- (0,-1) node[below] {$X$}; @@ -1891,7 +1889,6 @@ \path (bottom) node[below]{$X \times J$}; \end{tikzpicture} -$$ \caption{The pinched product $X\times J$} \label{feb21b} \end{figure} @@ -1904,8 +1901,7 @@ to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category. This amounts to a definition of taking tensor products of $0$-sphere modules over $n$-categories. -\begin{figure}[t] -$$ +\begin{figure}[t] \centering \begin{tikzpicture}[baseline,line width = 2pt] \draw[blue] (0,0) -- (6,0); \foreach \x/\n in {0.5/0,1.5/1,3/2,4.5/3,5.5/4} { @@ -1927,7 +1923,6 @@ \path (\q:2.4) node {\color{green!50!brown}$\cM_{\n}$}; } \end{tikzpicture} -$$ \caption{Marked and labeled 1-manifolds} \label{feb21c} \end{figure} @@ -1956,8 +1951,7 @@ (See Figure \nn{need figure}.) We now proceed as in the above module definitions. -\begin{figure}[!ht] -$$ +\begin{figure}[t] \centering \begin{tikzpicture}[baseline,line width = 2pt] \draw[blue][fill=blue!15!white] (0,0) circle (2); \fill[red] (0,0) circle (0.1); @@ -1968,7 +1962,6 @@ \draw[line width=1pt, green!50!brown, ->] (M\n.\qm+135) to[out=\qm+135,in=\qm+90] (\qm+5:1.3); } \end{tikzpicture} -$$ \caption{Cone on a marked circle} \label{feb21d} \end{figure}