# HG changeset patch # User Kevin Walker # Date 1304917727 25200 # Node ID b88c4c4af945d994c2d62f538dbb14fd236a3f6e # Parent 775b5ca42bed40522e5b6829694a5391e93e259d move figs to top of page diff -r 775b5ca42bed -r b88c4c4af945 blob to-do --- a/blob to-do Sun May 08 09:05:53 2011 -0700 +++ b/blob to-do Sun May 08 22:08:47 2011 -0700 @@ -65,4 +65,7 @@ * ? define Morita equivalence? -* maybe put most figures at top of page \ No newline at end of file +* number equations in same sequence as everything else + +* make sure we are clear that boundary = germ + diff -r 775b5ca42bed -r b88c4c4af945 text/a_inf_blob.tex --- a/text/a_inf_blob.tex Sun May 08 09:05:53 2011 -0700 +++ b/text/a_inf_blob.tex Sun May 08 22:08:47 2011 -0700 @@ -400,7 +400,7 @@ $$\cB^\cT(M) \simeq C_*(\Maps(M\to T)).$$ \end{thm} \begin{rem} -Lurie has shown in \cite[Theorem 3.8.6]{0911.0018} that the topological chiral homology +Lurie has shown in \cite[teorem 3.8.6]{0911.0018} that the topological chiral homology of an $n$-manifold $M$ with coefficients in a certain $E_n$ algebra constructed from $T$ recovers the same space of singular chains on maps from $M$ to $T$, with the additional hypothesis that $T$ is $n-1$-connected. This extra hypothesis is not surprising, in view of the idea described in Example \ref{ex:e-n-alg} diff -r 775b5ca42bed -r b88c4c4af945 text/hochschild.tex --- a/text/hochschild.tex Sun May 08 09:05:53 2011 -0700 +++ b/text/hochschild.tex Sun May 08 22:08:47 2011 -0700 @@ -537,7 +537,7 @@ In degree 1, we send $m\ot a$ to the sum of two 1-blob diagrams as shown in Figure \ref{fig:hochschild-1-chains}. -\begin{figure}[ht] +\begin{figure}[t] \begin{equation*} \mathfig{0.4}{hochschild/1-chains} \end{equation*} @@ -548,14 +548,14 @@ \label{fig:hochschild-1-chains} \end{figure} -\begin{figure}[ht] +\begin{figure}[t] \begin{equation*} \mathfig{0.6}{hochschild/2-chains-0} \end{equation*} \caption{The 0-chains in the image of $m \tensor a \tensor b$.} \label{fig:hochschild-2-chains-0} \end{figure} -\begin{figure}[ht] +\begin{figure}[t] \begin{equation*} \mathfig{0.4}{hochschild/2-chains-1} \qquad \mathfig{0.4}{hochschild/2-chains-2} \end{equation*} @@ -564,7 +564,7 @@ \label{fig:hochschild-2-chains-12} \end{figure} -\begin{figure}[ht] +\begin{figure}[t] \begin{equation*} A = \mathfig{0.1}{hochschild/v_1} + \mathfig{0.1}{hochschild/v_2} + \mathfig{0.1}{hochschild/v_3} + \mathfig{0.1}{hochschild/v_4} \end{equation*} diff -r 775b5ca42bed -r b88c4c4af945 text/intro.tex --- a/text/intro.tex Sun May 08 09:05:53 2011 -0700 +++ b/text/intro.tex Sun May 08 22:08:47 2011 -0700 @@ -98,7 +98,7 @@ \tikzstyle{box} = [rectangle, rounded corners, draw,outer sep = 5pt, inner sep = 5pt, line width=0.5pt] -\begin{figure}[!ht] +\begin{figure}[t] {\center \beginpgfgraphicnamed{gadgets-external}% \begin{tikzpicture}[align=center,line width = 1.5pt] diff -r 775b5ca42bed -r b88c4c4af945 text/ncat.tex --- a/text/ncat.tex Sun May 08 09:05:53 2011 -0700 +++ b/text/ncat.tex Sun May 08 22:08:47 2011 -0700 @@ -192,7 +192,7 @@ becomes a normal product.) \end{lem} -\begin{figure}[!ht] \centering +\begin{figure}[t] \centering \begin{tikzpicture}[%every label/.style={green} ] \node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {}; @@ -264,7 +264,7 @@ (For $k=n$ in the ordinary (non-$A_\infty$) case, see below.) \end{axiom} -\begin{figure}[!ht] \centering +\begin{figure}[t] \centering \begin{tikzpicture}[%every label/.style={green}, x=1.5cm,y=1.5cm] \node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {}; @@ -285,7 +285,7 @@ any sequence of gluings (in the sense of Definition \ref{defn:gluing-decomposition}, where all the intermediate steps are also disjoint unions of balls) yields the same result. \end{axiom} -\begin{figure}[!ht] +\begin{figure}[t] $$\mathfig{.65}{ncat/strict-associativity}$$ \caption{An example of strict associativity.}\label{blah6}\end{figure} @@ -323,7 +323,7 @@ and these various $m$-fold composition maps satisfy an operad-type strict associativity condition (Figure \ref{fig:operad-composition}).} -\begin{figure}[!ht] +\begin{figure}[t] $$\mathfig{.8}{ncat/operad-composition}$$ \caption{Operad composition and associativity}\label{fig:operad-composition}\end{figure} @@ -588,7 +588,7 @@ a & \mapsto & s_{Y,J}(a \cup ((a|_Y)\times J)) . \end{eqnarray*} (See Figure \ref{glue-collar}.) -\begin{figure}[!ht] +\begin{figure}[t] \begin{equation*} \begin{tikzpicture} \def\rad{1} @@ -837,7 +837,7 @@ \end{example} -\begin{example}[The bordism $n$-category of $d$-manifolds, ordinary version] +\begin{example}[te bordism $n$-category of $d$-manifolds, ordinary version] \label{ex:bord-cat} \rm \label{ex:bordism-category} @@ -912,7 +912,7 @@ linear combinations of connected components of $T$, and the local relations are trivial. There's no way for the blob complex to magically recover all the data of $\pi^\infty_{\leq 0}(T) \iso C_* T$. -\begin{example}[The bordism $n$-category of $d$-manifolds, $A_\infty$ version] +\begin{example}[te bordism $n$-category of $d$-manifolds, $A_\infty$ version] \rm \label{ex:bordism-category-ainf} As in Example \ref{ex:bord-cat}, for $X$ a $k$-ball, $k