# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1225256534 0 # Node ID c3552b26c3b9b9421d00d52f8522e2a36118a48b # Parent 195a0a91e062bc2d868c888aa45c4a96f1790abb ... diff -r 195a0a91e062 -r c3552b26c3b9 blob1.tex --- a/blob1.tex Tue Oct 28 01:19:24 2008 +0000 +++ b/blob1.tex Wed Oct 29 05:02:14 2008 +0000 @@ -1438,7 +1438,7 @@ Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$. \begin{prop} \label{sympowerprop} -$\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$. +$\bc_*(M, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$. \end{prop} \begin{proof} @@ -1552,7 +1552,7 @@ A proof similar to that of \ref{sympowerprop} shows that \begin{prop} -$\bc_*(M^n, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$. +$\bc_*(M, k[t_1, \ldots, t_m])$ is homotopy equivalent to $C_*(\Sigma_m^\infty(M), k)$. \end{prop} According to \nn{Loday, 3.2.2}, @@ -1569,9 +1569,20 @@ \nn{say something about cyclic homology in this case? probably not necessary.} +\medskip +Next we consider the case $C = k[t]/t^l$ --- polynomials in $t$ with $t^l = 0$. +Define $\Delta_l \sub \Sigma^\infty(M)$ to be those configurations of points with $l$ or +more points coinciding. +\begin{prop} +$\bc_*(M, k[t]/t^l)$ is homotopy equivalent to $C_*(\Sigma^\infty(M), \Delta_l, k)$ +(relative singular chains with coefficients in $k$). +\end{prop} +\begin{proof} +\nn{...} +\end{proof} \nn{...}