# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1257111623 0 # Node ID cfab8c2189a7b25da486c6d616780a1e33d9fea7 # Parent 75f5c197a0d4908825f25f880446c74146c9bdf0 ... diff -r 75f5c197a0d4 -r cfab8c2189a7 text/deligne.tex --- a/text/deligne.tex Sun Nov 01 20:29:41 2009 +0000 +++ b/text/deligne.tex Sun Nov 01 21:40:23 2009 +0000 @@ -55,38 +55,41 @@ involved were 1-dimensional. Thus we can define a $n$-dimensional fat graph to sequence of general surgeries on an $n$-manifold. -More specifically, \nn{...} +More specifically, +the $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries +$R_i \cup M_i \leadsto R_i \cup N_i$ together with mapping cylinders of diffeomorphisms +$f_i: R_i\cup N_i \to R_{i+1}\cup M_{i+1}$. +(See Figure \ref{delfig2}.) +\begin{figure}[!ht] +$$\mathfig{.9}{tempkw/delfig2}$$ +\caption{A fat graph}\label{delfig2}\end{figure} +The components of the $n$-dimensional fat graph operad are indexed by tuples +$(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$. +Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to +the $n$-ball is equivalent to the little $n{+}1$-disks operad. + + +If $M$ and $N$ are $n$-manifolds sharing the same boundary, we define +the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be +$A_\infty$ maps from $\bc_*(M)$ to $\bc_*(N)$, where we think of both +collections of complexes as modules over the $A_\infty$ category associated to $\bd A = \bd B$. +The ``holes" in the above +$n$-dimensional fat graph operad are labeled by $\bc^*(A_i, B_i)$. +\nn{need to make up my mind which notation I'm using for the module maps} + +Putting this together we get a collection of maps +\begin{eqnarray*} + C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_0), \bc_*(N_0))\otimes\cdots\otimes +\mapinf(\bc_*(M_{k-1}), \bc_*(N_{k-1})) & \\ + & \hspace{-11em}\to \mapinf(\bc_*(M_k), \bc_*(N_k)) +\end{eqnarray*} +which satisfy an operad type compatibility condition. + +Note that if $k=0$ then this is just the action of chains of diffeomorphisms from Section \ref{sec:evaluation}. +And indeed, the proof is very similar \nn{...} + \medskip \hrule\medskip - -Figure \ref{delfig2} -\begin{figure}[!ht] -$$\mathfig{.9}{tempkw/delfig2}$$ -\caption{A fat graph}\label{delfig2}\end{figure} - - -\begin{eqnarray*} - C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_0), \bc_*(N_0))\otimes\cdots\otimes -\mapinf(\bc_*(M_{k-1}), \bc_*(N_{k-1})) & \\ - & \hspace{-5em}\to \mapinf(\bc_*(M_k), \bc_*(N_k)) -\end{eqnarray*} - -\medskip -\hrule\medskip - -The $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries -of $n$-manifolds -$R_i \cup A_i \leadsto R_i \cup B_i$ together with mapping cylinders of diffeomorphisms -$f_i: R_i\cup B_i \to R_{i+1}\cup A_{i+1}$. -(Note that the suboperad where $A_i$, $B_i$ and $R_i\cup A_i$ are all diffeomorphic to -the $n$-ball is equivalent to the little $n{+}1$-disks operad.) - -If $A$ and $B$ are $n$-manifolds sharing the same boundary, we define -the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be -$A_\infty$ maps from $\bc_*(A)$ to $\bc_*(B)$, where we think of both -collections of complexes as modules over the $A_\infty$ category associated to $\bd A = \bd B$. -The ``holes" in the above -$n$-dimensional fat graph operad are labeled by $\bc^*(A_i, B_i)$.