# HG changeset patch # User Scott Morrison # Date 1275583638 25200 # Node ID bc22926d4fb0d8ef0be877693e54a13c7e95c955 # Parent 6ef67f13b69c01da0c4bedb8c3ac9099d0992c27# Parent d163ad9543a5e7970d1f0a6df8958606d6c85fd3 Automated merge with https://tqft.net/hg/blob/ diff -r d163ad9543a5 -r bc22926d4fb0 blob1.tex --- a/blob1.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/blob1.tex Thu Jun 03 09:47:18 2010 -0700 @@ -68,8 +68,6 @@ \input{text/a_inf_blob} -\input{text/comm_alg} - \input{text/deligne} \appendix @@ -80,6 +78,8 @@ \input{text/appendixes/comparing_defs} +\input{text/comm_alg} + % ---------------------------------------------------------------- %\newcommand{\urlprefix}{} \bibliographystyle{plain} @@ -94,4 +94,3 @@ \end{document} % ---------------------------------------------------------------- - diff -r d163ad9543a5 -r bc22926d4fb0 preamble.tex --- a/preamble.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/preamble.tex Thu Jun 03 09:47:18 2010 -0700 @@ -190,6 +190,8 @@ \newcommand{\CD}[1]{C_*(\Diff(#1))} \newcommand{\CH}[1]{C_*(\Homeo(#1))} +\newcommand{\cl}[1]{\underrightarrow{#1}} + \newcommand{\directSumStack}[2]{{\begin{matrix}#1 \\ \DirectSum \\#2\end{matrix}}} \newcommand{\directSumStackThree}[3]{{\begin{matrix}#1 \\ \DirectSum \\#2 \\ \DirectSum \\#3\end{matrix}}} diff -r d163ad9543a5 -r bc22926d4fb0 text/a_inf_blob.tex --- a/text/a_inf_blob.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/text/a_inf_blob.tex Thu Jun 03 09:47:18 2010 -0700 @@ -217,7 +217,7 @@ This concludes the proof of Theorem \ref{product_thm}. \end{proof} -\nn{need to say something about dim $< n$ above} +\nn{need to prove a version where $E$ above has dimension $m 0$ and choose an open cover $\cU$ of $M$ fine enough so that the union -of any $k$ open sets of $\cU$ is contained in a disjoint union of balls in $M$. -\nn{maybe should refer to elsewhere in this paper where we made a very similar argument} -Let $S_*$ be the subcomplex of $C_*(\Maps(M\to T))$ generated by chains adapted to $\cU$. -It follows from Lemma \ref{extension_lemma_b} that $C_*(\Maps(M\to T))$ -retracts onto $S_*$. - -Let $S_{\le k}$ denote the chains of $S_*$ of degree less than or equal to $k$. -We claim that $S_{\le k}$ lies in the image of $g$. -Let $c$ be a generator of $S_{\le k}$ --- that is, a $j$-parameter family of maps $M\to T$, -$j \le k$. -We chose $\cU$ fine enough so that the support of $c$ is contained in a disjoint union of balls -in $M$. -It follow that we can choose a decomposition $K$ of $M$ so that the support of $c$ is -disjoint from the $n{-}1$-skeleton of $K$. -It is now easy to see that $c$ is in the image of $g$. - -Next we show that $g$ is injective on homology. -} - - - \nn{...} - - \end{proof} \nn{maybe should also mention version where we enrich over -spaces rather than chain complexes; should comment on Lurie's \cite{0911.0018} (and others') similar result -for the $E_\infty$ case, and mention that our version does not require -any connectivity assumptions} +spaces rather than chain complexes;} \medskip \hrule @@ -407,7 +408,7 @@ \nn{to be continued...} \medskip -\nn{still to do: fiber bundles, general maps} +\nn{still to do: general maps} \todo{} Various citations we might want to make: @@ -418,21 +419,4 @@ \item \cite{MR1256989} definition of framed little-discs operad \end{itemize} -We now turn to establishing the gluing formula for blob homology, restated from Property \ref{property:gluing} in the Introduction -\begin{itemize} -%\mbox{}% <-- gets the indenting right -\item For any $(n-1)$-manifold $Y$, the blob homology of $Y \times I$ is -naturally an $A_\infty$ category. % We'll write $\bc_*(Y)$ for $\bc_*(Y \times I)$ below. -\item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, the blob homology of $X$ is naturally an -$A_\infty$ module for $\bc_*(Y \times I)$. - -\item For any $n$-manifold $X$, with $Y \cup Y^{\text{op}}$ a codimension -$0$-submanifold of its boundary, the blob homology of $X'$, obtained from -$X$ by gluing along $Y$, is the $A_\infty$ self-tensor product of -$\bc_*(X)$ as an $\bc_*(Y \times I)$-bimodule. -\begin{equation*} -\bc_*(X') \iso \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y \times I)}} \!\!\!\!\!\!\xymatrix{ \ar@(ru,rd)@<-1ex>[]} -\end{equation*} -\end{itemize} - diff -r d163ad9543a5 -r bc22926d4fb0 text/appendixes/famodiff.tex --- a/text/appendixes/famodiff.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/text/appendixes/famodiff.tex Thu Jun 03 09:47:18 2010 -0700 @@ -207,7 +207,7 @@ Since PL homeomorphisms are bi-Lipschitz, we have established this last remaining case of claim 4 of the lemma as well. \end{proof} -\begin{lemma} +\begin{lemma} \label{extension_lemma_c} Let $\cX_*$ be any of $C_*(\Maps(X \to T))$ or singular chains on the subspace of $\Maps(X\to T)$ consisting of immersions, diffeomorphisms, bi-Lipschitz homeomorphisms or PL homeomorphisms. Let $G_* \subset \cX_*$ denote the chains adapted to an open cover $\cU$ of $X$. diff -r d163ad9543a5 -r bc22926d4fb0 text/comm_alg.tex --- a/text/comm_alg.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/text/comm_alg.tex Thu Jun 03 09:47:18 2010 -0700 @@ -3,8 +3,7 @@ \section{Commutative algebras as $n$-categories} \label{sec:comm_alg} -\nn{this should probably not be a section by itself. i'm just trying to write down the outline -while it's still fresh in my mind.} +\nn{should consider leaving this out; for now, make it an appendix.} \nn{also, this section needs a little updating to be compatible with the rest of the paper.} diff -r d163ad9543a5 -r bc22926d4fb0 text/ncat.tex --- a/text/ncat.tex Wed Jun 02 17:45:13 2010 -0700 +++ b/text/ncat.tex Thu Jun 03 09:47:18 2010 -0700 @@ -1044,7 +1044,7 @@ Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k