# HG changeset patch # User Kevin Walker # Date 1272344081 25200 # Node ID d6466180cd663a6113ed91de2d5c122b6e99a031 # Parent 195b767cafdba1af07aef07c3d51e434a017b9c0 hochschild diff -r 195b767cafdb -r d6466180cd66 text/hochschild.tex --- a/text/hochschild.tex Mon Apr 26 10:43:42 2010 -0700 +++ b/text/hochschild.tex Mon Apr 26 21:54:41 2010 -0700 @@ -310,8 +310,34 @@ \end{align*} where this time we use the fact that we're mapping to $\coinv{M}$, not just $M$. -The map $\pi \compose \ev: H_0(K_*(M)) \to \coinv{M}$ is clearly surjective ($\ev$ surjects onto $M$); we now show that it's injective. \todo{} +The map $\pi \compose \ev: H_0(K_*(M)) \to \coinv{M}$ is clearly surjective ($\ev$ surjects onto $M$); we now show that it's injective. +This is equivalent to showing that +\[ + \ev\inv(\ker(\pi)) \sub \bd K_1(M) . +\] +The above inclusion follows from +\[ + \ker(\ev) \sub \bd K_1(M) +\] +and +\[ + \ker(\pi) \sub \ev(\bd K_1(M)) . +\] +Let $x = \sum x_i$ be in the kernel of $\ev$, where each $x_i$ is a configuration of +labeled points in $S^1$. +Since the sum is finite, we can find an interval (blob) $B$ in $S^1$ +such that for each $i$ the $C$-labeled points of $x_i$ all lie to the right of the +base point *. +Let $y_i$ be the restriction of $x_i$ to $B$ and $y = \sum y_i$. +Let $r$ be the ``empty" field on $S^1 \setmin B$. +It follows that $y \in U(B)$ and +\[ + \bd(B, y, r) = x . +\] +$\ker(\pi)$ is generated by elements of the form $cm - mc$. +As shown in Figure \ref{fig:hochschild-1-chains}, $cm - mc$ lies in $\ev(\bd K_1(M))$. \end{proof} + \begin{proof}[Proof of Lemma \ref{lem:hochschild-free}] We show that $K_*(C\otimes C)$ is quasi-isomorphic to the 0-step complex $C$. We'll do this in steps, establishing quasi-isomorphisms and homotopy equivalences @@ -334,7 +360,7 @@ given by replacing the restriction $y$ to $N_\ep$ of each field appearing in an element of $K_*^\ep$ with $s_\ep(y)$. Note that $\sigma_\ep(x) \in K'_*$. -\begin{figure}[!ht] +\begin{figure}[t] \begin{align*} y & = \mathfig{0.2}{hochschild/y} & s_\ep(y) & = \mathfig{0.2}{hochschild/sy} @@ -413,7 +439,8 @@ Let $x \in K'_k$. If $*$ is not contained in any of the blobs of $x$, then define $h_k(x) = 0$. Otherwise, let $B$ be the outermost blob of $x$ containing $*$. -By xxxx above, $x = x' \bullet p$, where $x'$ is supported on $B$ and $p$ is supported away from $B$. +We can decompose $x = x' \bullet p$, +where $x'$ is supported on $B$ and $p$ is supported away from $B$. So $x' \in G'_l$ for some $l \le k$. Choose $x'' \in G''_l$ such that $\bd x'' = \bd (x' - h_{l-1}\bd x')$. Choose $y \in G'_{l+1}$ such that $\bd y = x' - x'' - h_{l-1}\bd x'$. @@ -456,7 +483,7 @@ In degree 1, we send $m\ot a$ to the sum of two 1-blob diagrams as shown in Figure \ref{fig:hochschild-1-chains}. -\begin{figure}[!ht] +\begin{figure}[t] \begin{equation*} \mathfig{0.4}{hochschild/1-chains} \end{equation*} @@ -467,7 +494,7 @@ \label{fig:hochschild-1-chains} \end{figure} -\begin{figure}[!ht] +\begin{figure}[t] \begin{equation*} \mathfig{0.6}{hochschild/2-chains-0} \end{equation*} @@ -478,7 +505,7 @@ \label{fig:hochschild-2-chains} \end{figure} -\begin{figure}[!ht] +\begin{figure}[t] \begin{equation*} A = \mathfig{0.1}{hochschild/v_1} + \mathfig{0.1}{hochschild/v_2} + \mathfig{0.1}{hochschild/v_3} + \mathfig{0.1}{hochschild/v_4} \end{equation*}