# HG changeset patch # User kevin@6e1638ff-ae45-0410-89bd-df963105f760 # Date 1256691275 0 # Node ID e0b304e6b9753d83ff86544f8f084e4adc895945 # Parent 57291331fd82f7e9315ae33e9504ad6f4413f987 ... diff -r 57291331fd82 -r e0b304e6b975 diagrams/pdf/tempkw/blob1diagram.pdf Binary file diagrams/pdf/tempkw/blob1diagram.pdf has changed diff -r 57291331fd82 -r e0b304e6b975 diagrams/pdf/tempkw/blob2ddiagram.pdf Binary file diagrams/pdf/tempkw/blob2ddiagram.pdf has changed diff -r 57291331fd82 -r e0b304e6b975 diagrams/pdf/tempkw/blob2ndiagram.pdf Binary file diagrams/pdf/tempkw/blob2ndiagram.pdf has changed diff -r 57291331fd82 -r e0b304e6b975 diagrams/pdf/tempkw/blobkdiagram.pdf Binary file diagrams/pdf/tempkw/blobkdiagram.pdf has changed diff -r 57291331fd82 -r e0b304e6b975 text/definitions.tex --- a/text/definitions.tex Tue Oct 27 22:27:07 2009 +0000 +++ b/text/definitions.tex Wed Oct 28 00:54:35 2009 +0000 @@ -6,6 +6,11 @@ In this section we review the construction of TQFTs from ``topological fields". For more details see xxxx. +We only consider compact manifolds, so if $Y \sub X$ is a closed codimension 0 +submanifold of $X$, then $X \setmin Y$ implicitly means the closure +$\overline{X \setmin Y}$. + + \subsection{Systems of fields} \label{sec:fields} @@ -346,13 +351,18 @@ In this section we will usually suppress boundary conditions on $X$ from the notation (e.g. write $\lf(X)$ instead of $\lf(X; c)$). -We only consider compact manifolds, so if $Y \sub X$ is a closed codimension 0 -submanifold of $X$, then $X \setmin Y$ implicitly means the closure -$\overline{X \setmin Y}$. +We want to replace the quotient +\[ + A(X) \deq \lf(X) / U(X) +\] +of the previous section with a resolution +\[ + \cdots \to \bc_2(X) \to \bc_1(X) \to \bc_0(X) . +\] We will define $\bc_0(X)$, $\bc_1(X)$ and $\bc_2(X)$, then give the general case $\bc_k(X)$. -Define $\bc_0(X) = \lf(X)$. +We of course define $\bc_0(X) = \lf(X)$. (If $X$ has nonempty boundary, instead define $\bc_0(X; c) = \lf(X; c)$. We'll omit this sort of detail in the rest of this section.) In other words, $\bc_0(X)$ is just the space of all linearized fields on $X$. @@ -367,6 +377,10 @@ \item A local relation field $u \in U(B; c)$ (same $c$ as previous bullet). \end{itemize} +(See Figure \ref{blob1diagram}.) +\begin{figure}[!ht]\begin{equation*} +\mathfig{.9}{tempkw/blob1diagram} +\end{equation*}\caption{A 1-blob diagram.}\label{blob1diagram}\end{figure} In order to get the linear structure correct, we (officially) define \[ \bc_1(X) \deq \bigoplus_B \bigoplus_c U(B; c) \otimes \lf(X \setmin B; c) . @@ -400,6 +414,10 @@ (where $c_i \in \cC(\bd B_i)$). \item Local relation fields $u_i \in U(B_i; c_i)$, $i=1,2$. \end{itemize} +(See Figure \ref{blob2ddiagram}.) +\begin{figure}[!ht]\begin{equation*} +\mathfig{.9}{tempkw/blob2ddiagram} +\end{equation*}\caption{A disjoint 2-blob diagram.}\label{blob2ddiagram}\end{figure} We also identify $(B_0, B_1, u_0, u_1, r)$ with $-(B_1, B_0, u_1, u_0, r)$; reversing the order of the blobs changes the sign. Define $\bd(B_0, B_1, u_0, u_1, r) = @@ -416,6 +434,10 @@ (for some $c_0 \in \cC(\bd B_0)$), which is splittable along $\bd B_1$. \item A local relation field $u_0 \in U(B_0; c_0)$. \end{itemize} +(See Figure \ref{blob2ndiagram}.) +\begin{figure}[!ht]\begin{equation*} +\mathfig{.9}{tempkw/blob2ndiagram} +\end{equation*}\caption{A nested 2-blob diagram.}\label{blob2ndiagram}\end{figure} Let $r = r_1 \bullet r'$, where $r_1 \in \cC(B_1 \setmin B_0; c_0, c_1)$ (for some $c_1 \in \cC(B_1)$) and $r' \in \cC(X \setmin B_1; c_1)$. @@ -427,8 +449,6 @@ If we erase the inner blob, the outer blob inherits the label $u_0\bullet r_1$. It is again easy to check that $\bd^2 = 0$. -\nn{should draw figures for 1, 2 and $k$-blob diagrams} - As with the 1-blob diagrams, in order to get the linear structure correct it is better to define (officially) \begin{eqnarray*} @@ -469,6 +489,10 @@ where $c_j$ is the restriction of $c^t$ to $\bd B_j$. If $B_i = B_j$ then $u_i = u_j$. \end{itemize} +(See Figure \ref{blobkdiagram}.) +\begin{figure}[!ht]\begin{equation*} +\mathfig{.9}{tempkw/blobkdiagram} +\end{equation*}\caption{A $k$-blob diagram.}\label{blobkdiagram}\end{figure} If two blob diagrams $D_1$ and $D_2$ differ only by a reordering of the blobs, then we identify diff -r 57291331fd82 -r e0b304e6b975 text/hochschild.tex --- a/text/hochschild.tex Tue Oct 27 22:27:07 2009 +0000 +++ b/text/hochschild.tex Wed Oct 28 00:54:35 2009 +0000 @@ -7,6 +7,8 @@ and find that for $S^1$ the blob complex is homotopy equivalent to the Hochschild complex of the category (algebroid) that we started with. +\nn{initial idea for blob complex came from thinking about...} + \nn{need to be consistent about quasi-isomorphic versus homotopy equivalent in this section. since the various complexes are free, q.i. implies h.e.}