# HG changeset patch # User Kevin Walker # Date 1274295016 21600 # Node ID ec9458975d925112c74b5dedba9e5ddaa223df5d # Parent a7a23eeb5d650fd5aacfa4f37abe6b93b1b1b63a more famodiff.tex diff -r a7a23eeb5d65 -r ec9458975d92 text/appendixes/famodiff.tex --- a/text/appendixes/famodiff.tex Tue May 18 22:49:17 2010 -0600 +++ b/text/appendixes/famodiff.tex Wed May 19 12:50:16 2010 -0600 @@ -77,38 +77,38 @@ We will typically use the same notation for $i$-cells of $L$ and the corresponding $i$-handles of $\jj$. -For each (top-dimensional) $k$-cell $C$ of each $K_\alpha$, choose a point $p_c \in C \sub P$. +For each (top-dimensional) $k$-cell $C$ of each $K_\alpha$, choose a point $p(C) \in C \sub P$. Let $D$ be a $k$-handle of $\jj$. -To $D$ we associate the tuple $(c_\alpha)$ of $k$-cells of the $K_\alpha$'s -which contain $D$, and also the corresponding tuple $(p_{c_\alpha})$ of points in $P$. +For each $\alpha$ let $C(D, \alpha)$ be the $k$-cell of $K_\alpha$ which contains $D$ +and let $p(D, \alpha) = p(C(D, \alpha))$. For $p \in D$ we define \eq{ - u(t, p, x) = (1-t)p + t \sum_\alpha r_\alpha(x) p_{c_\alpha} . + u(t, p, x) = (1-t)p + t \sum_\alpha r_\alpha(x) p(D, \alpha) . } (Recall that $P$ is a convex linear polyhedron, so the weighted average of points of $P$ makes sense.) -So far we have defined $u(t, p, x)$ when $p$ lies in a $k$-handle of $\jj$. -For handles of $\jj$ of index less than $k$, we will define $u$ to -interpolate between the values on $k$-handles defined above. +Thus far we have defined $u(t, p, x)$ when $p$ lies in a $k$-handle of $\jj$. +We will now extend $u$ inductively to handles of index less than $k$. + +Let $E$ be a $k{-}1$-handle. +$E$ is homeomorphic to $B^{k-1}\times [0,1]$, and meets +the $k$-handles at $B^{k-1}\times\{0\}$ and $B^{k-1}\times\{1\}$. +Let $\eta : E \to [0,1]$, $\eta(x, s) = s$ be the normal coordinate +of $E$. +Let $D_0$ and $D_1$ be the two $k$-handles of $\jj$ adjacent to $E$. +There is at most one index $\beta$ such that $C(D_0, \beta) \ne C(D_1, \beta)$. +(If there is no such index $\beta$, choose $\beta$ +arbitrarily.) +For $p \in E$, define +\eq{ + u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p(D_0, \alpha) + + r_\beta(x) (\eta(p) p(D_0, p) + (1-\eta(p)) p(D_1, p)) \right) . +} \nn{*** resume revising here ***} -If $p$ lies in a $k{-}1$-handle $E$, let $\eta : E \to [0,1]$ be the normal coordinate -of $E$. -In particular, $\eta$ is equal to 0 or 1 only at the intersection of $E$ -with a $k$-handle. -Let $\beta$ be the index of the $K_\beta$ containing the $k{-}1$-cell -corresponding to $E$. -Let $q_0, q_1 \in P$ be the points associated to the two $k$-cells of $K_\beta$ -adjacent to the $k{-}1$-cell corresponding to $E$. -For $p \in E$, define -\eq{ - u(t, p, x) = (1-t)p + t \left( \sum_{\alpha \ne \beta} r_\alpha(x) p_{c_\alpha} - + r_\beta(x) (\eta(p) q_1 + (1-\eta(p)) q_0) \right) . -} - In general, for $E$ a $k{-}j$-handle, there is a normal coordinate $\eta: E \to R$, where $R$ is some $j$-dimensional polyhedron. The vertices of $R$ are associated to $k$-cells of the $K_\alpha$, and thence to points of $P$.