# HG changeset patch # User Scott Morrison # Date 1275016452 25200 # Node ID a798a1e00cb306dac7785816c76a2b33486c0303 # Parent 0b3e76167461790c5eb3c89b56ce081332ce9df8# Parent ff867bfc8e9c4c91237b6e37c1e8b9dca368c6bd Automated merge with https://tqft.net/hg/blob/ diff -r ff867bfc8e9c -r a798a1e00cb3 text/appendixes/famodiff.tex --- a/text/appendixes/famodiff.tex Thu May 27 20:09:47 2010 -0700 +++ b/text/appendixes/famodiff.tex Thu May 27 20:14:12 2010 -0700 @@ -9,7 +9,7 @@ (That is, $r_\alpha : X \to [0,1]$; $r_\alpha(x) = 0$ if $x\notin U_\alpha$; for fixed $x$, $r_\alpha(x) \ne 0$ for only finitely many $\alpha$; and $\sum_\alpha r_\alpha = 1$.) Since $X$ is compact, we will further assume that $r_\alpha = 0$ (globally) -for all but finitely many $\alpha$. \nn{Can't we just assume $\cU$ is finite? Is something subtler happening? -S} +for all but finitely many $\alpha$. Consider $C_*(\Maps(X\to T))$, the singular chains on the space of continuous maps from $X$ to $T$. $C_k(\Maps(X \to T))$ is generated by continuous maps @@ -214,7 +214,7 @@ Then $G_*$ is a strong deformation retract of $\cX_*$. \end{lemma} \begin{proof} -If suffices to show that given a generator $f:P\times X\to T$ of $\cX_k$ with +It suffices to show that given a generator $f:P\times X\to T$ of $\cX_k$ with $\bd f \in G_{k-1}$ there exists $h\in \cX_{k+1}$ with $\bd h = f + g$ and $g \in G_k$. This is exactly what Lemma \ref{basic_adaptation_lemma} gives us. diff -r ff867bfc8e9c -r a798a1e00cb3 text/deligne.tex --- a/text/deligne.tex Thu May 27 20:09:47 2010 -0700 +++ b/text/deligne.tex Thu May 27 20:14:12 2010 -0700 @@ -11,7 +11,7 @@ We will state this more precisely below as Proposition \ref{prop:deligne}, and just sketch a proof. First, we recall the usual Deligne conjecture, explain how to think of it as a statement about blob complexes, and begin to generalize it. -\def\mapinf{\Maps_\infty} +%\def\mapinf{\Maps_\infty} The usual Deligne conjecture \nn{need refs} gives a map \[ @@ -25,11 +25,11 @@ of the blob complex of the interval. \nn{need to make sure we prove this above}. So the 1-dimensional Deligne conjecture can be restated as -\begin{eqnarray*} - C_*(FG_k)\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots - \otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\ - & \hspace{-5em} \to \mapinf(\bc^C_*(I), \bc^C_*(I)) . -\end{eqnarray*} +\[ + C_*(FG_k)\otimes \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots + \otimes \hom(\bc^C_*(I), \bc^C_*(I)) + \to \hom(\bc^C_*(I), \bc^C_*(I)) . +\] See Figure \ref{delfig1}. \begin{figure}[!ht] $$\mathfig{.9}{deligne/intervals}$$ @@ -39,12 +39,12 @@ of Figure \ref{delfig1} and ending at the topmost interval. The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph. We remove the bottom interval of the bigon and replace it with the top interval. -To map this topological operation to an algebraic one, we need, for each hole, element of -$\mapinf(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$. +To map this topological operation to an algebraic one, we need, for each hole, an element of +$\hom(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$. So for each fixed fat graph we have a map \[ - \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots - \otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) \to \mapinf(\bc^C_*(I), \bc^C_*(I)) . + \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots + \otimes \hom(\bc^C_*(I), \bc^C_*(I)) \to \hom(\bc^C_*(I), \bc^C_*(I)) . \] If we deform the fat graph, corresponding to a 1-chain in $C_*(FG_k)$, we get a homotopy between the maps associated to the endpoints of the 1-chain. @@ -65,8 +65,10 @@ \caption{A fat graph}\label{delfig2}\end{figure} The components of the $n$-dimensional fat graph operad are indexed by tuples $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$. -Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to +\nn{not quite true: this is coarser than components} +Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all homeomorphic to the $n$-ball is equivalent to the little $n{+}1$-disks operad. +\nn{what about rotating in the horizontal directions?} If $M$ and $N$ are $n$-manifolds sharing the same boundary, we define @@ -82,9 +84,9 @@ \label{prop:deligne} There is a collection of maps \begin{eqnarray*} - C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes -\mapinf(\bc_*(M_{k}), \bc_*(N_{k})) & \\ - & \hspace{-11em}\to \mapinf(\bc_*(M_0), \bc_*(N_0)) + C_*(FG^n_{\overline{M}, \overline{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes +\hom(\bc_*(M_{k}), \bc_*(N_{k})) & \\ + & \hspace{-11em}\to \hom(\bc_*(M_0), \bc_*(N_0)) \end{eqnarray*} which satisfy an operad type compatibility condition. \nn{spell this out} \end{prop} diff -r ff867bfc8e9c -r a798a1e00cb3 text/intro.tex --- a/text/intro.tex Thu May 27 20:09:47 2010 -0700 +++ b/text/intro.tex Thu May 27 20:14:12 2010 -0700 @@ -257,6 +257,7 @@ \end{property} Finally, we state two more properties, which we will not prove in this paper. +\nn{revise this; expect that we will prove these in the paper} \begin{property}[Mapping spaces] Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps