The Cappell-Shaneson spheres and the s-invariant

Scott Morrison
scott@tqft.net

joint work with Michael Freedman, Robert Gompf and Kevin Walker

Microsoft Station Q / UC Santa Barbara

Knots in Washington, January 92009
http://tqft.net/counterexample-kiw

Outline

(1) The smooth 4-dimensional Poincaré conjecture
(2) Cappell-Shaneson spheres are potential counterexamples

- Construction
- Known results
- Localisation
(3) Khovanov homology may provide obstructions
- What is Khovanov homology?
- The s-invariant gives genus bounds
(4) Some calculations!
- Band moves, and smaller knots
- Improving JavaKh
- Results so far

The smooth 4-dimensional Poincaré conjecture

The smooth 4-dimensional Poincaré conjecture is the 'last man standing' in classical geometric topology. It says

Conjecture (SPC4)

A smooth 4-manifold Σ homeomorphic to the 4-sphere, $\Sigma \cong S^{4}$, is actually diffeomorphic to it, $\Sigma=S^{4}$.

There's some 'evidence' either way, but I think by now most people think that it's false:

Conjecture (~SPC4)

Somewhere out there, perhaps not far away, there's is a 4-manifold homeomorphic but not diffeomorphic to the 4-sphere.

Outline

(1) The smooth 4-dimensional Poincaré conjecture
(2) Cappell-Shaneson spheres are potential counterexamples

- Construction
- Known results
- Localisation
(3) Khovanov homology may provide obstructions
- What is Khovanov homology?
- The s-invariant gives genus bounds
(4) Some calculations!
- Band moves, and smaller knots
- Improving JavaKh
- Results so far

The Cappell-Shaneson spheres

- Consider the 3 -torus bundle over S^{1} with monodromy $A \in S L(3, \mathbb{Z})$.
- If $\operatorname{det}(I-A)= \pm 1$, surgery on the "zero section" produces a homotopy 4-sphere, denoted W_{A}.
- Conjugation of A in $G L(3, \mathbb{Z})$ doesn't change W_{A}. In fact there are finitely many conjugacy classes for each possible trace, and only one when $-4 \leq \operatorname{tr} A \leq 9$.
- We'll consider a family realising every trace:

$$
A_{m}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & m+1
\end{array}\right)
$$

Known results

- Kirby-Akbulut conjectured that W_{0} was exotic (1985),
- ... but Gompf later showed it was actually standard!
- Gompf also gave a handle presentation for each W_{n} :

(Unknotted dotted circles indicate 1-handles, knotted circles indicate (framed) attaching curves for 2 -handles.)

Localisation

- Sadly, there are no known 4-manifold invariants which can distinguish the Cappell-Shaneson spheres from the standard sphere. (Gauge theory is not good at homotopy spheres.)
- Notice that Gompf's handle presentation has no 3-handles. The 0-, 1- and 2- handles give a homotopy 4-ball, with S^{3} boundary.
- The meridians of the 2-handles form a two component link in S^{3}, which must be slice in the Cappell-Shaneson ball.

Theorem (Freedman-Gompf-Morrison-Walker)

If the two component link L_{m}

is not slice in B^{4}, the Cappell-Shaneson ball \dot{W}_{m} must be exotic.
(Here, the blue component is not 'real'; it represents a 2π twist.)

Outline

(1) The smooth 4-dimensional Poincaré conjecture
2. Cappell-Shaneson spheres are potential counterexamples

- Construction
- Known results
- Localisation
(3) Khovanov homology may provide obstructions
- What is Khovanov homology?
- The s-invariant gives genus bounds
(4) Some calculations!
- Band moves, and smaller knots
- Improving JavaKh
- Results so far

What is Khovanov homology?

- Khovanov homology is an invariant of links. It is a doubly-graded vector space, $K h^{\bullet \bullet \bullet}(L)$.
- The Khovanov polynomial counts the graded dimensions:

$$
K h(L)(q, t)=\sum_{r, j} q^{j} t^{r} \operatorname{dim} K h^{j, r}(L) \in \mathbb{N}\left[q^{ \pm}, t^{ \pm}\right]
$$

- The 'euler characteristic' of Khovanov homology is the Jones polynomial:

$$
K h(L)(q,-1)=J(L)(q)
$$

The s-invariant gives genus bounds

Other variations of Khovanov homology give more information.

Theorem (Rasmussen)

There is an integer invariant of knots $s(K)$, and

$$
|s(K)| \leq g_{\text {slice }}(K) .
$$

Theorem

There is a family of polynomial invariants $f_{k}(K) \in \mathbb{N}\left[q^{ \pm}, t^{ \pm}\right]$and

$$
K h(K)(q, t)=q^{s(K)}\left(q+q^{-1}\right)+\sum_{k \geq 2}\left(1+q^{2 k} t\right) f_{k}(K)(q, t)
$$

A chain of programs (Green/Bar-Natan/Morrison-Shumakovitch) can compute these invariants directly.

Extracting the s-invariant.

Conjecture

Only f_{2} is nonzero, and the s-invariant is determined by the Khovanov polynomial, via

$$
q^{s(K)}\left(q+q^{-1}\right)=K h(K)\left(q,-q^{-4}\right) .
$$

- Even without this conjecture, often we can extract $s(K)$ directly from the Khovanov polynomial, by analysing possible decompositions into the polynomials f_{k}.
- When this works, it is much faster than calculating the actual decomposition.
- It is now possible to compute $s(K)$ for knots K with 50 or more crossings; previously 10-15 was the limit.

Outline

(1) The smooth 4-dimensional Poincaré conjecture
2. Cappell-Shaneson spheres are potential counterexamples

- Construction
- Known results
- Localisation
(3) Khovanov homology may provide obstructions
- What is Khovanov homology?
- The s-invariant gives genus bounds
(4) Some calculations!
- Band moves, and smaller knots
- Improving JavaKh
- Results so far

L_{1} is huge

Unfortunately the two component link L_{m} is huge; even L_{1} has ~ 222 crossings; even worse, its girth is ~ 24.

Band moves

- Let's take a risk, and look for band connect sums that become simpler. If the resulting knot is not slice, the original link can't be either.
- We'll consider the following three bands on L_{1}, and call the resulting knots K_{a}, K_{b} and K_{c} :

Corollary

If any of $s\left(K_{a}\right), s\left(K_{b}\right)$ or $s\left(K_{c}\right)$ is non-zero, then the smooth 4-dimensional Poincaré conjecture is false.

Are these s-invariants computable? In principle "yes":

- We have a combinatorial implementation of the decomposition of Khovanov homology, which gives the s-invariant directly.
- We have a much faster program that just calculates $K h\left(K_{\bullet}\right)(q, t)$, and it may be possible to extract the s-invariant from this.

The smooth 4-dimensional Poincaré conjecture

Simplifying K_{b}, I

The smooth 4-dimensional Poincaré conjecture

Simplifying K_{b}, II

The smooth 4-dimensional Poincaré conjecture

Simplifying K_{b}, III

The smooth 4-dimensional Poincaré conjecture

Band moves, and smaller knots Improving Javakh
Results so far

Simplifying K_{b}, IV

The smooth 4-dimensional Poincaré conjecture

Band moves, and smaller knots Improving Javakh
Results so far

Simplifying K_{b}, V

The knots K_{a}, K_{b} and K_{c}

- A little work by hand shows K_{a} is ribbon, and hence slice.
- The Alexander polynomials are all 1 ; by a theorem of Freedman this means they're all topologically slice.
- But how big are they?

	apparent crossings	apparent girth
K_{a}	67	14
K_{b}	78	14
K_{c}	86	16

- This is still scarily large, but perhaps plausible! The biggest computation of the Khovanov polynomial so far is in Bar-Natan's "I've computed $K h(T(8,7))$ and I'm happy"; that has girth 14 but only 48 crossings. Computations seem to scale at least exponentially in the number of crossings, and really badly in the girth.

Improving JavaKh

We started with Jeremy Green's program JavaKh, and made many improvements:
New interface Progress reports, saving to disk.
Memory optimisations Caching, 'bit flipping', paging to disk.
Minimising girth Better algorithms to find small girth presentations.
A better algorithm Cancelling blocks of isomorphisms, not just one at a time.

At the end, we had something that can compute $K h\left(K_{b}\right)$; it takes almost a week on a fast machine with 32 gb of RAM!

The smooth 4-dimensional Poincaré conjecture
Cappell-Shaneson spheres are potential counterexamples
Khovanov homology may provide obstructions
Some calculations!

Results for $K h\left(K_{b}\right)$

$K h\left(K_{b}\right)(q, t)=$

$$
\begin{aligned}
& q^{-45} t^{-32}+q^{-41} t^{-31}+q^{-39} t^{-29}+q^{-35} t^{-28}+q^{-37} t^{-27}+q^{-37} t^{-26}+q^{-33} t^{-26}+ \\
& q^{-35} t^{-25}+q^{-33} t^{-25}+q^{-35} t^{-24}+2 q^{-31} t^{-24}+q^{-33} t^{-23}+2 q^{-31} t^{-23}+q^{-27} t^{-23}+ \\
& q^{-33} t^{-22}+2 q^{-29} t^{-22}+q^{-27} t^{-22}+q^{-31} t^{-21}+3 q^{-29} t^{-21}+q^{-25} t^{-21}+q^{-31} t^{-20}+ \\
& 3 q^{-27} t^{-20}+2 q^{-25} t^{-20}+4 q^{-27} t^{-19}+2 q^{-23} t^{-19}+q^{-27} t^{-18}+2 q^{-25} t^{-18}+4 q^{-23} t^{-18}+ \\
& 4 q^{-25} t^{-17}+q^{-23} t^{-17}+3 q^{-21} t^{-17}+q^{-19} t^{-17}+4 q^{-25} t^{-16}+2 q^{-23} t^{-16}+6 q^{-21} t^{-16}+ \\
& q^{-17} t^{-16}+4 q^{-23} t^{-15}+5 q^{-21} t^{-15}+3 q^{-19} t^{-15}+2 q^{-17} t^{-15}+q^{-23} t^{-14}+q^{-21} t^{-14}+ \\
& 8 q^{-19} t^{-14}+q^{-17} t^{-14}+q^{-15} t^{-14}+3 q^{-21} t^{-13}+6 q^{-19} t^{-13}+3 q^{-17} t^{-13}+4 q^{-15} t^{-13}+ \\
& q^{-21} t^{-12}+2 q^{-19} t^{-12}+9 q^{-17} t^{-12}+5 q^{-15} t^{-12}+2 q^{-13} t^{-12}+7 q^{-17} t^{-11}+4 q^{-15} t^{-11}+ \\
& 7 q^{-13} t^{-11}+3 q^{-17} t^{-10}+7 q^{-15} t^{-10}+7 q^{-13} t^{-10}+2 q^{-11} t^{-10}+q^{-9} t^{-10}+8 q^{-15} t^{-9}+ \\
& 6 q^{-13} t^{-9}+9 q^{-11} t^{-9}+q^{-9} t^{-9}+3 q^{-15} t^{-8}+5 q^{-13} t^{-8}+13 q^{-11} t^{-8}+4 q^{-9} t^{-8}+ \\
& 2 q^{-7} t^{-8}+5 q^{-13} t^{-7}+8 q^{-11} t^{-7}+9 q^{-9} t^{-7}+5 q^{-7} t^{-7}+q^{-5} t^{-7}+5 q^{-11} t^{-6}+13 q^{-9} t^{-6}+ \\
& 6 q^{-7} t^{-6}+4 q^{-5} t^{-6}+q^{-11} t^{-5}+8 q^{-9} t^{-5}+11 q^{-7} t^{-5}+8 q^{-5} t^{-5}+q^{-3} t^{-5}+2 q^{-9} t^{-4}+ \\
& 12 q^{-7} t^{-4}+10 q^{-5} t^{-4}+6 q^{-3} t^{-4}+7 q^{-7} t^{-3}+9 q^{-5} t^{-3}+12 q^{-3} t^{-3}+2 q^{-1} t^{-3}+ \\
& 9 q^{-5} t^{-2}+12 q^{-3} t^{-2}+8 q^{-1} t^{-2}+q^{1} t^{-2}+3 q^{-5} t^{-1}+7 q^{-3} t^{-1}+15 q^{-1} t^{-1}+5 q^{1} t^{-1}+ \\
& q^{3} t^{-1}+3 q^{-3} t^{0}+14 q^{-1} t^{0}+10 q^{1} t^{0}+6 q^{3} t^{0}+q^{-3} t^{1}+5 q^{-1} t^{1}+11 q^{1} t^{1}+10 q^{3} t^{1}+2 q^{5} t^{1}+ \\
& q^{-1} t^{2}+8 q^{1} t^{2}+10 q^{3} t^{2}+8 q^{5} t^{2}+2 q^{1} t^{3}+7 q^{3} t^{3}+10 q^{5} t^{3}+5 q^{7} t^{3}+4 q^{3} t^{4}+7 q^{5} t^{4}+6 q^{7} t^{4}+ \\
& 3 q^{9} t^{4}+q^{3} t^{5}+5 q^{9} t^{5}+2 q^{5} t^{6}+5 q^{7} t^{6}+7 q^{9} t^{6}+4 q^{11} t^{6}+4 q^{5} t^{5}+8 q^{7} t^{5}+q^{7} t^{7}+5 q^{9} t^{7}+ \\
& 4 q^{11} t^{7}+3 q^{13} t^{7}+2 q^{9} t^{8}+4 q^{11} t^{8}+3 q^{13} t^{8}+3 q^{11} t^{9}+4 q^{13} t^{9}+3 q^{15} t^{9}+q^{11} t^{10}+q^{13} t^{10}+ \\
& 3 q^{15} t^{10}+2 q^{17} t^{10}+q^{13} t^{11}+2 q^{15} t^{11}+q^{17} t^{11}+q^{13} t^{12}+2 q^{17} t^{12}+q^{19} t^{12}+2 q^{17} t^{13}+ \\
& q^{21} t^{13}+q^{17} t^{14}+q^{19} t^{14}+q^{21} t^{14}+q^{19} t^{15}+q^{21} t^{15}+q^{23} t^{15}+q^{23} t^{16}+q^{23} t^{17}+q^{27} t^{18}
\end{aligned}
$$

Extracting $s\left(K_{b}\right)$

- There are thousands of possible decompositions of $K h\left(K_{b}\right)$ of the form

$$
K h\left(K_{b}\right)(q, t)=q^{s\left(K_{b}\right)}\left(q+q^{-1}\right)+\sum_{k \geq 2} f_{k}\left(K_{b}\right)(q, t)\left(1+q^{2 k} t\right)
$$

- Every decomposition gives $s=0$, so for this knot we find no obstruction.

What next?

Obviously this is disappointing. On the other hand, we've only turned over the first stone.

- Computations for K_{c} are running right now!
- It looks like L_{-1} might be simpler than L_{1}, but we've only just started searching for nice bands.
- With present technology (algorithm, implementation, hardware), there are probably several more accessible cases. (But only several.)

Conclusions

- Certain 'local' slice problems for links imply that SPC4 is false.
- Khovanov homology may provide obstructions. Even with recent advances, the calculations are hard, so we use bands to turn the links into smaller knots.
- The first s-invariant we could calculate didn't produce an obstruction. Other bands are running as we speak, and we're about to try other Cappell-Shaneson spheres.

