The Cappell-Shaneson spheres and the s-invariant

Scott Morrison scott@tqft.net joint work with Michael Freedman, Robert Gompf and Kevin Walker

Microsoft Station Q / UC Santa Barbara

Knots in Washington, January 9 2009 http://tqft.net/counterexample-kiw

Outline

- The smooth 4-dimensional Poincaré conjecture
- 2 Cappell-Shaneson spheres are potential counterexamples
 - Construction
 - Known results
 - Localisation
- 8 Khovanov homology may provide obstructions
 - What is Khovanov homology?
 - The s-invariant gives genus bounds

4 Some calculations!

- Band moves, and smaller knots
- Improving JavaKh
- Results so far

The smooth 4-dimensional Poincaré conjecture

The smooth 4-dimensional Poincaré conjecture is the 'last man standing' in classical geometric topology. It says

Conjecture (SPC4)

A smooth 4-manifold Σ homeomorphic to the 4-sphere, $\Sigma \cong S^4$, is actually diffeomorphic to it, $\Sigma = S^4$.

There's some 'evidence' either way, but I think by now most people think that it's *false*:

Conjecture (~SPC4)

Somewhere out there, perhaps not far away, there's is a 4-manifold homeomorphic but not diffeomorphic to the 4-sphere.

Construction Known results Localisation

Outline

The smooth 4-dimensional Poincaré conjecture

- 2 Cappell-Shaneson spheres are potential counterexamples
 - Construction
 - Known results
 - Localisation
- 8 Khovanov homology may provide obstructions
 - What is Khovanov homology?
 - The s-invariant gives genus bounds
- 4 Some calculations!
 - Band moves, and smaller knots
 - Improving JavaKh
 - Results so far

Construction Known results Localisation

The Cappell-Shaneson spheres

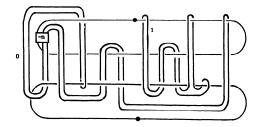
- Consider the 3-torus bundle over S^1 with monodromy $A \in SL(3,\mathbb{Z})$.
- If det(*I* − *A*) = ±1, surgery on the "zero section" produces a homotopy 4-sphere, denoted *W_A*.
- Conjugation of A in GL(3, Z) doesn't change W_A. In fact there are finitely many conjugacy classes for each possible trace, and only one when −4 ≤ trA ≤ 9.
- We'll consider a family realising every trace:

$$A_m = egin{pmatrix} 0 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & m+1 \end{pmatrix}$$

Construction Known results Localisation

Known results

- Kirby-Akbulut conjectured that W_0 was exotic (1985),
- ... but Gompf later showed it was actually standard!
- Gompf also gave a handle presentation for each W_n :



(Unknotted dotted circles indicate 1-handles, knotted circles indicate (framed) attaching curves for 2-handles.)

Construction Known results Localisation

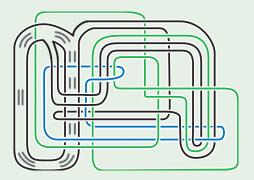
Localisation

- Sadly, there are no known 4-manifold invariants which can distinguish the Cappell-Shaneson spheres from the standard sphere. (Gauge theory is not good at homotopy spheres.)
- Notice that Gompf's handle presentation has no 3-handles. The 0-, 1- and 2- handles give a homotopy 4-ball, with S^3 boundary.
- The meridians of the 2-handles form a two component link in S^3 , which must be slice in the Cappell-Shaneson ball.

Construction Known results Localisation

Theorem (Freedman-Gompf-Morrison-Walker)

If the two component link L_m



is not slice in B^4 , the Cappell-Shaneson ball \dot{W}_m must be exotic.

(Here, the blue component is not 'real'; it represents a 2π twist.)

What is Khovanov homology? The s-invariant gives genus bounds

Outline

- The smooth 4-dimensional Poincaré conjecture
- 2 Cappell-Shaneson spheres are potential counterexamples
 - Construction
 - Known results
 - Localisation
- 8 Khovanov homology may provide obstructions
 - What is Khovanov homology?
 - The s-invariant gives genus bounds
- 4 Some calculations!
 - Band moves, and smaller knots
 - Improving JavaKh
 - Results so far

What is Khovanov homology? The s-invariant gives genus bounds

What is Khovanov homology?

- Khovanov homology is an invariant of links. It is a doubly-graded vector space, Kh^{•,•}(L).
- The Khovanov polynomial counts the graded dimensions:

$$\mathcal{K}h(L)(q,t) = \sum_{r,j} q^j t^r \dim \mathcal{K}h^{j,r}(L) \in \mathbb{N}[q^{\pm},t^{\pm}].$$

• The 'euler characteristic' of Khovanov homology is the Jones polynomial:

$$Kh(L)(q,-1) = J(L)(q).$$

What is Khovanov homology? The s-invariant gives genus bounds

The s-invariant gives genus bounds

Other variations of Khovanov homology give more information.

Theorem (Rasmussen)

There is an integer invariant of knots s(K), and

 $|s(K)| \leq g_{slice}(K).$

Theorem

There is a family of polynomial invariants $f_k(K) \in \mathbb{N}[q^{\pm}, t^{\pm}]$ and

$$\mathcal{K}h(\mathcal{K})(q,t) = q^{s(\mathcal{K})}(q+q^{-1}) + \sum_{k\geq 2} (1+q^{2k}t)f_k(\mathcal{K})(q,t).$$

A chain of programs (Green/Bar-Natan/Morrison-Shumakovitch) can compute these invariants directly.

What is Khovanov homology? The s-invariant gives genus bounds

Extracting the *s*-invariant.

Conjecture

Only f_2 is nonzero, and the s-invariant is determined by the Khovanov polynomial, via

$$q^{s(K)}(q+q^{-1}) = Kh(K)(q,-q^{-4}).$$

- Even without this conjecture, often we can extract s(K) directly from the Khovanov polynomial, by analysing possible decompositions into the polynomials f_k .
- When this works, it is much faster than calculating the actual decomposition.
- It is now possible to compute s(K) for knots K with 50 or more crossings; previously 10-15 was the limit.

Band moves, and smaller knots mproving JavaKh Results so far

Outline

- 1 The smooth 4-dimensional Poincaré conjecture
- 2 Cappell-Shaneson spheres are potential counterexamples
 - Construction
 - Known results
 - Localisation
- 8 Khovanov homology may provide obstructions
 - What is Khovanov homology?
 - The s-invariant gives genus bounds

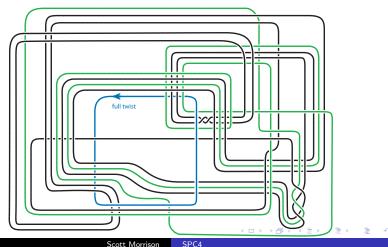
④ Some calculations!

- Band moves, and smaller knots
- Improving JavaKh
- Results so far

Band moves, and smaller knots Improving JavaKh Results so far

L_1 is huge

Unfortunately the two component link L_m is huge; even L_1 has ~ 222 crossings; even worse, its girth is ~ 24 .



Band moves

Band moves, and smaller knots Improving JavaKh Results so far

• Let's take a risk, and look for *band* connect sums that become simpler. If the resulting knot is not slice, the original link can't be either.

• We'll consider the following three bands on L₁, and call the resulting knots K_a, K_b and K_c:

$$= K_a \qquad = K_b \qquad = K_b$$

SPC4

Band moves, and smaller knots Improving JavaKh Results so far

Corollary

If any of $s(K_a)$, $s(K_b)$ or $s(K_c)$ is non-zero, then the smooth 4-dimensional Poincaré conjecture is false.

Are these *s*-invariants computable? In principle "yes":

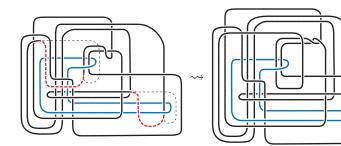
- We have a combinatorial implementation of the decomposition of Khovanov homology, which gives the *s*-invariant directly.
- We have a much faster program that just calculates *Kh*(K_●)(q, t), and it may be possible to extract the s-invariant from this.

Simplifying K_b , I

Band moves, and smaller knots Improving JavaKh Results so far

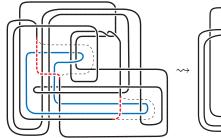
イロン イロン イヨン イヨン

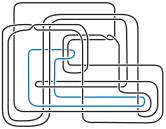
æ



Band moves, and smaller knots Improving JavaKh Results so far

Simplifying K_b , II



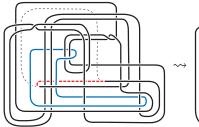


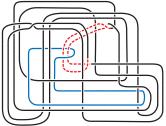
イロン イロン イヨン イヨン

æ

Band moves, and smaller knots Improving JavaKh Results so far

Simplifying K_b, III





イロン イロン イヨン イヨン

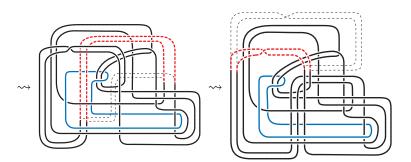
æ

Band moves, and smaller knots Improving JavaKh Results so far

æ

《口》《聞》《臣》《臣》

Simplifying K_b , IV



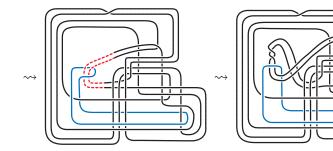
Band moves, and smaller knots Improving JavaKh Results so far

1

<ロト <部ト < 注ト < 注ト

æ

Simplifying K_b , V



Band moves, and smaller knots Improving JavaKh Results so far

The knots K_a , K_b and K_c

- A little work by hand shows K_a is ribbon, and hence slice.
- The Alexander polynomials are all 1; by a theorem of Freedman this means they're all *topologically* slice.
- But how big are they?

	apparent crossings	apparent girth
Ka	67	14
K _b	78	14
K _c	86	16

This is still scarily large, but perhaps plausible! The biggest computation of the Khovanov polynomial so far is in Bar-Natan's "I've computed Kh(T(8,7)) and I'm happy"; that has girth 14 but only 48 crossings. Computations seem to scale at least exponentially in the number of crossings, and really badly in the girth.

Band moves, and smaller knots Improving JavaKh Results so far

Improving JavaKh

- We started with Jeremy Green's program JavaKh, and made many improvements:
- New interface Progress reports, saving to disk.
- Memory optimisations Caching, 'bit flipping', paging to disk.
- Minimising girth Better algorithms to find small girth presentations.
- A better algorithm Cancelling blocks of isomorphisms, not just one at a time.
- At the end, we had something that can compute $Kh(K_b)$; it takes almost a week on a fast machine with 32gb of RAM!

Band moves, and smaller knots Improving JavaKh Results so far

Results for $Kh(K_b)$

 $Kh(K_b)(q,t) =$ $q^{-45}t^{-32} + q^{-41}t^{-31} + q^{-39}t^{-29} + q^{-35}t^{-28} + q^{-37}t^{-27} + q^{-37}t^{-26} + q^{-33}t^{-26} + q^{-31}t^{-26} + q^{$ $q^{-35}t^{-25} + q^{-33}t^{-25} + q^{-35}t^{-24} + 2q^{-31}t^{-24} + q^{-33}t^{-23} + 2q^{-31}t^{-23} + q^{-27}t^{-23} + q^{-27}t^{-27} + q^{-27}t^{-27} + q^{-27}t^{-27} + q^{-27}t^{-27} + q^{-27}t^{-27} + q^{-27}t^{-27} + q^$ $q^{-33}t^{-22} + 2q^{-29}t^{-22} + q^{-27}t^{-22} + q^{-31}t^{-21} + 3q^{-29}t^{-21} + q^{-25}t^{-21} + q^{-31}t^{-20} + q^{-3}t^{-20} + q^{-3}t^{$ $3q^{-27}t^{-20} + 2q^{-25}t^{-20} + 4q^{-27}t^{-19} + 2q^{-23}t^{-19} + q^{-27}t^{-18} + 2q^{-25}t^{-18} + 4q^{-23}t^{-18} + 4q^{-23}t^{$ $4q^{-25}t^{-17} + q^{-23}t^{-17} + 3q^{-21}t^{-17} + q^{-19}t^{-17} + 4q^{-25}t^{-16} + 2q^{-23}t^{-16} + 6q^{-21}t^{-16} + 6q^{-21}t^{$ $q^{-17}t^{-16} + 4q^{-23}t^{-15} + 5q^{-21}t^{-15} + 3q^{-19}t^{-15} + 2q^{-17}t^{-15} + q^{-23}t^{-14} + q^{-21}t^{-14} +$ $8q^{-19}t^{-14} + q^{-17}t^{-14} + q^{-15}t^{-14} + 3q^{-21}t^{-13} + 6q^{-19}t^{-13} + 3q^{-17}t^{-13} + 4q^{-15}t^{-13} + 6q^{-19}t^{-13} + 6q^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{-19}t^{$ $q^{-21}t^{-12} + 2q^{-19}t^{-12} + 9q^{-17}t^{-12} + 5q^{-15}t^{-12} + 2q^{-13}t^{-12} + 7q^{-17}t^{-11} + 4q^{-15}t^{-11} + 6q^{-15}t^{-11} + 6q^{-15}t^{$ $7q^{-13}t^{-11} + 3q^{-17}t^{-10} + 7q^{-15}t^{-10} + 7q^{-13}t^{-10} + 2q^{-11}t^{-10} + q^{-9}t^{-10} + 8q^{-15}t^{-9} + 7q^{-13}t^{-10} + 2q^{-11}t^{-10} + 2q^{-11}t^{-1$ $6q^{-13}t^{-9} + 9q^{-11}t^{-9} + q^{-9}t^{-9} + 3q^{-15}t^{-8} + 5q^{-13}t^{-8} + 13q^{-11}t^{-8} + 4q^{-9}t^{-8} + 9q^{-11}t^{-8} + 4q^{-9}t^{-8} + 9q^{-11}t^{-8} + 4q^{-9}t^{-8} + 9q^{-11}t^{-8} + 4q^{-9}t^{-8} + 9q^{-11}t^{-8} + 9q^{-11}t$ $2q^{-7}t^{-8}+5q^{-13}t^{-7}+8q^{-11}t^{-7}+9q^{-9}t^{-7}+5q^{-7}t^{-7}+q^{-5}t^{-7}+5q^{-11}t^{-6}+13q^{-9}+$ $6q^{-7}t^{-6} + 4q^{-5}t^{-6} + q^{-11}t^{-5} + 8q^{-9}t^{-5} + 11q^{-7}t^{-5} + 8q^{-5}t^{-5} + q^{-3}t^{-5} + 2q^{-9}t^{-4} + 11q^{-7}t^{-5} + 8q^{-5}t^{-5} + q^{-3}t^{-5} + 2q^{-9}t^{-4} + 11q^{-7}t^{-5} + 8q^{-5}t^{-5} + 11q^{-7}t^{-5} + 11q^{-7}t^{-7} + 11q^{-7}t^{-7$ $12q^{-7}t^{-4} + 10q^{-5}t^{-4} + 6q^{-3}t^{-4} + 7q^{-7}t^{-3} + 9q^{-5}t^{-3} + 12q^{-3}t^{-3} + 2q^{-1}t^{-3} + 9q^{-5}t^{-3} + 12q^{-3}t^{-3} + 2q^{-1}t^{-3} + 12q^{-3}t^{-3} + 12q^{-3}t^{-3$ $9q^{-5}t^{-2} + 12q^{-3}t^{-2} + 8q^{-1}t^{-2} + q^{1}t^{-2} + 3q^{-5}t^{-1} + 7q^{-3}t^{-1} + 15q^{-1}t^{-1} + 5q^{1}t^{-1} + 9q^{1}t^{-1} + 9q^{1}t^{-1}$ $q^{3}t^{-1} + 3q^{-3}t^{0} + 14q^{-1}t^{0} + 10q^{1}t^{0} + 6q^{3}t^{0} + q^{-3}t^{1} + 5q^{-1}t^{1} + 11q^{1}t^{1} + 10q^{3}t^{1} + 2q^{5}t^{1} + 11q^{1}t^{1} + 10q^{3}t^{1} + 2q^{5}t^{1} + 11q^{1}t^{1} + 10q^{1}t^{1} + 10q^{1}t$ $q^{-1}t^2 + 8q^1t^2 + 10q^3t^2 + 8q^5t^2 + 2q^1t^3 + 7q^3t^3 + 10q^5t^3 + 5q^7t^3 + 4q^3t^4 + 7q^5t^4 + 6q^7t^4 + 6q^7t^6 + 6q^7t^6 + 6q^7t^6 +$ $3q^9t^4 + q^3t^5 + 5q^9t^5 + 2q^5t^6 + 5q^7t^6 + 7q^9t^6 + 4q^{11}t^6 + 4q^5t^5 + 8a^7t^5 + a^7t^7 + 5a^9t^7 + 5a^$ $4q^{11}t^7 + 3q^{13}t^7 + 2q^9t^8 + 4q^{11}t^8 + 3q^{13}t^8 + 3q^{11}t^9 + 4q^{13}t^9 + 3q^{15}t^9 + q^{11}t^{10} + q^{13}t^{10} + q^{11}t^{10} + q^{11}t^$ $3q^{15}t^{10} + 2q^{17}t^{10} + q^{13}t^{11} + 2q^{15}t^{11} + q^{17}t^{11} + q^{13}t^{12} + 2q^{17}t^{12} + q^{19}t^{12} + 2q^{17}t^{13} + q^{11}t^{11} +$ $q^{21}t^{13} + q^{17}t^{14} + q^{19}t^{14} + q^{21}t^{14} + q^{19}t^{15} + q^{21}t^{15} + q^{23}t^{15} + q^{23}t^{16} + q^{23}t^{17} + q^{27}t^{18}$

Extracting $s(K_b)$

Band moves, and smaller knots Improving JavaKh Results so far

• There are thousands of possible decompositions of $Kh(K_b)$ of the form

$${\it Kh}({\it K}_b)(q,t)=q^{s({\it K}_b)}(q+q^{-1})+\sum_{k\geq 2}f_k({\it K}_b)(q,t)(1+q^{2k}t).$$

• Every decomposition gives *s* = 0, so for this knot we find no obstruction.

What next?

Band moves, and smaller knots Improving JavaKh Results so far

Obviously this is disappointing. On the other hand, we've only turned over the first stone.

- Computations for K_c are running right now!
- It looks like L_{-1} might be simpler than L_1 , but we've only just started searching for nice bands.
- With present technology (algorithm, implementation, hardware), there are probably several more accessible cases. (But only several.)

Conclusions

Band moves, and smaller knots Improving JavaKh Results so far

- Certain 'local' slice problems for links imply that SPC4 is false.
- Khovanov homology may provide obstructions. Even with recent advances, the calculations are hard, so we use bands to turn the links into smaller knots.
- The first *s*-invariant we could calculate didn't produce an obstruction. Other bands are running as we speak, and we're about to try other Cappell-Shaneson spheres.