Blob Homology

Kevin Walker (joint work with Scott Morrison)

September 11, 2008

We define a chain complex $\mathcal{B}_*(M, C)$ (the "blob complex") associated to an *n*-category *C* and an *n*-manifold *M*. For n = 1, $\mathcal{B}_*(S^1, C)$ is quasiisomorphic to the Hochschild complex of the 1-category *C*. So in some sense blob homology is a generalization of Hochschild homology to *n*-categories. The degree zero homology of $\mathcal{B}_*(M, C)$ is isomorphic to the dual of the Hilbert space associated to *M* by the TQFT corresponding to *C*. So in another sense the blob complex is the derived category version of a TQFT.

This is work in progress, so various details remain to be filled in.

We hope to apply blob homology to tight contact structures on 3-manfolds (n = 3) and extending Khovanov homology to general 4-manifolds (n = 4). In both of these examples, exact triangles play an important role, and the derived category aspect of the blob complex allows this exactness to persist to a greater degree than it otherwise would.

 $\mathcal{B}_0(M, C)$ is defined to be finite linear combinations of *C*-pictures on *M*. (A *C*-picture on *M* can be thought of as a pasting diagram for *n*-morphisms of *C* in the shape of *M* together with a choice of homeomorphism from this diagram to *M*.) There is an evaluation map from $\mathcal{B}_0(B^n, C)$ (*C*-pictures on the *n*-ball B^n) to the *n*-morphisms of *C*. Let *U* be the kernel of this map. Elements of *U* are called null fields. $\mathcal{B}_1(M, C)$ is defined to be finite linear combinations of triples (B, u, r) (called 1-blob diagrams), where $B \subset M$ is an embedded ball (or "blob"), $u \in U$ is a null field on *B*, and *r* is a *C*-picture on $M \setminus B$. Define the boundary map $\partial : \mathcal{B}_1(M, C) \to \mathcal{B}_0(M, C)$ by sending (B, u, r) to $u \bullet r$, the gluing of *u* and *r*. $\mathcal{B}_1(M, C)$ can be thought of as the space of relations we would naturally want to impose on $\mathcal{B}_0(M, C)$, and so $H_0(\mathcal{B}_*(M, C))$ is isomorphic to the generalized skein module (dual of TQFT Hilbert space) one would associate to *M* and *C*.

 $\mathcal{B}_k(M,C)$ is defined to be finite linear combinations k-blob diagrams. A k-blob diagram consists of k blobs (balls) B_0, \ldots, B_{k-1} in M. Each pair B_i

and B_j is required to be either disjoint or nested. Each innermost blob B_i is equipped with a null field $u_i \in U$. There is also a *C*-picture *r* on the complement of the innermost blobs. The boundary map $\partial : \mathcal{B}_k(M, C) \to \mathcal{B}_{k-1}(M, C)$ is defined to be the alternating sum of forgetting the *i*-th blob.

If M has boundary we always impose a boundary condition consisting of an n-1-morphism picture on ∂M . In this note we will suppress the boundary condition from the notation.

The blob complex has the following properties:

• Functoriality. The blob complex is functorial with respect to diffeomorphisms. That is, fixing C, the association

 $M \mapsto \mathcal{B}_*(M, C)$

is a functor from n-manifolds and diffeomorphisms between them to chain complexes and isomorphisms between them.

- Contractibility for B^n . The blob complex of the *n*-ball, $\mathcal{B}_*(B^n, C)$, is quasi-isomorphic to the 1-step complex consisting of *n*-morphisms of *C*. (The domain and range of the *n*-morphisms correspond to the boundary conditions on B^n . Both are suppressed from the notation.) Thus $\mathcal{B}_*(B^n, C)$ can be thought of as a free resolution of *C*.
- **Disjoint union.** There is a natural isomorphism

$$\mathcal{B}_*(M_1 \sqcup M_2, C) \cong \mathcal{B}_*(M_1, C) \otimes \mathcal{B}_*(M_2, C).$$

• Gluing. Let M_1 and M_2 be *n*-manifolds, with Y a codimension-0 submanifold of ∂M_1 and -Y a codimension-0 submanifold of ∂M_2 . Then there is a chain map

$$\operatorname{gl}_Y: \mathcal{B}_*(M_1) \otimes \mathcal{B}_*(M_2) \to \mathcal{B}_*(M_1 \cup_Y M_2).$$

- Relation with Hochschild homology. When C is a 1-category, $\mathcal{B}_*(S^1, C)$ is quasi-isomorphic to the Hochschild complex Hoch $_*(C)$.
- Relation with TQFTs and skein modules. $H_0(\mathcal{B}_*(M, C))$ is isomorphic to $A_C(M)$, the dual Hilbert space of the n+1-dimensional TQFT based on C.

• Evaluation map. There is an 'evaluation' chain map

$$\operatorname{ev}_M : C_*(\operatorname{Diff}(M)) \otimes \mathcal{B}_*(M) \to \mathcal{B}_*(M)$$

(Here $C_*(\text{Diff}(M))$ is the singular chain complex of the space of diffeomorphisms of M, fixed on ∂M .)

Restricted to $C_0(\text{Diff}(M))$ this is just the action of diffeomorphisms described above. Further, for any codimension-1 submanifold $Y \subset M$ dividing M into $M_1 \cup_Y M_2$, the following diagram (using the gluing maps described above) commutes.

In fact, up to homotopy the evaluation maps are uniquely characterized by these two properties.

- A_{∞} categories for n-1-manifolds. For Y an n-1-manifold, the blob complex $\mathcal{B}_*(Y \times I, C)$ has the structure of an A_{∞} category. The multiplication (m_2) is given my stacking copies of the cylinder $Y \times I$ together. The higher m_i 's are obtained by applying the evaluation map to i-2-dimensional families of diffeomorphisms in $\text{Diff}(I) \subset \text{Diff}(Y \times I)$. Furthermore, $\mathcal{B}_*(M, C)$ affords a representation of the A_{∞} category $\mathcal{B}_*(\partial M \times I, C)$.
- Gluing formula. Let $Y \subset M$ divide M into manifolds M_1 and M_2 . Let A(Y) be the A_{∞} category $\mathcal{B}_*(Y \times I, C)$. Then $\mathcal{B}_*(M_1, C)$ affords a right representation of A(Y), $\mathcal{B}_*(M_2, C)$ affords a left representation of A(Y), and $\mathcal{B}_*(M, C)$ is homotopy equivalent to $\mathcal{B}_*(M_1, C) \otimes_{A(Y)}$ $\mathcal{B}_*(M_2, C)$.