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todo list

(1) Write this todo list.
(2) Write an abstract.
(3) Write an introduction.
(4) top_matter.tex – contact details, AMS classification
(5) Explain why the principal graph of the D4 subfactor really is D4.

To ask Vaughan about

(1) What adjectives do we need to algebraic bimodules? Finitely generated as
1-sided modules? Should they be positive definite inner product spaces (not
necessarily complete)? Or can they just be vector spaces?

(2) What does irreducibility translate to for bimodules? Extremality?
(3) What’s the deal with ’bimodules generated by M’? How much do you miss?
(4) What’s the reference for the algebraic bimodules generated by M being the

same as the L2 bimodules generated by L2(M)?

1 Introduction

2 A recipe

2.1 Planar Algebras

A planar algebra is a gadget specifying how to combine objects in planar ways.
They were introduced in [?] to study subfactors, and have since found more general
use.
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In the simplest version, a shaded planar algebra P associates a vector space Pk to
each k ∈ +,−, 1, 2, 3, . . . (thought of as a disc in the plane with 2k marked points
on its boundary; elements of Pk will be refered to as k -boxes and the space Pk as
the k -disc space) and a linear map P(T ) : Pk1 ⊗ Pk2 ⊗ · · · ⊗ Pkr → Pk0 to each
planar tangle1 T , for example

,

with internal discs with 2k1, 2k2, . . . , 2kr marked points, and 2k0 marked points on
the external disc (evenness of the number of boundary points is required so that the
regions can be given a checkerboard shading); this particular tangle corresponds to
a map V2×V4×V4 → V2 . These maps (the ’planar operations’) must satisfy certain
properties: “radial” tangles induce identity maps, and composition of the maps
P(T ) is compatible with the obvious composition of planar diagrams by gluing
one inside the other. In fact, one more piece of data is required here: a small ? for
every boundary circle, in one of its adjacent unshaded regions – this tells us, when
we place once planar tangle inside another one, how to line up the strings. For the
exact details, which are somewhat technical, see [?].

A subfactor planar algebra is a shaded planar algebra, with some nice properties
that allow us to do linear algebra on it.

Definition 2.1 A subfactor planar algebra is a shaded planar algebra such that

• Each vector space Vi for i = +,−, 1, 2, . . . has an involution ∗ on it that plays
well with tangles?(1)

?(1) explain
this more
better –E

• dim(V+) = dim(V−) = 1

• d+ = d− : Note that dim(V+) = dim(V−) = 1 implies that the element of V+

coming from the tangle with one closed string2 is a multiple d+ of the empty

1Familiarly known as a ’spaghetti and meatballs’ diagram.
2that is, a spaghetti-O
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tangle. (There is a corresonding d− for for V− .)

In a subfactor planar algebra we require d+ = d− , and call this value the
modulus d.?(2)

?(2) can’t
we call
this the
dimension?
–N

• Positivity: Another consequence of dim(V+) = dim(V−) = 1 is that the tan-
gles

and

define a trace Vi → V+ and multiplication Vi × Vi → Vi ; these can be used
to define a bilinear form via 〈X,Y 〉 := tr(Y ∗X). This bilinear form must be
positive definite in a subfactor planar algebra.

• Sphericality: Two tangles that are spherically isotopic induce the same maps.

For more details about subfactor planar algebras, see [?, §4].

2.2 Temperley-Lieb and the D4 planar algebra

Everyone’s favorite example of a subfactor planar algebra is T L(δ), the Temperley-
Lieb planar algebra with modulus δ , which is defined for all δ ∈ {2 cos πn |n ≥
3} ∪ [2,∞). If δ > 2, then T L(δ)n is the vector space with basis consisting of
tangles with no inputs, n outputs and no closed strings – for instance, T L(δ)3 is

.

For δ in the range {2 cos πn |n ≥ 3}, we first define a planar algebra TL as above –
that is, TL(δ)n is the vector space with basis consisting of tangles with no inputs,
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n outputs and no closed strings; then we make this a subfactor planar algebra by
forcing positive definiteness; that is, T L(δ) is

TL(δ)
〈X such that for some Y, tr(Y ∗X) = 0〉

.

The action of a general tangle on the pictures generating T L(δ) is pretty straight-
forward – put the T L(δ) pictures into the inner disks of the tangle, erase bound-
aries that are no longer boundaries, and throw out closed loops by multiplying the
resulting picture by d. Here’s an example:

.

Here are some useful facts about Temperley-Lieb:

• Any subfactor planar algebra with modulus d contains TL(d) as a sub-planar
algebra

• T Ln is multiplicatively generated by elements ei for i = 1 . . . n− 1

.

• For each n, T Ln has one new minimal central idempotent; it is known as the
Jones-Wenzl idempotent and is the unique element having eif

(n) = f (n)ei =
0 for i = 1 . . . n− 1 and f (n)f (n) = f (n) .

• tr(f (n)) = [n]q where [n]q := − q2n−q−2n

q2−q−2 , with q a solution of −q2 − q−2 = d.

It’s hard to overstate the importance of understanding Temperley-Lieb; most of
the structure of a general planar algebra is already visible in T L, and understand-
ing the interaction between the T L subalgebra and the rest of the algebra can be
extremely useful.
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On to our next example: the D4 planar algebra. This is a planar algebra which is
planarly generated by T L(

√
3) and a single 2-box R . By ”generated as a planar

algebra,” we mean that any element of the planar algebra is the image of some
tangle applied to some sequence of the generators. The generator R satisfies

• ρ(R) = −R?(3)

?(3) pic –E• R∗ = R .

• ε1(R) = ε2(R) = ε3(R) = ε4(R) = 0?(4)

?(4) pic –E• and tr(R2) = [3]q ?(5)

?(5) pic –E
(Note that the last three of these are mostly harmless, as they simply specify that
the generator of the non-T L part of our planar algebra should be chosen to be
self-adjoint, orthogonal to TL and normalized a certain way.)

See [Jones, Annular Tangles] for more information about why the D4 planar alge-
bra is generated in this way.

Here are some more relations on D4 which we will need:

Lemma 2.2 (1) f (5) = 0

(2) R2 = f (2) and Comult(R ,R)= 1√
3
Id− e1 .

(3) The ”annular consequences” of R , that is,

satisfy the relations αi −
√

3αi+1 + 2αi+2 −
√

3αi+3 + αi+4 = 0, with the
convention that for subscripts outside of {1, 2, 3, 4, 5, 6}, αi+6n := (−1)nαi .

(4) The box consisting of two R’s placed next to each other is in T L; specifically

=

Proof (1) We have tr(f (5)) = [6]q = 0, hence by positivity f (5) = 0.

(2) Rotational eigenvalue considerations tell that this is in T L; then knowing
that either top and bottom caps, or both side caps, is zero tells us which T L
element.
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(3) Let σi = αi−
√

3αi+1 +2αi+2−
√

3αi+3 +αi+4 ; we can check that 〈σi, σi〉 = 0.
(4) We could check that

〈
,

〉
=

〈
,

〉

=

〈
,

〉

but this would require us to compute about 200 traces. Instead, we use the
fact f (5) = 0 to write that the five-strand identity is equal to a weighted
sum of the other elements of T L5 (with coefficents as givenin [Morrison, A
formula for the Jones-Wenzl Projections].) This seems not to have made our
lives that much simpler; we replace one picture with 41 pictures.
However, if we consider the picture where two Rs are conected by one string,
and replace 5 of the remaining strings with minus the rest of the Jones-Wenzl
projection, then most of these 41 pictures cap off an R in some way, giving
zero; only 9 don’t. So we get

⇒
and we have a Comult(R ,R) in each of these. Using the previous relation we
have that this is actually a T L element:

Now, we do the same thing (replacing 5 strings with 9 pictures involving
caps) to two Rs next to each other, and get the desired result.

TODO: The D4 planar algebra really has principal graph D4; see later for what
this means, and even later for the proof.

2.3 Planar Algebras, knots and links

Take any knot or link, lay it down flat, and replace each crossing with the element
of T L(δ)2 which is q · Id + q−1 · e1 for q2 + q−2 = −δ ?(6) – what you get is a

?(6) minus
delta right?
–E

polynomail in q . This is the Jones polynomial.

Now do the same thing, but first cable the knot/link – ie replace each strand by n
strands – and on each component of the knot/link (ie, each piece of string between
two crossings) place a Jones-Wenzl idempotent f (n) . Resolving the crossings gives
the colored Jones polynomial.

This process seems generalizable, doesn’t it?
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3 Why did that work?

If you’ve spent some time with people who enjoy their category theory, you’ll have
picked up the idea that “links invariants come from braided tensor categories”.
While this isn’t always the case — there are plenty of link invariants which don’t
seem to arise in this way — there are many pretty examples. In particular, all of the
link invariants defined using quantum groups, via R-matrices, fit into this pattern:
the category of representations of a quantum group Uq(g) is a braided tensor cate-
gory. Sadly, the invariant we’ve given a recipe for above doesn’t quite fit the mould.
On the other hand, happily, it doesn’t fall too far outside it. Below, we’ll describe
quite explicitly something not-too-far from a braided tensor category, which is still
sufficient to produce a link invariant, and explain how we can sometime produce
examples from a subfactor, and in particular from the D4 subfactor.

3.1 Subfactors give ‘bi-oidal categories’.

If we were going to attempt the impossible, and show you how to produce a
braided tensor category from a subfactor, we’d try this in two steps: describe a
tensor category first, and then give it a braiding. There are difficulties at both
steps. First, subfactors don’t exactly give tensor categories, in the usual sense, but
something we’ll call a ‘bi-oidal category’, and define in this section. (A common
synonym for ‘tensor category’ is ‘monoidal category’, and our made up name is in-
tended as an analogue for this.) Second, once we’ve adapted the notion of ‘braided’
to bi-oidal categories, we still might not know how to put such a braided structure
on the category. However, there’s always something we can try, which we describe
in §??, and explain why it actually works for the D4 subfactor in §??.

3.1.1 What is a subfactor?

You should happily skip ahead to §?? if any of this sounds familiar!

TODO: Write this!

3.1.2 Bimodules for von Neumann algebras

Understanding bimodules for von Neumann algebras, and their tensor products,
can be tricky. Essentially there are two different versions of the theory, depending
whether one asks for bimodules to be Hilbert spaces, or just vector spaces. Happily,
the Hilbert space version is the difficult one, and for our purposes we can get away
with using the simpler ‘algebraic’ version, where we just ask for vector spaces.
The expense, however, is having to refer to some papers with some high-powered
analysis for a few results.

Thus, if A and B are von Neumann algebras, the category A −Mod′−B of ‘alge-
braic’ A−B bimodules has as objects all vector spaces X with commuting actions
of A and Bop , and as morphisms all linear maps commuting with both actions.
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(In the Hilbert space version, we’d unsurprisingly ask for for Hilbert spaces and
bounded linear maps.) There’s an unnecessary looking prime in this notation sim-
ply because in the next section we’ll pass to a smaller, more useful subcategory
which we’ll want to be able to refer to without the prime.

Given three von Neumann algebras A,B and C , and two bimodules X ∈ A −
Mod′−B , and Y ∈ B − Mod′−C , we can form the tensor product X ⊗B Y ∈
A−Mod′−C , defined easily3 as

X ⊗B Y =
X ⊗C Y

{xb⊗ y − x⊗ by | x ∈ X, y ∈ Y, b ∈ B }
.

3.1.3 The bi-oidal category of bimodules for a subfactor

When we’re looking at a II1 subfactor N ⊂ M , we might think about the four
categories N −Mod′−N , N −Mod′−M , M −Mod′−N and M −Mod′−M , and
take their disjoint union as categories, which we’ll call Mod′ (N ⊂M) (soon we’ll
define a smaller subcategory — the prime is there in the name just because we’ll
end up being more interested in the subcategory, and so reserve the name for it).
On Mod′ (N ⊂M) we have a ‘partially defined’ tensor product. Each object, being
in one of the four categories, has two ‘labels’; the algebra it’s a left module over is
its ‘left label’, and the algebra it’s a right module over is its ‘right label’. We can
take the tensor product of X and Y exactly if the right label of X agrees with the
left label of Y , in which case the tensor product just means the algebraic tensor
product over that algebra. When the labels don’t agree, there simply isn’t a tensor
product.

This structure is the first example of what we’re going to call a bi-oidal category, so
we’ll give the definition now.

Definition 3.1 A bi-oidal category C with labels A and B is a category in which

• each object O ∈ C has a ‘left label’ and a ‘right label’, each either A or B ,
often indicated by notation like AOB ,

• and with XCY denoting the full subcategory of objects with left label X and
right label Y , there are a ‘tensor product over a label’ functors

⊗Y : XCY × Y CZ → XCZ
which are associative whenever this makes sense, that is

⊗X ◦ (1CX ×⊗Y ) = ⊗Y ◦ (⊗Y × 1
Y C)

on the sub-category CX × XCY × Y C of C × C × C ,
• and there are objects AAA and BBB which are identities for the correspond-

ing tensor products, that is, for X = A or B , U ∈ XC and V ∈ CX ,

X ⊗X U = U,

V ⊗X X = V.

TODO: Does that make any sense? Is it missing something?
3It’s worth saying ‘easily’ here, because the corresponding tensor product for the Hilbert

space version of bimodules is complicated; it’s Connes’ fusion. See [?] for details.
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3.1.4 The bimodules generated by M .

The category Mod′ (N ⊂M) has a profusion of objects, and we’re about to cut it
down. As an example, the algebra M , considered as a vector space with commut-
ing left and right actions of N and M (by multiplication!), is a bimodule. Being
a II1 subfactor, M has a unique normalized trace, and hence an inner product
(〈x, y〉 = tr(y∗x)), and we can complete M with respect to this inner product to
obtain a Hilbert space called L2(M). This is still a bimodule, and hence is also
an object in our category. In some sense, however, it’s too closely related to the
original bimodule M for our purposes, without actually being isomorphic in the
category. Our next definition avoids this sort of problem, amongst several others!

Now pick out two objects in this category, namely the algebra M considered as
an N −M bimodule, written NMM , and the algebra M considered as an M − N
bimodule, written MMN .

TODO: continue...

3.1.5 Bi-oidal categories with duals

TODO: Mention sphericalness. Define
⊗̂

.

3.1.6 Temperley-Lieb

The simplest example of a bi-oidal category is the (perhaps familiar!) shaded
Temperley-Lieb category.

TODO: Finish this..., having read emily’s section on temperley-lieb as a planar
algebra above.

3.1.7 The principal graphs of a singly generated bi-oidal category

TODO:

3.2 Translating back and forth: spherical categories and planar algebras.

Having read this far, you’ll have noticed the rapidly widening gap between the per-
spective of §??, which described the D4 planar algebra, and §??, which explained
how to associate a bi-oidal category to a subfactor. This section reunites these per-
spectives, by explaining the translation back and forth between a singly generated
bi-oidal category, with a spherical structure, and a shaded planar algebra.

The fundamental idea is that spherical categories are essentially the same things
as a ‘general planar algebra’ (i.e., not necessarily with the shadings we asked for
in the definition of a shaded planar algebra, and certainly not with the dimension
and positivity restrictions in the definition of §?? of a subfactor planar algebra). For
each specialization you might make in the definition of a spherical category, there
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is a corresponding potential variation in the definition of a planar algebra. For the
translation in its most general setting, see [?, § 5]. For our purposes, however, we’re
more interested in picking out the class of spherical categories that corresponds ex-
actly to the notion of shaded planar algebra used in the theory of subfactors. As
a result we restrict our attention first to bi-oidal categories, to match the shading
requirements on the planar algebra side, and secondly, more significantly, to singly
generated bi-oidal categories. The description of this more specific translation dif-
fers somewhat from that in [?], as we’ll construct a planar algebra from a category
making use of only a certain sub-category, and conversely reconstruct the category
in two steps; recovering the sub-category, and then the entire original category by
taking its Karoubi envelope, defined below. ?(7)

?(7) I don’t
much like
this para-
graph; it
sounded
better when
Noah said it
– could you
try a partial
rewrite? –S

TODO: put in something about this being familiar to analysts; thinking about
projections all the time!

3.2.1 From spherical bi-oidal categories to shaded planar algebras

Given a spherical bi-oidal category C , equipped with a generating object AVB with
left label A and right label B , we construct the shaded planar algebra P(C) as
follows:

Definition 3.2 The shaded planar algebra P(C) has disc spaces P(C)k = End (C)
⊗̂k

V .
Given a shaded planar tangle T with r internal discs with 2k1, 2k2, . . . , 2kr marked
points, and 2k0 marked points on the external disc, we construct the linear map

P(C)(T ) : P(C)k1 ⊗ P(C)k2 ⊗ · · · ⊗ P(C)kr → P(C)k0
by first choosing an up-to-isotopy representative of T in the manner illustrated in
Figure ??, which we call a ‘rectangular planar tangle’. Given elements f1, . . . , fr of
the appropriate endomorphism spaces, we form a composition in the category C ,
turning cups and caps into copairing and pairing maps as usual, translating vertical
stacking into composition, and horizontal juxtaposition into tensor product.

We demonstrate this composition explicitly for the tangle T from Figure ?? in Fig-
ure ??. The resulting composition is then an endomorphism in the appropriate
disc space. That the construction is independent of the choice of rectangular pla-
nar tangle follows from the axioms for a spherical category. The resulting map is a
linear map, simply because composition and tensor product in the category are all
appropriately multilinear.

Notice that this construction didn’t depend explicitly on the whole category C , but
just on a certain subcategory, C|cNV

, the full subcategory in which the only objects
are the alternating tensor powers of the generating object V .

3.2.2 From shaded planar algebras to spherical bi-oidal categories, step 1.

For the reverse construction, we show how to construct a category C′(P) from a
shaded planar algebra, in which the only objects are alternating tensor powers of
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Figure 1: Turning a planar tangle into a ‘rectangular planar tangle’. We ask that
there is a horizontal strip midway up the rectangle, containing all of the internal
boxes, possibly with vertical strands interspersed, and that above and below this
strip we see only caps and cups.

Figure 2: Reading from bottom to top, we compose a copairing or pairing map, for
each cup or cap respectively, with the endomorphism

a ‘formal’ tensor generating object V , and then, after defining a Karoubi envelope
in §??, explain in §?? why the category C(P) = Kar (C′(P)) is really what we want.
That section also proves that the two constructions in either direction really are
inverses.

The bi-oidal category C′(P) has

TODO:

3.2.3 What is the Karoubi envelope?

A projection is an endomorphism p satisfying p2 = p. In many contexts in math-
ematics, if p is a projection then so is 1 − p, and together these two projections
decompose space as a direct sum of the image of p with the image of 1− p. Thus a

11



projection often gives rise to a decomposition of space into pieces which are hope-
fully simpler.

The equation p2 = p makes sense for an endomorphism in an arbitrary category,
so projections make sense in an arbitrary category. And if p is a projection then so
is 1− p in an arbitrary additive category. But in a general (additive or not) category,
“the image of p” (or of 1− p) may or may not make sense.

The Karoubi envelope4 of a category C is a way of adding objects and morphisms to
C so that every projection has an image and so that if p : O → O is a projection
and C is additive, then (with the proper interpretation) O ∼= im p ⊕ im(1 − p).
Thus sometimes complicated objects can be simplified in the Karoubi envelope of
C , while in C they may be indecomposable.

Let us turn to the formal definitions.

Definition 3.3 Let C be a category. An endomorphism p : O → O of some object
O in C is called a projection if p ◦ p = p. The Karoubi envelope Kar (C) of C is
the category whose objects are ordered pairs (O, p) where O is an object in C and
p : O → O is a projection. If (O1, p1) and (O2, p2) are two such pairs, the set of
morphisms in Kar (C) from (O1, p1) to (O2, p2) is the collection of all f : O1 → O2

in C for which f = f ◦p1 = p2 ◦f . An object (O, p) in Kar (C) may also be denoted
by im p.5

The composition of morphisms in Kar (C) is defined in the obvious way (by com-
posing the corresponding f ’s). The identity automorphism of an object (O, p) in
Kar (C) is p itself. It is routine to verify that Kar (C) is indeed a category. There is
an obvious embedding functor I : O 7→ (O, I) of C into Kar (C) and quite clearly,
HomKar(C) (IO1, IO2) = HomC (O1,O2) for any pair of objects O1,2 in C . Thus we
will simply identify objects in C with their image via I in Kar (C).

Below we will assume that C is an additive category and that direct sums of objects
make sense in C . As in [?], there is no loss of generality in making these assump-
tions as formal sums of morphisms and formal direct sums of objects may always
be introduced.

Lemma 3.4 Let p : O → O be an endomorphism in C .

(1) If p is a projection then so is 1− p.

(2) In this case, O ∼= im p⊕ im(1− p) in Kar (C).

Proof (1) (1− p)2 = 1− 2p + p2 = 1− 2p + p = 1− p (sorry for the damage to
the rainforest).

4The Karoubi envelope construction [?] was first described in [?], a few years before
Karoubi. It has previously been used in motivic cohomology [?], in diagrammatic repre-
sentation theory, e.g. [?], and by the first author in an application to Khovanov homology
in [?]. The text of this section is lifted largely verbatim from that paper.

5If you’re worried about just introducing im p as notation, when you already know a
category-theoretic definition of ‘image’, don’t be; this is actually an image.
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(2) The isomorphism O → im p⊕im(1−p) is given by the 1×2 matrix
(
p 1− p

)
.

Its inverse is the 2× 1 matrix
(

p
1− p

)
.

Observe that if p is a projection on O and p′ is a projection on O′ , then Hom ((O, p), (O′, p′))
may be naturally identified with p′Hom (O,O′) p. In fact, even before taking the
Karoubi envelope, Hom (O,O′) can be expressed as a direct sum of 4 ‘matrix en-
tries’, each obtained by pre-composing with p or 1 − p, and post-composing with
p′ or 1− p′ .

3.2.4 From shaded planar algebras to spherical bi-oidal categories, step 2.

TODO:

TODO: Explain that the constructions are inverses. TODO: Really, we’d explain
what morphisms of shaded planar algebras are, and explain that the construc-
tions give an equivalence of categories!

3.3 Braidings

3.3.1 Braidings for monoidal categories

If you already know this stuff, skip it!

For a monoidal category, a braiding is a family of natural isomorphisms

cX,Y : X ⊗ Y → Y ⊗X

satisfying the relations of braids. For example, one requires that

cX⊗Y,Z = (cX,Y ⊗ 1) ◦ (1⊗ cY,Z)

so that the following equation of diagrams holds.
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3.3.2 Braidings for bi-oidal categories

What is a braiding for a bi-oidal category? Let’s consider a typical two bimodules
inside −Mod−, say X ∈ N − Mod−M and Y ∈ M − Mod−M . Notice that
X ⊗M Y makes perfect sense, but there is no way to take the tensor product in the
other order! So a braiding can’t just be a map X ⊗ Y → Y ⊗ X . So what are we
meant to do?

Rather than guessing a new definition, we will return to the motivating example:
the Jones polynomial. There is a braiding on the bi-oidal category T Ld (see ??)
given by the usual Kauffman bracket formula.

This braiding is a map

cM,M̄ : NMM ⊗M MMN → NMM ⊗M MMN .

What about using the Kauffman bracket to compute the braiding of more compli-
cated bimodules? For example where does cM⊗M̄,M live? To decide this question
we draw the diagram below and read off what it means.

We read off that the braiding is a map

cM⊗M̄,M :
(
NMM ⊗M MM̄N

)
⊗N NMM → NMM ⊗M

(
MM̄N ⊗n NM̄M

)
.

In general, we see that if we braid some object across an odd object, then we need
to reverse all the shadings. If we braid some object across an even object, then
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we leave the shadings the same. Since the braiding is natural, we will also need
a way to reverse the shadings on morphisms. For Temperley-Lieb, it is clear what
shading reversing does. But for a more general planar algebra a shading-reversing
is an additional piece of data.

Let’s think about how shading-reversing might work for D4 . We need to know
how to shading-reverse the 2-box R , the obvious picture doesn’t make any sense.

PICTURE

Since we know how things in Temperley-Lieb shading-reverse, we know that the
shading-reverse of R must satisfy the defining relations of R . Hence the shading-
reverse of R must be one of the following two options.

PICTURE

Since either possibility seems reasonable, we will allow ourselves the flexibility to
use either shading change. In the end this will be necessary in order to make the
following to pictures work.

PICTURE

Definition 3.5 A shading reversing for a bi-oidal category is two involutions ?

and ? (read ”over” and ”under”) which reverse all the shadings. We also require
that 1? = 1 = 1? , that (⊗)? = ? ⊗ ? , and that (⊗)? = ? ⊗ ? .

When something passes under something odd you apply the ”under” involution
to it, when something passes over something odd you apply the ”over” involution
to it. We use notation like X? deg Y to mean ”apply the over involution to X if the
degree of Y is odd, but leave X alone if the degree of Y is even.”

Definition 3.6 A braiding for a bi-oidal category is a family of isomorphisms
cX,Y : X ⊗ Y → Y? degX ⊗X?deg Y such that

(1) c is natural:

• cX,1 = 1X = c1,X .
• For any f ∈ Hom (X,Z), we have that cZ,Y ◦(f⊗1) = (1⊗f?deg Y )◦cX,Y .
• For any f ∈ Hom (Y,Z), we have that cX,Z◦(1⊗f) = (f?degX⊗1)◦cX,Y .

(2) c is natural with respect to color changing:

• c?X,Y = cX?,Y ?

• (cX,Y )? = cX?,Y? .

(3) c is quasitriangular:

• cX⊗Y,Z = (cX,Z? deg Y
⊗ 1) ◦ (1⊗ cY,Z)

• cX,Y⊗Z = (1⊗ cX? deg Y ,Z) ◦ (cX,Y ⊗ 1).

INSERT PROOFS OF THE REIDEMEISTER RELATIONS
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3.3.3 Where might you look for a braiding?

One nice thing about a braiding (as opposed to more general commutors) is that
the quasi-triangularity condition combined with naturality, tells you that the entire
braiding is determined by the braiding for V ⊗ V where V is a tensor generator.
To see this notice that by naturality cX,Y = cV ⊗m,V ⊗n |X⊗Y , and that by quasitri-
angularity cV ⊗m,V ⊗n can be written in terms of only cV,V . In pictures this looks
like:

PICTURE

Suppose we’re looking at a subfactor planar algebra, all we need to know to de-
termine a braiding is how to braid M with M̄ . But the Kauffman bracket formula
already gives us a braiding for M ⊗ M̄ . In fact, if the principal graph starts out like
A3 , you can show that this is the only possible braiding (for example, for D2n for
n > 2). So rather than working hard to find a braiding, let’s just look at the one we
already have and see if it works.

What do we need to check to see that this braiding works?

PICTURE

3.4 Back to D4 .

3.4.1 The principal graphs

This paper is available online at arXiv:arXiv:?????, and at http://tqft.net/d4.
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