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0 Introduction 

In the fall of 1988, Witten rw] gave the first intrinsically 3-dimensional interpre- 
tation of the Jones polynomial I-Jl, J2] of a link in the 3-sphere, using a quantum 
field theory with Chern-Simons action. In the process, he uncovered a family 
of new invariants for arbitrary closed framed 3-manifolds and for links in 3- 
manifolds. 

Shortly afterwards, Reshetikhin and Turaev defined closely related invariants 
using the theory of quantum groups. In particular, starting with a simple Lie 
algebra g, they defined invariants for a framed link L in the 3-sphere using 
representations of associated quantum groups (which are Hopf algebra deforma- 
tions of the universal enveloping algebra of g) [RT1]. For 9=s1(2, C), these 
invariants JL, k (which depend on a coloring k of L by representations) generalize 
the Jones polynomial. Their values at a fixed r th root of unity q = e  2~'ur can 
be combined to produce a complex valued invariant of the oriented 3-manifold 
obtained by surgery on L [RT2], shown independent of L using [K1]. (Every 
3-manifold can be obtained in this way [L1, Wa].) Presumably these 3-manifold 
invariants can be defined for any simple Lie algebra. What is needed is that 
the associated quantum groups have the structure of a modular Hopf algebra 
[RT2]. 

This paper gives a self-contained proof of the existence of the 3-manifold 
invariants for g=sl(2, C) and q = e  2~ur (w167 1 5). It is similar in spirit to [RT2], 
but relies more on the elementary representation theory of the relevant Hopf 
algebra d and the topology of framed links, and less on the abstract theory 
of modular Hopf algebras. 

There are several new features in the present treatment (described below). 
These yield manageable formulas for the 3-manifold invariants which can be 
interpreted in terms of familiar topological invariants for some small values 
of r (w167 6 7). Perhaps more importantly, they lead to a family of new invariants 
underlying those of Witten and Reshetikhin-Turaev. These new invariants and 
some applications are discussed in the last section of the paper. 

First, the 3-manifold invariants of Reshetikhin and Turaev are modified 
by splitting off a term involving the first Betti number. The resulting invariants 
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zr(M) conjugate under orientation reversal (that is rr(--M)=rr(M)) and are 
thus useful in answering questions of amphicheirality. They also appear to be 
exactly the same as Witten's invariants of M with the canonical 2-framing of 
Atiyah [-A] (normalized at 1 for the 3-sphere). This has been experimentally 
verified in many cases by Freed and Gompf [FG],  and can in fact be proved 
for plumbed 3-manifolds using the formulas for Witten's invariants in [FG]  
together with the formulas for r~(M) in this paper (see Remark 1.9). 

Second, a cabling formula (4.15) which reduces the generalized Jones polyno- 
mials JL.k to the classical Jones polynomial for cables of L is derived. (Similar 
formulas have been obtained independently by Morton and Strickland [MS].) 
From this one obtains a formula for zr(M) in terms of classical Jones polynomials 
(4.17) (first announced in [KM1] with a proof sketched in [-KM2]). Recently, 
Lickorish [L3, L4, L5] has found an elegant new proof of the invariance of 
such a formula, using the Temperley-Lieb algebra and linear skein theory and 
thereby avoiding the explicit use of quantum groups. It is clear however that 
the algebra d should not be deemphasized, for it encodes deep combinatorial 
properties of the Jones polynomial and appears to make calculations more 
accessible. 

Using this formula, z,(M) is expressed in terms of familiar topological invar- 
iants for r =  3 and 4, as the Jones polynomial has topological meaning at the 
corresponding roots of unity. (Note that z2(M ) = 1 for all M. The Jones polyno- 
mial is also understood at the sixth root of unity (Appendix B), and so one 
would expect a similar formula for "c6(M); see [KM2] for partial results.) For 
example, 

"c3 (M) =ex p (--2ni/8) ~(M~+(In,M~2-I)/2 

if M is a Z/2Z-homology sphere with/~-invariant #(M) (6.5), and 

z4(M ) = ~, exp ( -  6 n i/16) u(u~ 
O 

for general M, where #(Mo) is the #-invariant of M with spin structure O, 
and the sum is over all spin structures (7.1). The general formula (6.3) for z3(M) 
depends on the (rood 2) first betti number and the Brown invariant [Br] of 
M, and is therefore a homotopy invariant, whereas r4(M) can distinguish homo- 
topy equivalent manifolds. (The derivation of the formula for z4(M ) suggested 
a new, elementary combinatorial proof of Rohlin's theorem, which appears in 
Appendix C.) 

Finally, a Symmetry Principle (4.20) is proved which reduces greatly the 
number of steps required in calculating z~(M), and (coupled with the cabling 
formula) leads to an elementary proof of its invariance (see w In particular, 
this proof avoids the difficult analysis of the structure of tensor products of 
irrreducible representations of d ,  which is central to the treatment of [RT2]. 
Note also the application to Jones polynomials of cables of a framed link at 
a root of unity (4.25). 

The Symmetry Principle has many other interesting consequences. Some 
of these are discussed in w 8: 

(1) For  r odd, 
. . . .  fza(m) z'~(m ) if r - -  3(mod 4) 

rAJv ' )=]zT~  z'~(M) if r ~  l (mod 4) 
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where z',(M) is an invariant of M (see 8.10). In particular, z3 (M)=0  implies 
that z r (M)=0  for all odd r. Note:  it is shown in (6.3) that z a (M)=0  if and 
only if there exists e in H ~ (M; Z/2Z) with ~ v ~ c ~  + 0. 
(2) Fo r  r divisible by 4, 

zr(M) = ~  z,(M, 19) 
O 

where zr(M, O) is an invariant of the manifold M with spin structure O, and 
the sum is over all spin structures on M (see 8.27). A similar statement holds 
for r---2(rood 4), with the spin structure replaced by an element of H t(M; Z/2Z) 
(8.32). This result has been observed independently by Turaev I-T3], also using 
the Symmetry Principle. 
(3) The Casson invariant of a homology sphere M obtained by Dehn surgery 
on a knot  is determined (mod 5) by zs(M) (8,20). 
(4) The Jones polynomial  of a knot K at the fifth root of unity is an invariant 
for integral surgery on K (8.14). 
(5) If K~/. denotes the homology sphere obtained by 1/n surgery on the knot 
K, then %(K1/,) is periodic in n with period r for odd r (8.15) and period r/2 
for even r (8.26). 

The paper is organized as follows: In w 1 there is a general discussion of 
framed links, the K-move and 3-manifolds, the colored framed link invariants 
Jr.k, and the definition of rr(M). The algebra ~r (2.7) is described in w along 
with its finite dimensional representations V k (2.8) and VV k' (2.16). Explicit formu- 
las for the R-matrix (2.18 and 2.32) are derived. In w the d - l i n e a r  tangle 
operators FT are defined (3.6), which specialize to JL, k (3.25). Their behavior 
under direct sums, extensions and tensor products of colors (3.10) and under 
changes in orientation (3.18) is explored. The cabling formula (4.15) and symme- 
try principle (4.20) for "]L,k a r e  established in w and w contains the proof 
of the invariance of zr under K-moves,  and of its behavior under connected 
sums and orientation reversal. The evaluations of r,(M) for r = 3  and 4 are 
found in w 6 and w 7. In w 8, applications of the Symmetry Principle to the study 
of zr for odd r (8.7 21) and even r (8.23-33) are given, and the new invariants 
mentioned above are defined. Appendix A contains a combinatorial  p roof  of 
the deepest identity in the algebra needed to define z,. Appendix B has a treat- 
ment of the Jones polynomial  a t  q=e  2~i/6, and Appendix C deals with #-invar- 
iants. 

In a future paper [KM4]  we will calculate Tr(M) for lens spaces and Seifert 
fibered 3-manifolds, and give a Dehn surgery formula. The calculation of rr(M) 
for lens spaces led to a new definition of the Dedekind sum in terms of signatures, 
and new formulae for signature defects and the signature cocycle defining a 
central extension of SL(2, Z) by Z [KM3].  
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1 The invariants of Reshetikhin and Turaev 

Fix an integer r > 1. In this section we describe in general terms the 3-manifold 
invariant z r of Reshetikhin and Turaev I-RT2], which assigns a complex number  
zr(M) to each oriented, closed connected 3-manifold M. It satisfies the following 
properties (see (5.9)): 

(1) (multiplicativity) z,(M ~ N) = zr(M) zr(N) 
(2) (orientation) rr(-- M ) =  rr(M) 
(3) (normalization) zr(S 3) = 1. 

In fact, rr is a slight modification of the invariant  that appears in [RT2, w 3.3.2], 
which does not  satisfy (2) (see (1.4) below). 

z~(M) is defined as a linear combinat ion of certain colored framed link invar- 
iants JL,k (defined in [RT1, w of a framed link L associated with M. The 
Jc.h are generalizations of the Jones polynomial of L, and are described in 
more detail below and in w 3. 

First we fix some notat ion to be used throughout  the paper. Writing e(a) 
for exp (2r~ia), set 

s~ q=s2=t4" (Reshetikhin and Turaev c~ ~ r~176 ~ e(m) ' \  

but  we restrict to m = 1 for simplicity.| For  any integer k, define 
/ 

ltk 
sin - -  

S k - -  S ~ r 

(1.1) E k ] -  s - ~  . 
S i n  - -  

F 

(cf. [k]q in (2.28) below). Observe that [k] depends on r and has symmetries 
[k] = I t -  k] = - [k + r]. Finally, set 

(1.2) b = ] / / ~  sin 
V r r 

c=e( 3 ( r -  2)] 

Framed links and 3-manifolds 

Let L be a framed link in S 3. Recall that L determines a smooth oriented 
4-manifold WL obtained by adding 2-handles to the 4-ball B 4, oriented as the 
unit  ball in C 2, along the components  Li of L in S 3 = t3B 4 [K2]. If L is oriented 
then each Li is identified with an element of H=Ha(WL;  Z), also called L~, 
formed from an oriented Seifert surface for L~ in S a and the core of the associated 
2-handle. The L~ form a basis for H, and  with respect to this basis the intersection 
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form on H, denoted b y . ,  coincides with the linking matrix of L. That is, Li. Lj 
=lk(Li .Lj)  for i4=j and Li .L  i is the framing on Li. We write a L (or a) for 
the signature of the linking matrix of L, or equivalently the index of W L. 

The 3-manifold ML=~3WL, oriented using the "outward first" convention 
for boundaries, is the result of surgery on L in S 3. Any oriented 3-manifold 
M may be obtained in this way [L1, Wa], and if M = M L = M L , ,  then one 
can pass from L to E by isotopy in S 3 and a combinat ion of the following 
two moves [K1]:  

Move 1 (blow up). Add (or delete) a disjoint unknotted component with framing 
+_1. 

Move 2 (handle slide). For some i # j ,  replace L i with Ei = L~ # L j, a band connected 
sum of Li with a push off  of  Lj  (along the first vector in the framing), with 
framing E i �9 E i = (Li + L j). (L i + L j). 

In Move 1, disjoint means separated by a 2-sphere from the rest of the 
link. Move 2 corresponds to sliding the 2-handle for Li over the 2-handle for 
Lj. These two moves can be combined into one [FR]  which is more convenient 
for the work of Reshetikhin and Turaev [RT2] : 

m-strand K-move (of type e=  + 1). Locally, the following are interchangeable 

m strands 

II I 
. . . . .  e twist 

L L'  

Fig.  1.3 

where the framings on corresponding components J and J' of  L and E are related 
by J ' . J ' = J . J + e ( K . J ' )  z. 

The colored framed link invariants 

At the heart of the 3-manifold invariant zr(M) are the colored framed link 
invariants Jr. k. Here L is a framed link in S 3 with M = ML and k is a coloring 
of L, i.e. the assignment of an ~4-module (or color) to each component  of L, 
where d is a certain Hopf algebra over C (that depends on the fixed integer 
r) arising in the theory of quantum groups. 

The algebra ~4 will be described in detail in w The reason for using a 
Hopf  algebra is that the set of representations (i.e. ~r is closed under  
taking tensor products and duals over the ground field C. This is important  
for the construction of JL,k, given in w 3. 

Here we will give a heuristic description of Jr, k in the language of topological 
quantum field theory (see e.g. [AHLS]). Orient L and represent it by a planar  
diagram D. After removing the extreme points (maxima and minima) of D, 
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~o 
Fig. 1.4 

assign the module V, or its dual V*, to each V-colored strand of L (according 
to whether the strand is oriented down or up, see Fig. 1.4). 

Any horizontal line 2 which avoids crossings and extreme points hits D 
in a collection of points labeled by the colors and their duals. Associate to 
this line 2 the module Va which is the tensor product of the labels in order. 
In Fig. l.4, Vzo=C=V~2 and V ~ = W * | 1 7 4 1 7 4 1 7 4 1 7 4  To each 
extreme point and each crossing, assign an ~'-linear operator from the module 
just below to the one just above. The composition of these operators maps 
C to C. Hence it is multiplication by a scalar which (after adjusting for framings) 
is defined to be JL,k. 

This construction should be independent of the orientation on L and the 
chosen diagram D, so as to give an invariant of (unoriented) colored framed 
links. Suitable operators are provided in I-RT1] using additional structure that 
exists on the algebra ~4. 

The 3-manifold invariant 

Recall that r is a fixed integer > 1. To define the 3-manifold invariant in terms 
of colored framed link invariants JL, J,, it is necessary to restrict the colorings 
k to lie in a distinguished family J / o f  d-modules,  consisting of one irreducible 
module V k in each dimension 0 < k < r  (see w We call these J//-colorings or 
write k c ~ ' ,  and denote the dimension of the color assigned to the component 
L i of L by ks, also called the color of Li. 

Now consider the following linear combination of colored framed link invar- 
iants. 
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(1.5) Definition. For any framed link L, define 

rL=~-Z ~ [k]JL, k 

where 
n 

CtL=b"~c ~ and [k ]= lT l [k i ] .  (Recall (1.2) that b =  sin n ,  e 
i= 1  r 

3 ( r -  2)'~ 
8 r ] ,  n = nL is the number  of components in L and a L is the signature 

of the linking matrix of L.) Note that since o ~ = { V  1, .. . ,  W 1}, the sum 

may be written in multi-index notat ion as ~ (see w k= 
O < k < r  

(1.6) Theorem [RT2] z L is invariant under K-moves  on L.  

Theorem 1.6 can be proved for 0 or 1-strand K-moves using three local 
properties of 3z, k and a standard Gauss sum (see 3.27, 5.1 and 5.4). Then the 
proof for m-strand K-moves is an easy inductive argument using the Symmetry 
Principle 4.20 (see (5.6)). 

It follows from Theorem 1.6 and [K1, FR]  that there is a well defined invar- 
iant for closed, oriented 3-manifolds: 

(1.7) Definition. r r (M)= zL, where L is any framed link with M = M L. 

(1.8) Remarks.  (1) The invariant that actually appears in [RT2] differs from 
vr(M) by a factor of c ~, where v is the nullity of the linking matrix of L (=first  
Betti number  of M). The advantage of L(M) is that it behaves nicely under 
orientation reversal. 

As a convenience to the reader, here is a dictionary relating the notation 
of [RT2] with the notat ion in this paper: The algebra Ut of [RT2, w 8] (where 
t = e ( 1 / 4 r ) = e x p ( 2 ~ i / 4 r )  as above) is our d = d ~ ,  and the Ucmodule Vi is our 
V~+ t. (Note that in Ut, the element u v - 1  is just  K 2 and  dim V/=[ i+  11). The 
link invariant F ( F ( L ,  co, 2)) of [RT2, w (where ~o is the orientation on L and 
2 is the coloring) corresponds to our JL,),. The constant  C defined in [RT2, 
w and 8.3.8] is our  c 2, the coefficient di is equal to our b c [ i + l ] ,  and so 
the invariant {L} =(bc)" ~" [k] JL, k. Thus the 3-manifold invariant defined in 

[RT2, w 3.3.2] is k = ~  

~----~(M,L)=b"c ~-~ ~,  [ k 3 J L . k = c - V z , ( M ) .  
k c .Ar  

(2) It is often useful for calculations to write z , (M)  (where M = ML) in other 
ways. For example, let a ; = L i . L i  be the framing on Li,  and write Lo for the 
link L with all framings changed to zero. It is shown in Lemma 3.27b below 
that JL k changes by t +(k?- 1) if the framing of Li is changed by + 1. Thus JL k 
= tZa,(k~, - 1) JLo. k' NOW, since c = t 3 e ( -- ~), (1.5) becomes 

(1.9) z , ( M ) = b ' e ( - - ~ ) n t 3 a - z a '  2 [k] tz"'k'~ JLo, k. 
k ~ ./a' 

The term q~ (L)= 3 a - - ~  a~ has been identified in [FG]  as the difference between 
the 2-framing on M determined naturally by L and the canonical 2-framing 
on M [A]. 
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4 r  

Furthermore, the Gauss sum G = ~ t k2 (see [La] and (5.1)) equals ] /~e(~) ,  
(2_ / ~ \  k = l  

a n d s o  b = ~r  (S - sO e ( - 3 )  since s -  ff = 2 i sin [ r ) . Formula  (1.9)becomes 

(1.10) . . . .  [_  (s-s-)\" , 3,.+,-3~ x, x, kZ ~ , t J v , ) = ~ r r  ) et--g~ , ' Z [k ] t  ' 'JLo, ,"  
k ~,4r 

zr(M ) belongs to the ring Z It • {, r -1 ]  since the i .  disappears It follows that 

using results from w 8. It is necessary to use t • rather than t, since for example 

(see (5.11) and (6.3)) z3(S 1 x S2 )=h=] /2=t3 /2 - -T  3/2. (Integer powers of t 
4 

s u f f i c e  

if the nullity is put back into ~, see (1.8)). Question: is z,(M) always an element 
of Z[-t• 

2 The quasitriangular Hopf algebra ~ /  

In this section we shall define the Hopf algebra d and produce an R-matrix 
R in d |  d making ~/  a quasitriangular Hopf algebra. We also show that 
the associated operators /~ in representations of ~/  satisfy the Yang-Baxter 
equation. 

Throughout  this section, r will be a fixed integer greater than 1. 

The algebra s /  

As motivation, we first recall the definition of the Lie algebra sl(2, C) and its 
representations: sl(2, C) is a 3-dimensional complex vector space with preferred 
basis X, Y,H and Lie bracket given by [ H , X ] = 2 X ,  [H, Y ] = - 2 Y  and 
IX, Y] = H. It  has a unique (up to isomorphism) k-dimensional irreducible repre- 
sentation V* for each positive integer k. Explicitly, sl(2, C) acts on V k (with 
preferred ordered basis e,,, e,,_ 1 . . . . .  e_,, where k = 2m + 1) by 

(2.1) X e j = ( m + j +  1) e j+ 1 

Ye j=(m-- j+  1) e i_ t 

n e j  = 2j ej. 

Note that the subscripts are integers if k is odd and half integers if k is even. 
For example, the 1, 2 and 3-dimensional representations of sl(2, C) are 

(2.2) (1) X = Y = H = 0  

,2,  )and 1 ~ 

(i2!) (i~ (i~ (3) X =  0 , Y= 0 and H =  0 
0 2 0 -  

respectively. 
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We extend this discussion to the universal enveloping algebra U = U(sl(2, C)), 
which is just the associative algebra over C with the same generators and rela- 
tions as sl (2, C). (The bracket is interpreted as for matrices. Thus HX--  X H  = 2X, 
or equivalently H X = X (H + 2). Similarly H Y = Y ( H -  2) and X Y -  YX = H.) The 
representations above evidently extend to algebra representations of U and so 
there are unique irreducible U-modules V k in each dimension. 

Note  that U has a Hopf  algebra structure (with comultiplication 
A : U ~ U |  antipode S : U - * U  and counit  e : U ~ C  given by 
A (~) = c~ | 1 + 1 | c~, S(~) = - ct and e(~) = 0 for all ~ in sl(2, C)). This allows one 
to define U-module  structures on the duals V*=  H o m c  (V, C) and tensor prod- 
ucts V |  W =  V|  c W of U-modules V and 141.. In particular, (~f)(v)=f(S(ct)v) 
and ~(vQw)=A~.(v |  (where U |  acts diagonally on V |  W), for ~eU,  
f e  V*, v E V and w ~ W. (This is the reason for using Hopf algebras in the construc- 
tion of the colored framed link invariants.) 

Next  we consider the quantized universal enveloping algebra U h =  Uh(Sl(2, C)), 
found by Kulish and Reshetikhin [KuR] .  It can be defined as the algebra U [I-h]] 
of formal power series in h ( =  Planck's constant for the physicists) with coeffi- 
cients in U, with the same relations as in U except that [X, Y] = H is replaced 
with 

[X, Y] sinh(hH/2) H a - H  h2 
sinh (h/2) H + T + . . . .  

Setting q = e h and (in analogy with the usual notation) s =  e hI2, t = e h/4, S=S-1 
=e -h/2 and 

S H - -  ~H 

[ H I  - 

these relations may be written 

(2.3) 

If we introduce the element 

H X = X ( H + 2 )  

H Y =  Y ( H -  2) 

[X, Y] = [HI .  

hn H H 2 
K = t n  = e T =  1 + ~  h + ~  h2+ 

214 ~ 

(which will play an important  role in the sequel), then we obtain the associated 
relations 

(2.4) 

w h e r e / (  = K -  1 = ~ .  

KX = s X K  

K Y = g Y K  

K 2 _ K  2 
[ x ,  Y] = [H ]  
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There is a Hopf algebra structure on U h as a module over the ring C [[hi] 
of formal power series, discovered by Sklyanin [Ski, with comultiplication A, 
antipode S and counit e given by 

(2.5) A ( X ) = X  |  + K  |  
A ( Y ) = Y | 1 7 4  Y 
A ( H ) = H | 1 7 4  
s ( x )  = - s X  

S(Y)= --gY 
S (H) = -- H 
e (X) = ~ (Y) = e (H) = 0. 

One may readily compute 

(2.6) A ( K ) = K |  
S(K)=/s 
e(K) = 1. 

2hi 
We would like to specialize U h at particular values of h, namely h = 

r / / 1 \ \  

(so q=eh=e(~ ) ) ,  and then look for complex representations. This cannot be 

done using the full algebra Uh, because of the presence of divergent series, 
and so we first restrict to the subalgebra, over the ring of convergent power 
series in h (i.e. entire functions), generated by X, Y, K and K. Now, following 
Reshetikhin and Turaev, we define 

d = d ,  

(denoted U, in [RT2]) to be the quotient of this subalgebra obtained by setting 

h= 2hi ,  X'=0 ,  Y '=0  and K 4r= 1. (Omitting the last three relations yields the 
r 

infinite dimensional algebra Uq of [Ji, RT1] known as the q-analogue of U.) 
Thus d is a finite dimensional algebra over C with generators X, Y, K, K 
and relations 

(2.7) /s = K - 
K X  = s X K  
K Y = g Y K  

K 2 _ ~  2 
IX,  Y] = 

S - - S  

X" = Y" = 0 
K4r= ]. 

where s = e (~-r)' as usual. (We will retain the notation 

SH--g n K 2 _ K  2 

I n ] =  s--g s - g  

even though H is no longer in our algebra.) d acquires a complex Hopf algebra 
structure from Uh, and so tensor products and duals (over C) of ~r 
are still d-modules.  
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S m 

[k-  l] i l  [1] 

[1]~[k-1] 

V k 

(a) 

S 3 

- l l i l  t 3 s 3 

s �9 1 i~ 
s , 

V 3 ( r = 5 )  g 7 ( r = 5 )  V 4 ( r = 5 )  W3 5 

(b) (c) (d) (e) 

Fig. 2.11 

Representations of d 

As with U, there are d - m o d u l e s  V k in each dimension k>0 .  In particular,  
~ / a c t s  on V k (with basis e,~, . . . ,  e-m, for k = 2 m +  I) by 

(2.8) Xe~ = [m +j + i ]  e j+ 1 

Y e j = [ m - j  + l] ej_ 1 
Kej=sJ ey=t2J ej 

(cf. (2.1), but note the brackets). The relation [X, Y] = [H]  follows from the 
identity [a] [b] - [a + 1] [ b -  I] = [ a -  b + 1]. 

F o r  example, ttie l,  2 and 3 dimensional  representations of d are 

(2.9) ( 1 ) X = 0 ,  Y = 0  and K = I  

(! i) ( i~ (i ~176 (3) 32= 0 [ ] , Y=  [ ] 0 and K =  1 
0 [2] 0 

respectively. 

(2.10) Remark It is useful to represent V k by a graph in the plane with one 
vertex at height j for each basis vector ej, and with oriented edges from ej 
to ej• 1 labeled by Ira-l-j+ 1] if [m+ j +  1] # 0  (recall k = 2 m +  1), indicating the 
actions of X and Y This graph, with the top vertex labeled by its weight (i.e. 
eigenvalue for K) s m, is called the diagram of V k with respect to e,~, . . . ,  e_m. 
(See Fig. 2.11a, with the special cases k = 3  and 7 for r = 5  shown in 2.11b 
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and c, using the identities [j] = [ r - j ]  = - [ r  +j].)  Similar diagrams can be used 
to describe other finite dimensional d -modules  with respect to bases of weight 
vectors (i.e. eigenvectors for K). 

The diagram of a module is often simplified by rescaling the basis (i.e. chang- 
ing the lengths of the basis vectors). In particular, if v is changed to av, then 
the label on each edge which starts (or ends) at the corresponding vertex is 
multiplied (or divided) by a. 

For  example for k<r ,  the basis e . . . . . .  e_,, for V k c a n  be rescaled to a 
unique basis b,,, ..., b_,, (up to a multiple), called a balanced basis, with 

X b ~ = ( [ m + j +  13 [ m - j ] )  U2 b~+ 1 

Y b i = ( [ m - j  + 1] [m+j]) 1/2 b j_ 1 

Kbj=sJbj .  

( [ 2 m ]  1/2 [n I [n]! 
Indeed e j = [ ~ ] ]  bj, where k [ k ] ! [ n - k ] !  is the quantized binomial coef- 

\ 

ficient, cf. (2.29).) Observe that in the corresponding diagram, any two oppositely 
g 

oriented edges with the same end points have equal labels of the form ([i] [k 
- i ] )  l/z, and so can be combined into one doubly oriented edge. The case r =  5, 
k = 4 is shown in Fig. 2.11 d, 

It turns out that the representations V k are irreducible if and only if k<  r 
(see below), and so it is natural to define the distinguished family 

(2.12) J I = { V  1 . . . . .  V ~-~} 

of d -modu les  to be used in constructing the 3-manifold invariant z,. (W is 
excluded for technical reasons; see Lemma 3.29 below.) 

The structure of the d -modules  V k for k< r ,  and their tensor products 
v k |  V k' for k + k ' < r +  1, is parallel to the classical case, and is summarized 
in the following well known result (see e.g. [Ji, Lu, RT2]). 

(2.13) Theorem I f  k <_r, then the modules V k are irreducible and self dual. In 
particular, the map D: (vk)*--* V k given by D (b j) = ( - s )  j b_ j, where bj is a balanced 

basis with dual basis b j, is an ~r isomorphism. {Equivalently, D(#) 
\ 

Furthermore, if k + k' < r + 1, then 

Vk | V*r= @ VP 
p~k~k" 

where k |  k '=  { k + k ' -  1, k + k ' -  3 . . . . .  I k - k ' l  + 1}. 

Proof  It is evident from its diagram that for k < r, V* contains no proper submod- 
ules generated by weight vectors ej. But for k<2r ,  every submodule of V* is 
generated by weight vectors, since the weights of the ej are distinct. Indeed, 
for any nonzero vector v = ~ aj e j, each ej is a multiple of v by a suitable polyno- 
mial in K, and so the submodules generated by v and by the ej with aj~eO 
coincide. It follows that V k is irreducible for k < r. 
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�9 ~ e l |  �9 2 

\ \  

e-i| e-2 *~.| *-2 
Fig. 2.14 

For the second statement, note that a C-linear isomorphism D is ~r 
provided D ( a b J ) = a D ( b  j) for a = K ,  X and Y For D of the form D & ) = c j b _ j ,  
this imposes no restriction on the cj for e = K ,  and the sole restriction c j=  
( - s ) q _ ~  for a = X  or g To see this, one may compute the action of d on 
V k* : 

X d  = -- s [rn +j]  e ~- 1 

Y d  = - g[rn - j ]  e J + 1 

K e ~ = g ~ d ,  

or in the balanced basis, 

x / ;  = - s ( [ m - j  + 13 [m +j])~J: b j -  

Yb ~ = - g([m + j  -t- 1] [rn-j])l/2 bj+~ 

K bJ = gJ b ~. 

//Not e that bJ~lm~ill[2eJ.)l-~-m~t Th e self duality result follows, 
L J . d  / 

Finally, to verify the decomposition of V k | V ~" observe that there are weight 
vectors vp in v k |  k" of weight t p-1 with X v p = O  for each p in k |  since 
the dimensions of the corresponding weight spaces decrease as p increases. (To 
see this it is useful to use the diagram for v k |  V k' with respect to the weight 
basis e / |  with vertices at (i , j) ,  see Fig. 2.14 for the case V3| VS.) It follows 
that the submodule generated by vp is isomorphic to V p. These subspaces are 
independent since any collection of equal weight vectors lying in distinct V p 
are annihilated by distinct powers of X. A dimension count completes the argu- 
ment. [] 

As a consequence of Theorem 2.13, each of the irreducible modules V k can 
be expressed as a linear combination of powers of V 2 in the representation 
ring of ~r (where for example 2 V + U W  means V ~  V G ( U |  W) ,  (V) 2 means 
V| V(not V2), and U =  V -  Wmeans U@ W= V): 
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(2.15) Corollary For 0 < n < r ,  the equality 

gn+l= Z ( - - 1 ) J  F/ ( v 2 ) n  2j 

j = o  

holds in the representation ring, where the sum is over all integers j with 0 < 2j < n. 

Proof Theorem 2.13 implies that V "+ ~ = V 2 V n -  V"-  1. Thus by induction (which 
starts trivially at n = 0), 

V ~ + l = V 2 ~ ( _ l ) J ( n - ~ - J ) ( v 2 ) ~ - ' - 2 J - - ~ ( _ 1 ) ~ ( n - 2 - J ) ( v 2 ) ~ - 2 - 2 ~  

J J 

n 2 n  n - 1  

It is amusing to note that the same identity holds with the bracket I-n] 
replacing V". The same proof  works. 

For  small values of n, we have 

V 3 = V 2 | V 2 _ V 1 

V4= V 2 | V 2 | V 2 - 2 V  2 

Vs=V2  | V2|  Vz | V2--3V2 | V2 + V 1. 

Remark. The structure of the tensor product vk(~  V k" for k + k ' > r +  1 is more 
complicated. This has been analyzed by Reshetikhin and Turaev [RT2]  (and 
independently by A. Wasserman and J. Fr61ich-G. Keller) and is central to 
their proof  of the invariance of the 3-manifold invariant. We will give a different 
p roof  of the invariance in w 5 which depends on the Symmetry Principle 4.20. 
This in turn is based on the structure of certain r-dimensional d - m o d u l e s  W; 
discussed below (which arise as well in the general discussion of tensor products). 

In contrast with the case of U,  the a t -modules  V k are reducible for k >  r. 
In particular, the subspace Vk r generated by ej for j > m - r  is an r-dimensional 
submodule, since Ye=_r+ l=  [r] e , ,_ ,=0 .  These modules are called Verma mod- 
ules. 

Observe that  V~'= W, and (as is easily seen using Remark  2.10) Vk" and Vk'+4, 
are isomorphic. If r < k < 2 r ,  then V k' contains V p, where p = 2 r - k ,  as its unique 
proper  submodule, which motivates the notat ion adopted in [RT2]  

r r W;- ~r-p 
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for 0 < p < r .  (See Fig. 2.11e for the diagram of W35 = VS. ) Indeed, it is clear 
from the diagram of W; that V p is the only submodule generated by weight 
vectors, but every submodule is of this form by the argument in the proof 
of Theorem 2.13. 

In fact, the Verma modules W; may be described as extensions of V p by 
a twisted version V~-P(i) of V r-p. In particular, observe that there are exactly 
four 1-dimensional ~r V ~ (c 0, where ~4 = 1, given by K = c~ and X = Y = 0, 

K 2 _ / ~  2 
(The value of K follows from the relation IX, Y] , which gives K 4 = 1 

since IX, Y] = 0 in C, and the values of X and Y are immediate from the relations 
K X = s X K  and KY=gYK. )  For any ,~-module V, put 

v(~)  = v |  v ~ (~). 

(A diagram for V(c 0 is obtained from one for Vby multiplying the vertex weights 
by ~.) It is now easy, using Remark 2.10, to establish the following result. 

(2.16) Lemma [RT2, w 8.4] There is a short exact sequence 

0-~ Vp ~ W;-~ vr-p(i)--,O 

for 0 < p < r, where V p is the unique proper submodule of  W e. 

Similar considerations apply to the general Verma modules V[, since Vk'+,, 
is isomorphic to Vk'(i" ). 

The R-matrix 

The algebra ~ has the additional structure of a quasi-triangular Hopf algebra 
(see Drinfeld [D2]). That is, there exists an invertible element R in d |  
satisfying the following properties: 

(2.17) (a) RA(ct)R -1 =zl(c 0 for all ~ in d 

(b) (A |  

( id |  

where A(~)=P(A(a)), P is the permutation endomorphism of d given by P 
P( e |174  R I 2 = R |  I, R2a= 1 |  and R13=(P| (Explicitly, 
if R = ~ a i |  then R ~ z = ~ e i | 1 7 4  R 2 3 = ~ l Q a ~ |  and R13 
= ~ i @  l|  Such an element R is called a universal R-matrix for d ,  and 
is the central ingredient in the definition of the colored framed link invariants. 

Historically, an R-matrix was first discovered in the algebra Uh by Drinfeld 
[D1] and independently by Jimbo [J] in the algebra Uq. R-matrices in d 
have been written down by several authors, including Reshetikhin and Turaev 
[RT2] and A. Wasserman. We give a formula for R of the form R 
-= ~ c,,  b X" K" N Y" K b, which is derived by recursively solving for the constants 
c,.o using the defining relation (2.17 a). (This approach to finding R was suggested 
to us by A. Wasserman, who has previously carried out a similar calculation.) 
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(2.18) Theorem The element 

R = 1  ~~ (s--sO n ~ab+(b-a)n+nxnga(~ 
4r .~a.b [n]! y"Kb' 

where the sum is over all O < n < r  and O<a, b<4r,  is a universal R-matrix for 
~r 

Proof. As mentioned above, we assume that there exists an R-matrix of the 
form 

(2.19) R= s CnabXnKa@ Y"K b O<n<r,  O<a, b < 4 r ,  
n,a,b 

and then find c,a b by solving RA (X)= A(X) R and R A ( Y ) =  A(Y)  R. 
First note the following commutation relations in d (see 2.7): 

(2.20) K X = s X K  and [ H ] X = X [ H + 2 ]  

K Y = g Y K  and [H]  Y = Y [ H - 2 ]  

Y X  = X Y- -  [Hi  

sH+n__g H+n SnK2__~'nK.. 2 
where [ H  + n] s -  g - s -  g . By induction, using the identity 

[a]  [ n  + c + b] + [ b ]  [ n + c - - a ] = [ a  + b] I n + c ] ,  

we can generalize the last relation in (2.20) to 

Y n X = X Y n - - [ n ]  [ H + n -  1] y , - 1  

Y X n = X  n Y--In]  [ H - - n +  1] X "-t .  

Now we have (recalling from (2.5) that d (X) = X | K + / (  | X) 

0 = RA (X) -- A(X) R 

= ~ cnab(XnKaX(~ y .  Kb+l + X n K . - I |  yn KbX 
n~a,b 

- -  K X  n K" | X yn K b _ X n + 1 K ~ | K yn K v) 

= ~ Cnab(saX n+lK" |  y n K b + l + s V X n K . - 1  |  b 
n,a,b 

sb[ n']= (gn-l Xn K " - l  | y n - l  Kb+ Z - s n -  l Xn K"- l | Yn- l  KV- 2) 
S--S 

__snXnKa+l |  K . |  ynKb 1). 

Thus the  coefficient of X n K " |  b is --SnCn.._l,b+SbCn, o+~,b=O which 
implies that 

(2.21) _ . -b _ ~-~ Cn, a+2,b--S Cnab--S Cna b , 



3-manifold invariants of Witten and Reshetikhin-Turaev 489 

Also, the coefficient of X" K " |  Y"-1 K b is 

s b -"  ~ In] s ~ +" + '  In]  
(2.22) S"C.-1,.,b-1 S - - ~  C . . . .  1.b-2+ S--g C . . . .  ,.b+2 

__S  n -  1Cn - 1 , a . b+  1 = 0 ,  

Similarly, using RA (Y)-- ~(Y) R = 0, we get 

O= ~ Cn.b(gaX n YK"@ y n K b + I + g o X n K a - I  @ yn+IKb 
n,a,b 

_ s , X , K , + I  | y ,+l  Kb snXn Y K " |  Y n K  b-1  

+s"[nJ (s , - ,  X .  1 K , + 2 |  y ,  K t , - ~ _ ~ , - I  X . , K a - 2 @  yn Kb- l )  
S - - S  

and so the coefficient of X " Y K " |  b is ~'c .... b_z--S"C,,~,b+~=O which 
implies 

(2.23) c .... b+Z=g~+'c .... b" 

Also, the coefficient of X ' -  1 K" | Y" K b is 

(2.24) 

_ s . _  l c ~n]~ c I n ]  S b C n - l , a + l , b  n - l , a - l , b  + __ S 2 n - 1  n , a _ 2 , b + l - - ~ _ _ ~ S C n ,  a + 2 , b + l = O ,  

Using (2.22) and (2.23) we obtain 

s - -~  
(2.25) C"'"'b = In] s o C,_ t . , -  l.b-1 

which can also be obtained from (2.21) and (2.24). 
If  we choose c01 o, o = 1, then from (2,21) and (2.23) c0, 2,. 2b =gZab= ~ , b  Thus 

it is a natural choice to let CO,b = ?b (which is consistent with (2.21) and (2.23)). 

- -  ( S -  S~)n 7 a b + ( b - a ) n + n  the element It follows from (2.25) that  for the values c, ,  b -  [~7- .v  ~ 

R of (2.19) satisfies the first defining relation (2.17a) of the R-matrix. In fact, 
in order to satisfy the second defining relation as well, it is necessary to normalize 

by multiplying by ~ - .  Thus, we put  
t + r  

1 ( s - s 0 "  ? b + ( b - . ) . + .  
(2.26) C"ab=4r In]! 

which gives the desired 

1 ~ (s--sO ~ ~b+(b_~).+,X,K ~ y .  Kb 
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satisfying (2.17a), and it remains to verify that R is invertible and satisfies (2.17b). 
We will check the axiom 

(2.27) (A | id) R = R13 R23 

and leave the rest as an exercise. 
We need a quantized version of the binomial  coefficients (this goes back 

g k 

to Gauss). I f B A = A B ,  then (A+B)"=~,(n~}AkB "-k defines the binomial coeffi- 
k \ , ~ /  

(t cient k ' Similarly, if BA = qAB (q arbitrary), then 

(A+ B)"=  k q 

[1 defines the binomial q-coefficient k q" It can be verified by induction that 

k q-- [k]qtEn-k]q! 

where 

(2.28) 
q n m  1 

[rt]q = 
q - l "  

This is just an unbalanced version of the In] used in this paper, i.e. In] q = s"- 1 In]. 
It follows that 

(2.29) k q Ek]![n-k]!" 

Returning to the axiom (2.27), the left hand side (A | id) R is 

1 V (s-s3" ?b+(b_o),+,( X 
(2.30) ~rr n,~b ~ | K + K'. | X)"(K | K)a| yn Kb 

n n 
1 . ~ [ ] y k k . k _ n + a r ~ k ( n _ k )  x n _ k K k + a |  y .  Kb ' 

--4r ~ ~..b /_. /L./ . . . .  ~ 
n, a, b k = 0 L'~Aq 

since (K | X) (X | K) = q(X | K) (/s | X), and the right hand side R 13 R23 is 

1 
(2.31) (4r) 2 ~ c,,,,,,b,c,,,,,,,,b,,X"'K"'| b'+b''. 

n',a',b' 
n " ,a" ,b"  

We need to show equal the coefficients of 

X k K a' | x" -k  K"" | Y" K b 
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where a' = k -  n + a and  a" = k + a in (2.30), and k = n', n" = n -  k and b = b' + b" 
in (2.31). Fur thermore ,  note  tha t  a ' = a " - n  in (2.30), but  there are terms in 
(2.31) for which a'4= a " - n  so these terms must  be shown zero. 

Using  (2.29) and  (2.26), we compute  this coefficient in (2.30) to be 

1 
. . . .  

1 (s-s3" ?b+(b-.).+.. [n]! 
- 4 r [n ]  ! [k]  ! I n -  k] ! 

- 4 r  [k]! En-k]!  

Since b' and  b" can vary as long as b ' +  b " - b ( m o d  4r), the cor responding  coeffi- 
cient in (2.31) equals 

l 4 r - -1  

1 6 r  2 ~' Cka'b" Cn-k,a,, b -  b, S ~ ' (n-k)  
b , = O  

_ 1 4~1 (s_0k ?'b'+(b'-.')k+k 
16r2 b'=0 

( S - s - ) n - k  ~a"(b-b')+(b-b'-a")(n k)+n-k ~2b'(n k) 

I n -  k] ! 

1 , , - 1  ( s - t ) "  ?'(a'-."+.~+~ .'k+."~+b.-bk o".+~"k+.J 

- Z [ k ] ! [ n_k ]T  16r2 b'=0 

4 r - - 1  
_ 1 (s-s-)" ? o'k+."b+~.-b~-.".+."~+.~ }2 ?'(.'-o"+.) 

16r 2 [k] v [ n - k ] !  
" b ' = O  

W h e n  a ' - a " + n + O ,  the sum on the r ight  is zero, as it should  be for there 
is no  cor responding  term in (2.30). If a ' - a " + n = O ,  then the sum equals  4r, 
and  subst i tut ing a' = k -  n + a and  a" = k + a, we ob ta in  

1 ( s -D"  pb+(b-a)n+n 
4 r [k] ! [ n -  k] ! 

as the c o m m o n  value of this coefficient in (2.30) and  (2.31). [ ]  

(2.32) Corollary (a) R acts on the module V k | V k' by 

R(ei |  (s--D" [ m + i + n ] !  [ m ' - j + n ] !  t4u_zn(i j )_n(n+l)ei+n| n 
. In ] !  [ m + i ] !  E m ' - j ] !  

where k = 2 m + l ,  k ' = 2 m ' + l ,  [ n ] ! = E n ] E n - 1 ] . . . [ 1 ]  ( = 1  for n=0) ,  and [p]! 
In]! 

=Ep]  [ p - 1 ]  ... En+ 1]. The sum is over all n>O with i + n < m  and j - n > - m ' .  
In particular, if i = m or j = - m', then R (el | e~) = qU ei | el. 
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(b) I f  V is an d-module and v is a vector in V of weight t p (i.e. Kv=tVv), 
then R maps vQe  in VQ VI(cO to at'vQe, and e Q v  in VI(a)@ V to e| 
(For the definition of V 1 (a), look above Lemma 2.16.) 

Proof F o r  the  k -d imens iona l  r ep r e sen t a t i on  V k wi th  basis  e,,,  em ~ . . . .  , e_, , ,  
recall tha t  K ei = s i e~, X e i = [ m +  i + 1 ] e~ + 1 a n d  Yei = [ m  - i + 1 ] e~_ 1. I t  fol lows 
f rom the  t h e o r e m  tha t  R acts  on  V k | V k' by 

(2.33) R(e, | e j) = ~ r  ~o (s-- s-)" Em + i + n] ! [ m ' - j  + n] ! 
. = En] ! Em + i] ! [ m ' - j ]  ! 

~ tab+(b-a)n+n-2ai-2bJe |  
i+n j-n" 

a,b 

Obse rve  tha t  the  e x p o n e n t  of  t - c a n  be wr i t t en  as  ( a + n - 2 j ) ( b - n - 2 i ) +  
( n -  2j) (n + 2 i) + n. I t  is an e l emen ta ry  fact tha t  

so it fol lows tha t  

4 r =  ~ ? b =  ~ ~a+n--2j)(b-n-2i) 

O<a,b<4r O<a,b<4r 

~ab+(b_a)n+n_2ai_2bJ~4r.~n(n+l)_4ij+2n(i_j ) 

O<a,b<4r 

and  subs t i tu t ion  in (2.33) gives 

R(ei@ej)=~ n (S--S~n[n] ! Em+i+n]![m + i] ! [m'-j+n]![m,_j] ! tn(n+l)+2n(i-j)-4iJei+n(~ej-n 

which  p roves  (a). 
F o r  (b), no t e  t h a t  e is an  e l ement  of  the  ( twisted) 1 -d imens iona l  m o d u l e  

V 1 (c 0 wi th  ~ = i " =  t r"  for s o m e  m (so K e = c~e = t ' '  e), a n d  so we have  

1 
R(v |  ~b~b-"P-b"v |  

=,to.(• 2 v| 
\4r ,,b ] 

Thus  R(v | e) = ~P v | e, since the  sum equa ls  4 r  as above .  The  o t h e r  case fol lows 
in the  s ame  way. [ ]  

(2.34) Remark T h e  ac t ion  o f  the R - m a t r i x  in the  modu l e s  V k |  V ~' g iven in 
the p rev ious  co ro l l a ry  can a lso  be de r ived  using Dr infe ld ' s  R - m a t r i x  in Uh [D2,  
p. 816],  

R= L h"Q,(h) tH|174174 ". 
n=0 
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Here X • and H are generators for U h with relations [D2, p. 807] 

[H, X • = + 2 X  • 

[X+,X- j=2h  s inh(h~)  

s - - g  
- h [H], 

q-I_6 
q - - i  k=X 

_ f i  1 ~ 1 :-,(.+ ~) 
--k: l  ~ S  = [ ~ .  t 

The generators X and Y correspond to _ 2 X § and Y+ (giving the 
\ s -  g/ 

relation [X, Y] = [H]), and substituting these in Drinfeld's R-matrix gives 

( s - s T  R= ~ t n |  +n(H| l -  l |  l)  x n  (~) Y". 
.=o [n]! 

(Since (s-s-) 'P("+l)=(1-4) 'P ('-1), it follows that there is a missing p ( , - i )  in 
the formula for the R-matrix in [RT1, w and a missing t ~("-1) in [KiR, 
w 1.7].) 

To compute the action of R on e i |  j in v k |  k', observe that t u |  
h 

= 1 |  H |  ~ . H Z |  and t " ( n | 1 7 4 1 7 4 1 7 4  

= K" | K', which gives 
t H | H ei @ ej = t 4ij e~ | ej 

tn(H | 1 - 1 | H) ei @ e j  = t 2n(i - j )  e i | e j .  

Thus 

_ ( s - s 3  ~ R(ei | e i) = ~  ~ t "(i 4-.~(i-"' + 2,,(r ,,)- 0 -  "),- ""  + 1) 

[rn+i+n]! [m'--j+n]! 
[m + i] ! [m' --j] ! el +, | e j_.,  

which readily yields the formula given in Corollary 2.32. 

(2.35) Definition The R-matrix, viewed as an operator  on V |  W for sO-mod- 
ules V and W,, can be composed with the permutat ion operator  P to give an 
operator  

R= PoR:  V | 1 7 4  

which we call the R-matrix (read "R flip matrix") on V |  W. 
These are the operators associated with crossings in the definition of the 

colored framed link invariants. 
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(2.36) Lemma. "/he R-matrices are .~r and satisfy the Yang-Baxter equation 

(as operators U|  V| W ~  W|  V| U for sr U, V and W), where R,2 
=/~ |  and J~23 =id | 

Proof The first statement follows readily from the first defining property (2.17a) 
of R. Indeed, for X in V| W, we have 

t~(c~X)=P(RAcoX) (- =diagonal action) 

=P(P(Ae)R.X) (by (2.17a)) 

=LI~P(R. X) 

=~R(x). 

The second also follows from the defining properties of R. First we derive the 
Yang-Baxter equation for the R-matrix, namely 

as follows: 
Rt2 RI3 R23= R2a RI a R12, 

R12R13R23=-R12.(A| (by (2.17b)) 

=(z~ | id)(R)'R12 (by (2.17a)) 

=(P| (by (2.17b)) 

=Rz3RI3R12. 

Now view this as an equation of operators U | V | W-~ U | V | W and multi- 
ply on the left by the operator Pz3P12 Pz3=P12P23 P12, where P j 2 = P |  and 
P2~ =id  | P. Observing that P~j R~k = Rjk P~j for j 4= k, we obtain the Yang-Baxter 
equation for R. []  

(2.37) Examples If the preferred weight basis ei |  for V~| k' is put in 
decreasing lexicographic order with respect to (i+j, i,j), then the R-matrices 
given in Theorem 2.18 decompose into block sums, with constant i+j in each 
block. For example, the R-matrix in V z | V 2 is given by 

(with respect to the basis el/2 (~ ex/2, el/2 (~) e_ l/z, e_ 1/2 | el/2, e_ x/2 | e_ t/z), 
and the corresponding/~-matrix is 
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Similarly the/~-matr ix in V 3 | V 3 is ,) (o o 
(q) G q--  G 0 1 

( q - ~ ) ( l +  c~) 

and the/~-matrix in V 2 | V 3 is 

-) 
( q - q ) ( t  - ~ )  

[ 
{(q- ~)(s+s3) (~ (s). 

1 ) G(q), 
q - ~  

3 Tangle operators and link invarinnts 
The link invariants JL. k (see Definition 3,25) are special case~ of the more general 
tangle operators which we define first (in Theorem 3,6) 

Tangles 

Recall that a tangle T is a 1-manifold properly embedded (up to isotopy) in 
the unit cube 13 in R 3 = S 3 - ~ ,  with ~ T c �89 • I • ~1. Define ~_ T =  Tc~ (i2 x 0) 
and ~+ T=Tc~(I z • 1), and call T an (m, n)-tangle if r e = l ? _  TI and n = l ? +  TI. 
Thus a link is a (0, 0)-tangle, and a general tangle consists of a link together 
with a collection of proper arcs. All tangles will be assumed oriented and perpen- 
dicular to 12 x ~I. 

A framed tangle is a tangle T equipped with a framing of its normal  bundle 
(up to isotopy tel 0T) which is standard (i, _ j )  on 3T  (where the sign is chosen 
so that the frame followed by the oriented tangent to T is the standard frame 
on R3). Since we are working in S 3, there is a natural O-framing on each compo- 
nent of T, and so the framings may be specified by integers in the usual way. 
Alternatively, they may be specified by thickening the embeddings to ribbons 
in the direction of the second vector of the framing, as in the homogeneous 
ribbon tangles of [RT1].  

As for links, one often studies tangle~ by their diagrams D in the square 
12 (obtained by regular projection onto 0 • 12) with 313 c I • ~1, Note  that the 
0-framing of a tangle T is in general different fro m t he blackboard framing coming 
from a diagram D of T, in which the second vector ts always parallel to 0 x 12 
(see F i g  3.1). 

in=eger notation 

blackboard I ~ - l .  

rlbhen nosation 

O-framing 

Fig. 3.1 
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I R L n u 

Fig. 3.2 

Fig. 3.3 

If the framing on T and the blackboard framing coincide, we call D a good 
diagram of T. Any diagram of T may be made into a good diagram by adding 
kinks. It is well known that every tangle diagram can be factored into the 
elementary diagrams I, R, L, c~ and w shown in Fig. 3.2 (with all possible orienta- 
tions) using the composition o (when defined) and the tensor product | of dia- 
grams (see Fig. 3.3). Of course, distinct factored diagrams may represent the 
same tangle. For  example Lo R =  I | 1 (with appropriate orientations), which 
may also be written as ~=Jl. In fact, the following result follows easily from 
the work of Reidemeister [R]. 

(3.4) Theorem ([Ye, FY, T2, RTI]).  Any two factored good diagrams of a given 
framed tangle are related by a sequence of the following moves (with all possible 
orientations) 

,.,?s 
Fig. 3.4 

together with the implicit associativity and identity relations and (SOT)@ 
(S'o T')= (S | S')o (T|  T') (i.e. tangles are morphisms of a strict monoidal category, 
see e.g. [FY]). 

Remark. Moves (a)-(d) generate regular isotopy of tangle diagrams [-Kf, Tr]. 
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Colored framed tangle operators FT 

Now fix a quasitriangular Hopf algebra (A, R) and define a coloring of a tangle 
T(or one of its diagrams) to be an assignment of an A-module to each component 
of T. This induces a coloring of OT as follows: if S is an arc of color V, then 
assign V to each endpoint of S where S is oriented down, and the dual module 
V* to each endpoint where S is oriented up (see Fig. 3.5). Tensoring from left 
to right, this gives boundary A-modules T• assigned to 0+ T (T+ = V and T_ 
= V| W* | W in Fig. 3.5). By convention, the empty tensor product is C, and 
so T• = C if T is a link. 

In the next result we show how to obtain tangle operators T_ ~ T+ for 
colored framed tangles T which behave well with respect to compositions and 
tensor products. This construction depends on some additional structure on 
the quasitriangular Hopf algebra (A, R) (with even more structure one obtains 
the ribbon Hopf algebras of Reshetikhin-Turaev, cf. Theorem 5.1 in [RT1] and 
Remark 3.16 below). 

(3.6) Theorem Let ~ be an invertible element of a quasitriangular Hopf algebra 
(A, R = ~, cq | fli) satisfying 
(a) I~af~=SE(a) for all ~ in A 

where fi denotes the inverse of #, Then there exist unique A-linear operators 

Fr=  Fr*R'": T_ --,T+ 

assigned to each colored framed tangle T which satisfy FToT,=FT~ ,, FT• T, 
= F r | Fr., and for the tangles given by the elementary diagrams (of Fig. 3.2) 
with the blackboard framing, 

F I =id  

FR=I~ and FL :/1~ -1 

F ~ = E  and F~=E u 

F.~= N and F~= N a 

where E ( f |  x) = f(x), E,(x |  = f(#x), U(1) = ~  ei | e i and N~(1) = ~ d | (fie~) 
(for any basis ei). Note that for a link L (i.e. (0, O)-tangle), F L : C--* C is just 
a scalar. 

Proof First assign operators Fo: D_-*D+ to each elementary diagram D, as 
in the theorem. (Observe that orientations are implicit in the definitions of the 

first three operators. For example ~ and ~ are assigned /~-matrices on 

U V U V 



498 

(~) 
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(b) (c) 
Fig. 3.7 

U | V and U* | V, respectively.) A-linearity follows from Lemma 2.36 (for the 
crossings), and from the Hopf algebra axioms and property (3.6a) of /z (for 
the extrema). Indeed, for E: V* | V-+ C we have, for all a in A 

E(o:(f| x)) =f((m(S | id) Aa) x) where m is multiplication 

= f (e(e) x) by the antipode axiom 

= e,(o 0 f(x) 

=aE( fQx) .  

Similarly N: C ~  V@ V* is A-linear. For  Eu: V| V* -~C we have 

Eu(a(x @f)) = Eu(A ~(x |  

=Eu(~,(aix)| where A~=~ai |  

= f ( ~  S(bi) #ai x) 

= f ( ~  S(b3 $2(a3 lax) by (3.6a) 

=f(S(m(S | id) A a) #x) 

= f ( S ( e ( a )  1) #x)  by the antipode axiom 

= f(e(00 lax) 

= aE u (x | f ) .  

A similar argument shows that Na is A-linear. Note that the role of/~ (in the 
operators for the backward extrema) is essential, since the maps x| 
and 1 ~ ~ e i | e~ are not in general A-linear, due to the fact that the permutation 
map P is not in general A-linear, 

Now extend the definition of F o to arbitrary factored good diagrams D 
of colored framed tangles T by the rules FOoo,=FooFD, and FD|174 
To show that these induce well defined operators Fr on tangles, it remains 
to show that FD is invariant under the moves (3.4a-e). 

Move (3.4a) follows from /~ /~-1=i= /~-1 /~ ,  and (3.4b) follows from the 
Yang-Baxter equation of Lemma 2.36 (which holds, by the same proof, in any 
quasitriangular Hopf algebra). For  moves (3.4c-e), we establish the cases shown 
in Fig. 3.7 and leave the rest as exercises. 
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For  move (3.7 a), which says (E, | id) (id | N,) = id, we have 

(E. | id) (id | N~) (x) = (E. | id) (~  x | e ~ | fie,) 

= ~ ei(#x) fiei 

= fz }~ ei(#x)ei 

=f t l lx  
= X ,  

For  move (3.7 b), which says (id | E,)(/~ | id)= (Eu | id)(id |  ~), first note 
that  the inverse of the R-matrix R=~cc~| can be computed easily using 
the ant ipode axiom as 

(3.8) R - t = ( S |  id)(R)-- ~ S(c~,) | fl, 

(see e.g. [RT1, w 3.1.6]), and so 

(id | E,) (/~ | id) (x | y @ f )  = (id | E,) (~/~, y | cq x | f )  

= ~ fl, Yf(#~i  x) 

=~, f l i y f (S2( ,h l~x)  by (3.6a) 
= (E u | id) (~  x | S (~,) f | fl, y) 
= (E u | id) (id |  ')  (x | y | f ) .  

Finally, move (3.7c) says 

(E | id) (id |  (N o | id) = (id | E~,)(/~ | id) (id | N). 

The value of the left and right hand sides on an element x are readily computed 
as ( ~  7i it fli) x and (~/?i  It cq) x, respectively, and these are equal by (3.6 b). [ ]  

Properties of  tangle operators 

Now we establish various properties of tangle operators.  We shall always assume 
that we are in the setting of Theorem 3.6, so 

Fr= Fr .tcu 

for some fixed quasi tr iangular  Hopf  algebra (A, R) and unit t~ in A satisfying 
(3.6ab). 

We begin with an elementary but  useful fact about operators  o f ( l ,  1)-tangles, 

(3.9) Lemma Let T be a colored framed (1, 1)-tangle and V be the color of  
its (unique) arc component. 
(a) I f  V is irreducible, then F r is a scalar operator (i.e. a multiple of  the identity). 
(b) I f  V is reducible with a unique proper submodule, then F r is the sum of a 
scalar operator and a nilpotent operator. 

Proof Observe that any eigenspace for the operator  F T is a submodule of V 
(or V* depending upon  the orientat ion of the arc of T), since F r is A-linear. 
The Lemma follows immediately by considering the Jordan canonical  form of 
Ft. [] 
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a, b, c, d~Bv, e~B~, 

(7+ (p)=a| b, a_(p)=c| 

(7+ (q)= 1, a_(q)=b| 

0"+ ~ a ,  t7_ ~ C  

Fig. 3.12 

Next we consider how tangle operators behave under direct sums, extensions 
and tensor products of colors. Parts of this result were stated previously in 
w of [RT1]. 

(3.10) Lemma Let T be a colored framed tangle and K be a component of 
color V. Write TX for the tangle obtained by changing the color on K to X. 
(a) I f  V = X ~ )  Y, or more generally V is an extension of Y by X (i.e. there is 
a short exact sequence 0 ~ X ~ V--* Y ~  0 of A-modules), and K is closed, then 

~ = ~ x + ~ .  

(see [RT1, w for the case V = X  @ Y). 
(b) I f  V = X  ~) Y and K is an arc between the bottom and top of the tangle, 
then 

where the modules T• are naturally identified with TX + O) TY• . 
(c) I f  V = X | Y, then 

Fr= FTx~ 

where T X Y  is the tangle obtained by replacing K by two parallel pushoffs of 
itself (using the framing) colored X and Y, respectively. (See [RT1, w 6.4.2].) 

(3.11) Remarks. (1) Statements similar to (a) and (b) hold for arcs K joining 
the bot tom or top of the tangle to itself. 

(2) We will prove (a) using the following states model for F r.  Fix a factored 
good diagram D for T and preferred bases Bv for each color V. Let P be the 
set of critical points (i.e. extrema and double points) of D, and denote the elemen- 
tary factor of D corresponding to a point p in P by Dp (i.e. Dp is the diagram 
in a small box about  p). 

A state a of D is the assignment of a label a(S) to each component  S of 
D - P  as follows: If S is V-colored, then a(S) is an element of By or B* (the 
dual basis) according to whether S is oriented downward or upward. By taking 
tensor products, a state yields elements a + (E) in the modules E • for any factor 
E of D. In particular, set a• (p)= a • (Dp) and a • = tr • (D). (See Fig. 3.12). 



3-manifold invariants of Witten and Reshetikhin-Turaev 501 

X 
X |  Z X Y  Z 

(a) 

Fig. 3.14 

X |  
x 

(b) 

Define the weight of a state a to be the product 

w(o)= [ [  w~(~) 
p~P 

where wp(a) is defined as the coefficient of a + (p) in FD~(a_ (p)). 
Now consider basic elements of T• i.e. tensor products of preferred basis 

elements. The operator  F T is determined by the coefficients (Fr)~_ ~ of x+ in 
Fr(x_), for all basic x•  in T• and these evidently have the following states 
formula 

(3.13) (Fr)~_ + = ~ w(a) 

where the sum is over all states a with a+ = x + .  

Proof of 3.10 For  (a) we adopt the notat ion of the previous remark, choosing 
preferred bases Bv, Bx and By so that B x c B v  (viewing X as a subspace of 
V) and By is the projection of B y = B v - B  x. All state labels from B x or B* 
will be called X-labels, and those from By or B* will be called Y-labels. 

Observe that  if a is a state of D with non-zero weight, then the corresponding 
labels on the arcs of K must be either all X-labels (written a ] K  c X )  or all 
Y-labels (written a lK ~ Y). This follows from the A-invariance of X c V (and 
dually of Y * c  V*), which shows that one cannot move from an X-label to 
a Y-label while traversing K in the direction opposite to its orientation. 

Now for basic x• in T• the states formula (3.13) gives 

(F~)~+_ = y~ w(~) 

= y~ w(~)+ y, w(o) 
a l K c X  a IKc Y  

= (rrx)~_+ + (Fr y)~ + 
and so FT=FTx+Fry. 

The proof of (b) is similar but easier, and is left to the reader. 
Finally, (c) follows from definitions, including the second defining property 

(2.17b) of the R-matrix. In particular, the two operators corresponding to a 
crossing involving K in a diagram D for T, and the corresponding crossings 
in the associated diagram of TX Y, are equal. We illustrate this with the right 
crossing shown in Fig. 3.14a, where both operators map X | 1 7 4  to 
z Q x |  
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Indeed, with the obvious notat ion 

l~x|174176174 

= Pxor, z~ | id)(R)~x | 

= Px | r,z~ s R23)x Q r | 

i,j 

= (/~x, z | idr) ~ (idx | z) 

where R = y '  a~ | flu An easier argument shows that the operators corresponding 
to an extreme point of D, for example Ex| and Exo(id|174 for the 
case shown in Fig. 3.14b, are equal. The result follows by the definition of 
tangle operators. []  

Orientations 

Finally we consider orientation questions for the tangle operators FT=FT A'R'It, 
It turns out that to get a reasonable theory, one must  assume that the element 
# and its antipode S(#) are inverses. Such an element #, i.e. a unit  in A satisfying 

(3.15) (a) ~cq2=S2(a) for all a in A 

(b) Zcq[tfl~=Zfl~#~ ~ where R=~@| 

(c) s (# )  = fi, 

is said to be charmed. 

(3.16) Remark If (A, R, v) is a ribbon Hopf algebra in the sense of FRT1], then 
#=u17 is charmed, where u=~S(fli)cq. We do not  know if a charmed element 
# in an arbitrary quasitriangular Hopf  algebra (A, R) gives rise to a r ibbon 
structure (with v = ufi). 

Observe that any # satisfying (3.15 a) induces an  A-linear isomorphism 

(3.17) E, :  V--* V** 

for any A-module V, given by Ej,(x)=(px)** (=eva lua t ion  on #x), i.e. E,(x) ( f )  
= f ( # x ) .  Indeed Eu(ax ) = (#ax)** = (S 2 (~) #x)** = a(#x)** = ctEu(x ). (Since this 
map is canonically identified with the map E,:  V |  V*--, C in (3.6), we use the 
same notation.) 

(3.18) Lemma Let T be a colored framed tangle with a preferred component 
K of color V, and # be charmed. 
(a) I f  T* is obtained from T by replacing K by - K  (opposite orientation) with 
color V* (the dual module), then 

FT= F.  

where (if  K is not closed) T+_ and T* are identified by the isomorphism E~, 
of (3.17) between the V-colored endpoints of K and the V**-colored endpoints 
of --K. 
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(a,) (b) 
Fig. 3.19 

T T-  

(c) 
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(b) I f  T -  is obtained from T by replacing K by - K without changing the color, 
and if V is self dual by an isomorphism D: V*---,V for which Eu=+_D*D -1, 
i.e. 

commutes up to sign, then 

V E.~ ) V * *  

V* 

• T  = ~ ]J T - 

where ( i f  K is not closed) T+ and T+_- are identified by D between corresponding 
endpoints of K, and the sign s= +_1 is - 1  if and only if E , = - - D * D  -1 and 
K is an arc joining one end of  the tangle to itself. In particular ~ = + 1 if T 
is a link (i.e. (0, O)-tangle). 

Proof. It suffices to prove the lemma for elementary tangles, and for these it 
is straightfoward from definitions. 

We illustrate the proof  of (a) for the two (hardest) cases shown in 
Fig. 3.19ab. For  (3.19a), we have FT(X |174  and F r , ( x |  ) 
=~f l iy |  But these are equal by (3.15a), since Eu(cqx ) 
=(ttcq x)**=(S2(cO l~x)**=cq(t~x) **. For  (3.19b), we have Fr(1)= ~ e i |  i 
= ~ s ( t z ) e i |  i (note that s(tOei and rite i are dual bases) and Fr,(1 ) 

= ~ E 2 l((ei)*) | ~e i. These are equal, since s(#) ei = fief and E,(fltei) = e** = (el) *. 
Note (b) follows from (a) by a diagram chase. Fo r  example, for the case 

shown in (3.19c) we must show E = e Eu(D | D ~), where E,  = eD* D-1, s = +_ 1. 
Consider the diagram 

V| 

/o 
/ V*| 

/ id| "/~ "" E~ 
/ / /',3 " ' , , ~  

V*| ' > c. 
E 
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v w 

(a) coupon (b) colored coupon 

Fig. 3.21 

F: V |174174  Y 

The small triangle A 1 e-commutes by hypothesis, A 2 commutes by the A-linearity 
of D-1, and A3 commutes since S(#)=fi. Thus the outer triangle e-commutes, 
as desired. The remaining cases are left to the reader. [] 

(3.20) Remark It is convenient to rephrase the previous lemma using framed 
(or ribbon) graphs, introduced in [RT1], which are formed from compositions 
and tensor products of framed tangles and coupons. A coupon can be thought 
of as an empty tangle (with diagram •) which is permitted to compose with 
arbitrary tangles, as shown in Fig. 3.21a. The coupons are thought of as the 
vertices of the framed graph. Coloring the framed graph then consists of coloring 
the edges (and loops) of the graph by A-modules and the vertices (i.e. coupons) 
by appropriate A-linear operators, as indicated in Fig. 3.21b. As with colored 
framed tangles, there is an operator Fa associated with any colored framed 
graph G. 

Now in Lemma 3.18, the identification of T+ with T+* in (a) and T+- in 
(b) can be accomplished by inserting coupons colored with E, and D (and their 
inverses). For example, the tangle operator equalities (after suitable identifica- 
tions), illustrated in Fig. 3.19 become exact graph operator equalities, as shown 
in Fig. 3.22. 

Note that the operator equality of Fig. 3.22c shows that pushing a 
D-+l-colored coupon over a maximum changes the associated operator by a 
factor of e, and the same remark holds for minima. As a consequence we have 
the following corollary of Lemma 3.18. 

(3.23) Corollary Let K be a closed V-colored component of a colored framed 
tangle T, and assume that # is charmed that there is an isomorphism D: V*--+ V 
of  A-modules with E, = ( -- 1) m D* D i for some integer m. I f  G is a colored framed 
graph formed by introducing two D +-l-colored coupons on K (changing orienta- 
tions appropriately) at points separated by p extreme points of K (in some good 
diagram of T), then F~ =(-1)mPFT. 

v v v 

v 
(~) (b) (e) 

Fig. 3.22 
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Tangle operators f o r d  

We now specialize to the quasitriangular Hopf algebras d = d r  (quantized 
sl (2, C)) discussed in w 2, with R given in (2.18). 

(3.24) Theorem The element # = K  2 in d is charmed, i.e. satisfies (3.15a-c). 

The proof will be given below. The associated tangle operators F r will be 
denoted by JT, in honor of V.F.R. Jones (see w 

(3.25) Definition For any integer r > 1 and colored framed tangle T, with color- 
ing k, define 

JT= JT;k= VCr, R,"2. 
Note that the integer r, and sometimes the coloring k, will be suppressed in 
this notation. If T is a link L, then JL.u is a scalar which will be called the 
colored framed link invariant of (L, k). 

(3.26) Remark The tangle operators Jr.k are independent of the orientation 
on any closed component K of T whose color is one of the irreducible modules 
V k (1 <k<r) .  Indeed, the isomorphism D: (vk)*~ V k given in Theorem 2.13 sat- 
isfies 

D* D- I =( - -  I)k- I EK2 

(since D* D - i (b j) = ( _ s)2J b** = ( - l)k - i qj b~* = ( - 1)k- I EK 2 (b j)), and so the 
remark follows from Lemma 3.18b since K has an even number of extreme 
points. In fact, from Corollary 3.23, we obtain the more refined result that 

FG=(--1)(k-I)" F T 

if G is the colored framed graph obtained by introducing two D• 
coupons on K separated by p extreme points. 

Proof  of 3.24 Properties (3.15a) and (c) are immediate from the definition of 
d .  In particular K X  = s X K ,  K Y = g YK, S (K)= I(, S (X)= - s X  and S(Y)=  - ~ Y  
imply K Z X K 2 = q X = S 2 ( X ) ,  K z Y K Z = f l Y = S 2 ( y  ) and S(KZ)=K 2. Proper- 
ty (3.15b) is deeper, and is proved in Appendix A. []  

We conclude this section with some computations of specific tangle operators 
associated with the algebra d = d , ,  using as colors the irreducible modules 
V k (often identified by their dimensions k < r) and the associated Verma modules 
Wk r (for 0 < k < r ) ,  defined in w 

We begin with a basic result about local modifications of tangles. 

(3.27) Lemma Fix a colored framed tangle T and a preferred component J of  
color j (i.e. W with j <= r). Let T o be T with a disjoint k-colored unknot adjoined, 
let T 1 be T with the framing on J increased by 1, and let T 2 be T with a k-colored 
unknotted meridian to J adjoined. Then 

Jr~ = ci JT 

[jk] (interpreted as ( -  1) k - l k  when j = r ) .  where Co=[k], c l = t  j~-I and c z = ~ -  ~- 
In pictures: 

j _ U k ]  
(a) J) o~-- [k] J~ (c) j ~ -  ~ -  J)j 

(b) J)oi = tJ~-t J)~ 
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c~.e m C2em 

e m 

(a) (b) (c) 

F i g .  3 . 2 8  

Proof. It follows from Lemmas 3.9a and 3 . t8b  that Jr=CiJr for scalars c~ which 
are independent of orientations. Thus we may find the c~ by computing the 

j - 1  
values of the operators on 1 (for i=0)  and %, (for i=1 ,2 ) ,  where m =  2 ' 
as indicated in Fig. 3.28. 

For  (a), 1~-* ~ ei| (where n = k ~ ) ,  and so 

Co = l-k]. i :  - ,  
For  (b), e,,~--~ ~ em|174174174 (by Corollary 2.32) 

i = - -m 

~--,~,qi~ei(K2em) ei=q~(m+a)e~=t j~-I e~, and so cl = t  j~-l .  

For  (c), e,,~--~ ~ em|174174174174174 ' (plus 
i = - -n  

terms which will vanish at the next step)v--*~.qZm~e~(KZe~)e,,=~qZ'~+~e~ 

= i = - , q  e , , = ~ - e , ,  for j < r  wheren  , and so c 2 = ~ -  for j<r.  For 

j=r,  wehaveqJ i=(-1)k- l ,  andsoc2 = ~ (- -1)k- l=(--1)k- tk .  [] 
i = - n  

We conclude with a global result about links. Recall from Lemma 2.15 that 
I,V k" contains V k as a unique proper submodule. In particular, using the standard 

basis e,_,,_ 1, .. . ,  e_,, coming from the inclusion W k r c V 2 r - k ( w h e r e m = ~ - ) ,  
V k is spanned by e . . . . .  , e_m. 

(3.29) Lemma I f  a colored framed link (L, k) has a component of color V r or 
Vgk ~, then J~,k=0. 

Proof Write L as the closure of a (1, 1)-tangle T as shown in Fig. 3.30 with 
V = V  ~ or WL 

If V = W ,  then by Lemma 3.9a, J r  is a scalar operator and so JL, k is a 
scalar multiple of the invariant  Jo~ of the r-colored unknot.  But this is just 
[r] =0,  by (3.27a). 

If V=  WR', then Jr is still a scalar operator (cf. Lemma 3.9b). For, if 2 is 
an eigenvalue for JT, with eigenspace U, then U is a submodule and so U ~ V k, 
i.e. JT(ei)=2ei for i<m. Thus we must show U#: V k, i.e. JT(ei)=2ei for some 
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~ V 

Fig. 3.30 

i>m, for then U=  Wk' and Jr is multiplication by 2. To see Jr(em+l)=2em+l, 
for example, linearity Jr(ctem+O=eJr(e,,+O with e=  Y shows that Jr(era+0 
=2em+l+ve_m for some v. But then linearity with c~=K, together with the 
fact that e,,+l and e-m have distinct eigenvalues for K, shows v=0. 

The proof is completed as in the case V= V' with the observation that 

r - m  1 

Jowl= Z q~ 
i =  - -rn  

r - - 1  

= ~m Z qi 
i = 0  

=0.  [] 

4 Skein theory, cabling and the symmetry principle 

The computation of the J/{-colored framed link invariant JL,k (see w 1 and (2.12)) 
directly from the R-matrices defined in w 2 becomes impractical as the crossing 

/ 

number of L and the colors ki increase. If all ki=2, however, then JL, k (as 

a  un ,io. q = e ( r ) ) i s   ust a w ,ant Jones  o,ynomi , 

lary 4.11) or the Kauffman bracket polynomial (Corollary 4.13) and can therefore 
be computed by the Conway skein calculus or (for r=  3, 4 or 6) by topological 
means. Using this fact, we will give an expression for JL, k as a linear combination 
of Jones polynomials of certain cables of L (Theorem 4.I5). This will yield an 
alternative form for the 3-manifold invariant r,(M) (Theorem 4.17) which can 
be exploited for calculations. 

At the end of this section we prove a symmetry principle (4.20) which 
describes the change in JL, k when a color k is changed to r - k .  This also leads 
to simplifications in the computation of rr(M), and appears to have interesting 
applications as well (including a simplified proof of the existence of r,(M); see 
w 5 below). 

Skein theory, the Jones polynomial and the Kauffman bracket 

(4.1) Definition Let L be a framed (unoriented) link. Define 

Jc=Jg, z 
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where 2 denotes the constant 2-coloring (i.e. each component of L is colored 
with the untwisted 2-dimensional irreducible d - m o d u l e  VE). 

The purpose of this subsection is to prove that JL is equal to the value 
of the Jones polynomial at q, suitably normalized to account for the framing 
(Corollary 4.11), or equivalently the Kauffman bracket for a good diagram of 
L (Corollary 4.13). 

Observe that for the zero framed m-component unlink �9 we have 

(4.2) Join = [2]" = (s + s-) m 

by m applications of Lemma 3.27a. 
Furthermore, JL satisfies the following skein relations. 

(4.3) Theorem (1) (oriented skein relations) Let L+, L_ and L o be oriented 
framed links with good diagrams (i.e, the framings are the blackboard framings) 
which are identical except in a disc where they are as shown in Fig. 4.4a. Then 

(a) tgL, -- t-JL- = (S-- S3 JLo. 

I f  the framings are adjusted so that L+-L+ = L _ - L _  =L0-Lo,  then (a) becomes 

(b) qJL+ --(ilL- =(S-- S-) JLo" 

(2) (unoriented skein relations) Let R, V and H denote unoriented framed links 
with identical good diagrams except as shown in Fig. 4.4b. Then 

(a) JR = t Jv  + [Jtt  

if the two strands in the crossing come from different components of  R, and 

(b) JR = e (t Jr --  t-Jn) 

if  the two strands come from the same component of  R, producing a crossing 
of sign e = + 1 (i.e. appearing as in L~ of  Fig. 4.4a if R is oriented). 

Proof Recall from Example 2.37 that action of /~ on V 2 | V 2 is given (in the 
preferred basis) by 

/ ~ = ( t ) ~  ( 0 ~-(S t- S--)) (~ (t)- 

We find (e.g. by computing the characteristic polynomial of/~) that 

(4.5) t/~ - i-/~- a = (s - s-) I ,  

and ( la)  follows. To adjust the framings to become equal we may add a left 
kink to L+ and a right kink to L_ (see e.g. Fig. 3.28b), which changes JL~ 
by t :~3 by Lemma 3.27b, and so the coefficients of JL~ become t • t •  +I. 
This gives (1 b). 



3-manifold invariants of Winen and Reshetikhin-Turaev 509 
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Fig. 4.8 

For  (2a), orient R so that  the crossing looks like L+,  and then (la) yields 

(4.6) tdR --/-JL = (s--  ~ Jv 

where L is as shown in Fig. 4.4b. Now reverse the orientation on one strand 
so that  the same crossing looks like L_ when rotated by 90 ~ and so 

(4.7) - tJR + t Jl. = (s - Y) J ,  

by (la)  again. Mult iplying (4.6) by t and (4.7) b y / - a n d  adding gives (2a). 
Fo r  (2b), first suppose e ~  1, so (4.6) follows as above by orienting R. Now 

we may locally reorient one strand by introducing two coupons on R, giving 
the framed graph (see Remark  3.20) R' shown in Fig. 4.8a, and similarly con- 
struct E a n d / 4 '  (Figs. 4.8bc), As in (4.7) above, we get - -FJg ,+tJL ,=(s - - s - )Jn , ,  
But by Remark  3.26 we have JR'=JR and JL,=JL (since our color 2 is odd 
and there are no extreme points in Figs. 4.8ab) and Jn, = --JH (since there are 
an odd number  of extreme points between the coupons in Fig. 4.8c), and so 
(4.7) is replaced by 

(4.9) - - t JR  + t JL=  - - ( s - -  s-) J n.  

Multiplying (4.6) by t and (4.9) b y / - a n d  adding now gives (2b) for e-- 1. 
If e = -- I, then the same argument establishes (4.7) and a revised (4.6), with 

the right hand side negated. This gives (2 b) for e = - 1, as above. [ ]  

Remark .  Theorem 4.3(2) can also be proved directly by computing the appro-  
priate local tangle operators  as in our proof  of (1). 

The skein relations in Theorem 4.3(ib) lead to a variant ~'L of the original 
Jones polynomial  V L of an oriented link L (in the variable q), characterized 
by 

(1) % = 1  

(2) q r~+ - q  r~_ =(~- ~ r/~o 
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where C) denotes the unknot  and L+,  L_ and L o are as in Fig. 4.2. (Note 
that for V z one swaps q and ~ on the left side of (2).) In fact 

(4.10) F'L = V z (~) 

where gt 1/z must be chosen to be --g on the right (i.e., recalling that Vm(q) 
is a polynomial in q• we substitute ~ for q, - g  for ql/2 and - s  for q-~/2). 
Equivalently VL may be defined as the specialization of the Homily polynomial 
at (iq, i(g- s)) (see e.g. EL2]). 

(4.11) Corollary I f  L is a framed link, then 

JL = [23 t 3 L-L ~'L 

for any orientation on L. 

Proof The right hand side is characterized by the same skein relations, (4.2) 
and (4.3(la)), as Jg. [] 

(4.12) Remarks (1) The values of VL at certain roots of unity have topological 
significance, as they do for V L [LM1, Lp, Mu]. In particular, the values at 

q=e(l-], for r =  1, 2, 3, 4 and  6, are as follows: 
\ r /  

r 

1 2 "-1 (--2) "-1 

2 det L det L 
3 1 (--1) " - I  

4 o - '  o - 1  

6 V 3 a ( - i )  '~ ( - V 3 ) " ( - i )  '~ 

where n is the number  of components  of L, det L is the value at --1 of the 
(normalized) Alexander polynomial  of L, a is ( - 1 )  Arf(L) when L is proper (so 
the Arf invariant  is defined) and 0 otherwise, d is the nullity of Q(mod 3) where 
Q is the quadratic form of L (represented by S + S t for any Seifert matrix S 
of L), and o) is the Witt class of Q(mod 3) in W(Z /3Z)=  Z/4Z) (see Appendix 
B). It is well known that JdetL]=lHl(M)l, where M is the 2-fold branched 
cover of S 3 along L, and d=dimHl(M;  Z/3Z)  (since any matrix representing 
Q is a presentation matrix for Ha(M)). Our expression for the value of VL at 
e(~) may appear unfamiliar, although it can be shown to be equivalent to Lip- 
son's. 

(2) It is often simpler to use Jm as the basic ingredient rather than ~'m" For 
example, J0 = 1 is a better normalization than F'o = Vo = 1 since formulas are 
simpler (e.g. [2] disappears). Of course JL does require a framing on L, but  
if one chooses a framing for which L. L = 0 ,  then JL= [2] ~'L (cf. 4.3(lb)). 

The skein relations in Theorem 4.3(2) remind one of Kauffman's bracket 
polynomial  [Kf~ (also see [L2]) in the variable t defined for a link diagram 
D. Our version Bo(t) is normalized differently and is characterized by 

(1) B o ~ = ( - E 2 ] ) ' ~ = ( - s - s - Y  ~ (s= t  ~) 

(2) B R = tBv+ t-Bit 



3-manifold invariants of Witten and Reshetikhin-Turaev 511 

where O m is the standard diagram of the unlink of m components, and R, 
V and H are diagrams which are identical except as shown in Fig. 4.4b. 

(4.13) Corollary I f  L is a f ramed link, then 

Jr = ( - i) L" L BD (i t) 
for  any good diagram D of  L. 

Proof. First note that L . L  is only defined for oriented links, but L.L(mod 4) 
is independent of the choice of orientation (i.e. (A + B) (A + B) = (A -- B). (A - B) 
(mod 4)). 

We prove the corollary by showing that the right side satisfies the same 
characterizing skein relations as JL, namely (4.2) (obviously) and (4.3 (2)). Observe 
that R. R - -  V. V+  1 =- H. H -  1 (mod 4) if the two strands in the crossing belong 
to different components of R, whereas R . R  = V. V + e - H . H + ~  if they belong 
to the same component.  In the former case we compute 

(-- i)R'R BR( i t )=( - -  i)v'v + l (it) Bv(i t)  + (-- i )u 'u-  l (-- i t) BH(it) 

= t(( -- i)v" v By (i t)) + t-(( -- i) H'H B H (i t)) 

and the latter case 

( - i )  R'R BR(i t )= (-- i) v v  +~(it) B y ( i t ) + ( - -  i) ~ H  +~(-- it) Bn(i t  ) 

=e ( t ( - - i )VV  B v ( i t ) - - g ( - i ) U n  Bn(it)). [] 

Remark. Alternatively, (4.13) can be proved directly from (4.10) and Corol- 
lary 4.11 by using the well known relation between the Jones polynomial and 
the bracket 

[2] V L (t~) = ( - (i t)) - 3 L-L Bo (i t) 

(see e.g. [L2], and note that the [-2] is there because of our normalization 
of the bracket, and the i's are there because of the choice of ql/2 in (4.10)). 

Cabling 

The next result gives a formula for the general J l -colored framed link invariant 

J L , k i n t e r m s o f J o n e s p o l y n o m i a l s ( a t q = e ( 1 ) ) o f  c e r t a i n c a b l e s o f L . ( R e c a l l  
that , g = { V  1 . . . . .  W-l} . )  

We will need the following lemma (which will correspond to zero cabling). 

(4.14) Lemma Let  (L, k) be a colored, f ramed link. I f  S is a sublink o f  L obtained 
by removing some 1-colored components, then 

JL.k = JS.ktS. 

Proo f  It was observed in (2.9) that K 2 acts by the identity on V 1, as does 
t~ on V x |  V k and vk@ V1. Thus we may ignore 1-colored components  of 
L when computing JL,k" [] 
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Now define a cabling e of a framed link L to be an assignment of nonnegative 
integers ci to the components L i of L. The associated cable of L, denoted L c, 
is obtained by replacing each Li with c~ parallel pushoffs (using the framing). 
If c~ = 0, simply delete L~. 

If L is oriented, then there is a natural choice of orientation on LC: for 
each component  L~ of L, orient the pushoffs so that their sum is homologous 
in a tubular neighborhood of Li to L~ or to 0 (depending upon whether e~ 
is odd or even). With this choice we say L and L ~ are compatibly oriented. 

We will use the multi-index notat ion f ( k ) = [ I f ( k i ) ,  k < n  if k i<n i for all 

ist esum i, etc. For  example, ( -  1)k= l ~ ( -  1) k' = ( -  1) ~k', k k i ' 

over all k with 1 < k~ < n~. k = 1 

(4.15) Theorem Let L be a framed link and k be an JP/-coloring of L. Then 
setting o = k -  1, 

(;) J L , k = ~ ( - - 1 )  j n j JL~ 
j=O 

= [ 2 3 Z ( - - 1 )  i n .  j t3 L . . . . .  L- 2, pL,_2, 
i = 0  

for any orientation on 12-21. In particular, i f  L and L n- 2i are compatibly oriented 
for all j, then 

(:) j L . k = [ 2 j t a s . s ~ ( _ l )  j n J ~'L--~, 
j = 0  

where S is the even colored sublink of  L, consisting of  all L i with ki even. (By  
1 

convention JLo.2 = 1, VLo = [-~ and L ~ .L ~ =0 . )  

Proof  The first equality is an immediate consequence of Corollary 2.15 and 
Lemmas 3.10 and 4.14. The second equality uses Corollary 4.11 and the last 
equality follows from the definition of compatibly oriented. 

Remark. There is an analogous statement if k is only an Jg-color ing on a sublink 
S of L, 

(;) jL,k = ~ ( _ l ) j  n J JS"-~J~L-S),2~kI(L-S~ 
l=O 

where n = k[ S -  1. 

(4.16) Examples If K is a framed knot, then 

(/) JK.k = 2 ( _ 1 ) /  n JK . . . .  
j = 0  

where n = k -  1. In particular 

JK,3=JK2--1 

Jr. 4 = JK 3 - 2 Jr 

J K , 5 = J x , -  3Jr~+ l. 
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As a consequence of Theorem 4.15, we obtain a formula for zr(ML) in terms 

of  J o n e s p o l y n o m i a l s ( a t q = e ( t ) ) o f c a b l e s o f L .  Recall front w that 

r--1 

"Cr(ML)=~L Z [ k ]  JL.k 
k = l  

c~ 2 

(4.17) Cabling Theorem For any  fi-amed 1ink L, 

r - 2  

~.(ML)=~L Y. ~,c) J,. 
c =0  

(i.e. sum over  all cables c =(ca, . . . ,  c,,) wi th  0 < ci < r -  2) ,  where  

(;) ( e ) =  ~ ( _ l ) J [ c + 2 j + l  ] e I 
j=O 

(i.e. sum over all j > 0 wi th  c + 2j + 1 < r). 

The formula 4.17 can be rewritten in terms of the Jones polynomial variant 
~" by using the third equation in Theorem 4.15 and orienting cables compatibly: 

(4.18) r ~ ( M L )  = c~ z [2] 2 t3L~g~ (e) ~k, 
c 

where L~ is the sublink of L consisting of components L~ with c~ odd, (thus 
L~ - 2 J . L~ - 2 J = L~ . L~ = L . L~). 

(4.19) R e m a r k  It is often easier to calculate with cables by first changing all 
framings of L to zero (and adjusting by the appropriate power of t) and then 
taking cables using the 0-framing. 

S y m m e t r y  Principle �9 

Finally we state the Symmetry Principle, which allows us to switch a color 
k to r - k .  This cuts the number  of terms in v,(ML) from the order of ( r - l ) "  

to ( 2 f '  and makes possible an elementary proof of the invariance of z under  
X [  

the m-strand k-move for m > 1 (see w 5). 
It is convenient to adopt the notat ion L u  K for a framed link with a distin- 

guished component  K. Colorings of L ~ K  will be written I u k ,  where | is a 
coloring of L and k is the color of K. If the colors are selected from the modules 
V 1, V z, ... defined in (2.8), then as above we identify these modules by their 
dimensions (also called colors) and so i is just a list of positive integers (i.e. 
li, or V ~,, is the color of the component  Li). 

(4.20) Symmetry Principle L e t  L w  K be a f r a m e d  link where  K has f r a m i n g  
a, and l= ( l t ,  . . . ,  l,) be a coloring o f  L = L 1  u . . . u  L ,  by  the modules  def ined in 
(2.8). I f  0 < k < r, then 

JLwK,l~(r-k) = itr- 2k)a+ 2Z JLug,l~,k 
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where 2 =  ~ K.L i .  (Note  that the exponent of  i can also be written as 
even/l  

(r--2) K . K + 2 K .  E where E is the even colored sublink of  L• K for the coloring 
Iuk.) 

Before proving the Symmetry Principle, we illustrate its use in the context 
of 3-manifolds given by surgery on a knot. A more systematic study of its 
applications appears in w including a form of the Symmetry Principle for 
zr (Theorem 8.5). Also see the end of this section for an application to Jones 
polynomials of cables. 

(4.21) Example For r = 5 and K a knot  with framing a, we have 

4 

T ~ ( M , O = ~  Z [k] JK,k 
k = l  

=c~K([-l] + [2] JK + 1-3] ia JK + [4] i39 
= ~K ((1 + i - a) + [2] (1 + i n) JK). 

Thus if a = 2 ( m o d 4 ) ,  then zs(MK)=0. If a ~ 2 ( m o d 4 ) ,  then this shows that JK 
(and so also the Jones polynomial of K at the fifth root of unity) is determined 
by rs(MK), and thus is an invariant  of M K (cf. Theorem 8.22). 

The proof of the Symmetry Principle needs 

(4.22) Lemma Let L•  K be a framed link, where K has framing zero, with 
colorings I on L and V 1(i) on K (see above Lemma 2.16). Then 

JL~K,IuV,(i)=(--1)I +'~ JL, 1 
where2= ~ K . L  i. 

even/z 

Proof. Orient L u  K and draw it as a counterclockwise braid with the blackboard 
framing. We need to inspect three kinds of crossings as in Fig. 4.23. 

In the first two cases, according to Corollary 2.32b,/~(e] |  e)= iZJe @ e~ and 
R(e | ej): iZJej | e since ej has weight t zj and c~= i. Similarly in the third case 
l~(e| e ) = V e |  e since e has weight i = t  r. On negative crossings we get the 
inverses R - l ( e |  l ~ - l ( e j |  and / ~ - l ( e |  
= i-" e | e respectively. 

Since K is 0-framed, K has an equal number  of positive and negative cross- 
ings in the braid diagram and an odd number  of maxima. Thus the self crossings 
of K together contribute nothing to JL~r,,~V'(i), and (since K 2 = -  1 for Vl(i)) 
the maxima together contribute - 1. That is, K contributes - 1 (whether knotted 
or not). Hence we may change the self crossings of K so that K is unknotted,  
and then L u  K can be drawn as in Fig. 4.24. The crossings of K with L i occur 

X 
v t v~(i) v'(i) v ~ v~(i) v~(i) 

Fig. 4.23 
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s .~ 

Fig. 4.24 

in right or left handed pairs which algebraically sum to K- Li. So the contribution 
of pairs of crossings between K and Li is ( - 1 )  2JKL'. When li is odd, then j 
is an integer so ( - 1 )  2 ) =  1 and there is no contribution. When li is even, then 
j is a half integer and ( -1 )z  J = -  1, so we get a multiplicative contribution 
o f ( - - 1 )  K'L'. [ ]  

Proof of the Symmetry Principle. Since we have the short exact sequence (2.16) 

0-~ Vk ~ Wkr-~ Vr-k| V~(i)~O 

and since JL,k is additive under extensions (3.10a) and JL, w~=O (3.29), it follows 
that 

O=JLuK,I~W~ =JLuK,l~k-}- JLuK,IwVr-k| 

If the framing on K is zero, then replacing K with color vr-k| Vl(i) by 
the 2-cable (using framing zero) of K with colors V "-k and Vl(i), it follows 
by Lemma 4.22 that we can eliminate the copy of K with color V 1 (i) by multiply- 
ing by ( - 1 )  1+4= - i  2~ where 2 =  ~ K.Li, and the result follows. 

even/, 
Finally, if the framing on K is a rather than zero, then we can change 

to framing zero by multiplying by ~a(k2-11. NOW apply the just proved zero 
framed case to switch the color on K from k to r - k ,  and then shift the framing 
back to a by multiplying by t ~((~-k)~- ~). So the net change gives 

JL~K.iu(r_k)=t atlr-k)2 l).i2Z.ta(kZ--l)JLuK,]u k 

=i(r-  2k)a+ 22 JL~K,l~ k . [] 

We conclude this section with an application of the Symmetry Principle 
to the study of the values JL~ of Jones polynomials for cables L r of a framed 

l inkLataf ixedrootofuni tyq=e(1) .  

A cabling m of L will be called minimal if m < ~ - I  i.e. each component  

r ) 
of L is replaced by at most ~ -  1 parallel copies . Now an easy inductive argu- 

ment using the Symmetry Principle and the cabling formula (Theorem 4.15 and 
following remark) shows that for any cabling c, JL~ is an integer linear combina- 
tion of the values JL" for minimal cablings m where the coefficients of the linear 
combinat ion depend only on the linking matrix of L (and of course on e and 
r). That  is, writing J~(L) for JL~: 
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(4.25) Corollary For each framed link L and cablings c and m with m minimal, 
there exist integers a~(L) such that 

Jr = ~ a~(L) Jm(L), 
m i n i m a l c a b l i n g s m  

and such that a~,,(L)= a~,(E) if L and E have the same linking form. 

In practice, the integers a~,(L) can be computed easily. 

(4.26) Example Let r = 5 .  Consider 0-framed knots K and let v ~ denote the 
value JK~ of the Jones polynomial  of the c-cable of K at e(�89 By the Symmetry 
Principle JK,2 = Jx,3, and so by (4.16), v 1 = v : - 1 .  Induction shows that v~=f~ v 1 
+ s  _ ~, where f~ is the c th term in the Fibonacci sequence 1, i, 2, 3, 5, .... 

5 The 3-manifold invariant ~r(M) 

Proof that z, is a 3-manifold invariant 

If M is described by surgery on  a framed link L, then we have defined (1.5 
and 1.7) 

r - - 1  

z , ( M ) = r L = a  L ~ [k] JL,k 
k = l  

where eL = b "L c ~L, b = s m r '  c = e \ 8 r ' nL is the number of compo- 

nents of L and eL is the signature of its linking matrix. For z , (M)  to be well 
defined we must  finally prove Theorem 1.6, that z L is invariant under  K-moves 
on L, and hence ~,(M) is independent of the choice o f  framed link used to 
describe M. 

The proof of Theorem 1.6 depends on an elementary identity for Gauss 

s u m s . ( R e c a l l t h a t t = e ( 1 )  ands=e(~---r).)  

(5.1) Lemma ~ [ jk]  [k l ] t  j2§247 [jl] 
- -  b e . 

k = l  

Proof. Note tha t  

4 r  

( s -  s-)2 2 [ jk]  [kl] t j~+k~+l~ 
k = l  

4 r  

=- 2 (t2jk--t2Jk)(t2kl--t2kl) tJ2§ 
k = l  

,:l.r 

= ~ (tzJ~(t(k+(J+t))~ + t(k-(J+OJ2)--t:J~(t(k+O-O)2 +t(k-(~--Z))2)) 
k = l  

4 r  

= 2('~J t -- tzJ t) ~ t k2 
k = l  

= 2 (gjt_ s~l) 2 ~ e (~) 
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r - I  4r  

where the last  equali ty is a s t andard  Gauss  sum (see [La]). N o w  ~ = �88  

by the  symmetries of the  bracket  [ ], so k = ~ k = 1 

2 [ j k ] [k  l ] t  j2+k2+12- ~ l ]  V ~ r e  
k=l S--S 

- -  b e 

since ~ - s = 2 s i n ~ e ( - - � 8 8 1 8 8  [] 
r 

N o w  to prove Theorem 1.6 consider an m-st rand K-move  L~--,/2 of  type 
= +__ 1. Choose  diagrams for L and /Z which agree everywhere except for the 

tangles shown in Fig. 5.2. 
F o r  any ~{-color ing  l of L, let l u k  denote the  induced coloring o f /Z  with 

the new componen t  K colored k<r.  Then  [I u k] = [ l ]  [k]. Since nL~=nL+l 
and aLe = a L + ~, and so aLo = b c" aL, we have  

r - - I  

"Es L ~,, Eli JL,I 
l = l  

1=1 1 

T h u s  to p rove  ZLo = ZL it suffices to establ ish the  identi ty 

(5.3) 
r-[ 

b c  ~ Y. [k] JL~ ,~k=J~., 
k=l 

m strands 

L 

rn strands 

L§ = +I) 

Fig.  5 . 2  

m strands 

L-(~ = -1)  
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for any fixed J l -color ing  I on L. We will prove (5.3) by induction on the number  
of strands m, starting the induction for m <  1 in the next result. 

(5.4) Lemma Identity (5.3) holds for m = 0  and 1, and therefore z L is invariant 
under m-strand K-moves for m = 0 and i. 

Proof  The proof for m = 0  is a special case of the proof for m =  1 when the 
color j on the strand of L passing through K is 1, by Lemma 4.14. So we 

�9 [ j k ]  te(j2_ 1 +k2_ 1) j~ assume m =  1. Then . I L ~ l u k = ~  - L,I by Lemma 3.27, and so (5.3) 

reduces to 
r--1 

b c ~  [k] [ jk ]  t ,(j2_,+k2_,)=l" 
k = l  

Since these two identities (for e = _  1) are conjugate, we need only consider 
the case e.= + 1. But this identity follows from Lemma 5.1, with l =  1, since e 
= e ( - - 3 ) t  a. []  

(5.5) Remark S 3 can be obtained by + 1 surgery on the unknot ,  so 

r - 1  
z , (S3)=bc ~ [kJ2t  k2 1 = 1  

k - - I  

by Lemma 3.27 and the identity established in the proof of (5.4) with j =  1. 
Furthermore, it is not  hard to show that z L is the only invariant of framed 

links under 1-strand K-moves of the form a " ~  d,, JL,k with value 1 on 
k i 

the 1-framed unknot.  (This is essentially how Reshetikhin and Turaev arrived 
at their formula.) Indeed, one readily shows as in the proof above that for 
any such invariant 

r-1 { [ j k ]  te(j2_ 1 +k 2_ 1)~ dk= 1 a ~  
/ 

k = l  

for all 0 < j < r  and e =  _+1. Solving for the dk, using Lemma 5.1 and the fact / 
that the matrix (b [j k]) is its own inverse [this is the well known orthogonality 

r--1 ) \ 

relation b 2 ~ [i j] [j k] = (~ik , gives dk = b c ~ a-~ [k]. Equating the values for e 
j = l  

= __ 1 shows a =  _+c and the case a = - c  is eliminated by the normalization 
on the unknot.  Thus a = c and d k = b [k], so the invariant  is just  zL. 

Finally we prove the inductive step, completing the proof of Theorem 1.6. 

(5.6) Lemma Identity (5.3) holds for m-strand K-moves for m > 1 provided it 
holds for n-strand K-moves for all n < m. Thus ZL is invariant under K-moves. 

Proof  First suppose that L and /2 are trivial outside of the tangles shown in 
Fig. 5.2, as shown in Fig. 5.7 (with blackboard framings). 

Using the Symmetry Principle 4.20, we may assume that all colorsj  of compo- 
. d r  r . r 

nents J of L satisfy j = 2" Indeed, if j > ~,  then change j to r - j  < ~ on J (and 
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L L + L- 

Fig. 5.7 
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on the corresponding component J~ of E). This changes the left side of (5.3) 
by 

i e ( r - 2 j ) +  2 ( J ~ , S + k  - 1) 

where S is the even-colored sublink of E - ( J " w K ) ,  and leaves the right side 
unchanged. Next change k to r - k  on K. Then, using [ k ] = [ r - k ] ,  the left 
side of (5.3) changes by 

i~(r - 2k)+ 2(J.S+(r-j)- 1) 

while the right side remains unchanged. Noting that K .S  =J" -S  = I S[, we see 
that the net change on the left side is 

i 2 ~ ( r - j - k ) + 4 ( K ' S  - 1 ) + 2 ( r - j + k )  ~ i 

as it is on the right side. 
Now by Lemma 3.10c, we may replace two components L~ and L 2 of L, 

with colors 11 and 12, by a single component colored by V z l |  ~2 
= V l, +12-1 O . . .  O V It' 121 + 1 (using Theorem 2.1 3). Thus by Lemma 3.10a and 
distributivity, it is enough to establish (5.3) when Lt and L 2 are replaced by 
a single j-colored cgmponent  for j < r .  But this is covered by the induction 
hypothesis. 

Now consider the general case shown in Fig. 5.8, where T is an arbitrary 
tangle. We will reduce to the special case above (Fig. 5.7) using cabling and 
skein theory. 

! 
Fig. 5.8 
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First suppose that 1=2, the constant 2-coloring. Then we prove (5.3) by 
induction on the number of crossings in T. The induction begins with zero 
crossir~gs, which is covered by the special case. (Note that T may have maxima 
and minima, as well as vertical slrands, which simply pull through K, reducing 
m) In general, we may smooth a crossing of T in two ways in both L and 
/X, and (5.3) follows by induction for each smoothing, using Theorem 4.3(2), 

Finally, for general 1, JL,~ and JL,,t~k can be computed using the cabling 
formula of Theorem 4.15 (and the subsequent remark) applied to L a n d / X - K ,  
respectively. This reduces the proof of (5.3) to the case 1 = 2 proved above. []  

(5.9) Theorem zr satisfies the following three properties 
(1) z~(M e IV) = z~(M) zr(N ) 
(2) z~(-M)=z~(M) 
(3) ~,(S 3) = 1. 

Proof. For (1), choose framed links L and E with ML=M, ML,=N, and so 
ML~L.= M,I~N where Lw E denotes disjoint, (L and E are separated by a 2- 
sphere). Note that 

(this is immediate from the definition of the colored framed link invariants, 
see the proof of Theorem 3.6), and so (1) follows from the definition of Zr and 
distributivity. 

For (2), observe that ( - M L ) =  M~;, while ~, is the mirror image (obverse) 
of L. Now (2) follows from the Cabling Theorem 4.17 since JL = ~  and oc = - a  L. 

Finally, (3) was shown in Remark 5.5. (Alternatively (3) follows from (1) 
once it is known that z, is nontrivial, i.e. r , (M)+0  for some M.) [] 

(5.10) Remark Observe that z 2(M) = 1 for all M. Indeed zz(ML) = JL, l = 1, In 
the subsequent sections we will give formulas for z,(M) for small values of 
r > 2 .  

Examples 

Computations similar to the one made for S 3 in Remark 5.5 can be made for 
S 2 x S ~ and the lens spaces L(p, 1), obtained by surgeries on the unknot with 
framings 0 and p, respectively. For example 

(5,11) zr(S 2 x S ) = b ~ [ k ]  = ~ =  csc 
k=l  

(which approaches oo like r 3/2 as  r --, ~) ,  and for even r 

,-1 1 (~r) (5.I2} zr(RP3)=bck=, ~ [k]~ t 2 ~ 2 - 1 ) = ~  sec 

(which approaches 1/1/~ as r--* co)) where the last equality is derived as in 
the proof of Lemma 5.1 by expanding, completing the square, and using a Gauss 
sum. (Note that Rp3=L(2 ,  1).) A similar argument shows that for r odd, 
~r(RP 3)--- 0 (cf. (8.9)). In [KM4], we will give general formulas for rr (lens space). 
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6 T h e  c a s e  r = 3 

In this section we give two formulas for z3(M ). The first (6.1) depends only 
on the linking matrix of L, where M = M  L. It follows that z3(M ) (unlike z,(M), 
see w is a homotopy invariant (Remark 6.2). The second (Theorem 6.3) 
expresses/:3(M) in terms of"classical" invariants of M. 

Let L be a framed link with n components and signature a. If k is a coloring 
of L with all colors 1 or 2, and S is the 2-colored sublink of L, then by Corol- 
lary 4.11 and Lemma 4.14, JL,k=Js,2=[2] t 3s's ~Z s (for any orientation on S). 
In particular for r = 3 

JL,k=i S's 

since Vs = 1 (Remark 4.12), t 3 = i and [2] = 1. Thus the 3-manifold invariant (1.7) 
reduces to 

(6.1) z3(ML) = 1 c ~ ~ is. s 
S < L  

1 1 - i  . . 
where c = e ( - 8 ) = ~ .  Here < denotes subhnk and 0 . 0 = 0  by conventlon. 

(Alternatively, (6.1) follows from the cabling formulas in Theorem 4.15 or from 
the Symmetry Principle 4.20.) 

(6.2) Remark Evidently Formula  (6.1) depends only on the linking matrix A 
of L. Since it is a 3-manifold invariant,  it must be invariant  under change of 
orientation on L, and under blowups and handle slides, that is under stable 
equivalence of A. It follows that z3(ML) is a homotopy invariant, determined 
in fact by the first Betti number  of ML and the linking pairing on T o r H I ( M L )  
(for it is known that these determine the stable equivalence class of A [KP, 
Du, Wk]). 

Note that there is an easy direct proof of the invariance of Formula  (6.1) 
under stable equivalence of A (giving an elementary proof, using the two moves 
in [K1], that r3 is a 3-manifold invariant). First observe that the formula is 
multiplicative under  block sums of matrices (since a is additive). Invariance 

under blowing up (summing with (__+ 1)) is now evident since ~ c • 1(1 + i • 1) = 1. 
v -  

Reversing the orientation on a component  of L (multiplying a row and corre- 
sponding column by - 1 )  leaves a unchanged and alters S . S  by a multiple 
of 4 for all sublinks S, and thus leaves the formula invariant. Finally consider 
handle slides. Let E be obtained from L by sliding component  L~ over Lj and 
then, for convenience, reversing the orientation on Lj (i.e. replace Lg by E, = L t 
+ L j  and Li by E j =  -L j ) .  Each sublink S of L corresponds to a sublink S' 
of E with S. S = S'. S', namely 

S 
t P S = S - ( L i + L j ) + E i  

I s  - L, + (C, +/~'~) 

if S does not contain L~ 
if S contains L i and Lj 
if S contains Li but not Lj. 
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(In fact S=S '  as homology classes in WL.) This correspondence is one-to-one, 
and so Formula (6.1) is invariant under handle slides. 

The (cumbersome) sum in Formula (6.1) can be eliminated by using Ed 
Brown's Z/8Z  invariant 2 of the linking matrix A of L, defined as follows 
([Br, Ma]): View A as the matrix of a Z/4Z-valued quadratic form on a Z/2Z-  
vector space by reducing mod 4 along the diagonal and mod 2 off the diagonal. 
Two matrices are Witt equivalent if they represent the same form after possibly 
block summing with copies of ( 1 ) ~ ( - 1 ) .  It is easy to show that A is Witt 
equivalent to a diagonal matrix (mod 2). Let nj denote the number of diagonal 
entries congruent to j (mod4). Assume n2=0. Then the Brown invariant is 
defined by 

2 = n l  - n 3  (mod 8). 

(If nz 4: 0, then the form is classified up to Witt equivalence by its nullity over 
Z/2Z, and the Brown invariant is not defined.) 

Observe that if n2 = 0 (which is equivalent to the topological statement that 
there exists ~ in H a (M; Z/2Z) with ~vTvcr  see Theorem 6.3) then 

/~(M)= a- -  2 (mod 8) 

is an invariant of the 3-manifold M = M  L by [K1], since a and 2 change equally 
under blowing up and remain unchanged under handle slides. This will be called 
the Brown invariant of M. We can now state: 

(6.3) Theorem Let M be a closed, oriented 3-manifold. 7hen z3(M)=0 /f and 
only i f  any one of the following equivalent conditions holds: 
(1) M has two spin structures with distinct #-invariants mod 4 (see Appendix C) 
(2) M contains an embedded closed surface of odd euler characteristic 
(3) there exists ct in Hi (M;  Z/2Z) with ccvct~c~4=O. 
Otherwise, 

z 3 (M) = ]//~b(M) Ca(M) 

where b ( M ) = r k H I ( M ; Z / 2 Z ) ,  c=e( - - l / 8 )  and fl(M) is the Brown invariant 
(defined above). 

Proof First we show the equivalence of the three conditions. Let Oa and 02 
be two spin structures on M. Following [KT, Theorem 4.11] or [T1], we have 
lt(OO--it(O2)=2~(F) where F is a surface which is Poincar6 dual to the class 
in HI(M;  Z/2Z) which measures the difference between O2 and O1; F gets 
a Pin-  structure from O1 and/~(F) is its Pin-  bordism class in ~2P2 i"- =Z/8Z.  
Now the odd classes in QPin- are represented by odd multiples of RP 2, and 
the even by even, and so the equivalence of (1) and (2) follows. The equivalence 
of (2) and (3) is well known, and follows from an elementary geometric argument 
(see for example [KT]). 

Now choose a framed link L of n components and signature a with M = ML. 
Orient L and let A be the associated linking matrix. As above, we may assume 
that A is diagonal (rood 2) with nj diagonal entries congruent to j (rood 4). 

Observe that 

b (M)--- n o + n2 (mod 4) 
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since A is a presentation matrix for H~ (M). By Formula  (6.1), 

z3(M)=c" w 
where 

1 
w = ~  ~ iss" s<L 

Now, since w (as a function of A) is multiplicative under  block sum and depends 
only on A mod 4 on the diagonal and mod 2 off the diagonal, we have 

3 

w =  [IwT  
j=O 

where w0=lf2 ,  wl =~, w2=0  and w 3 =c.  Thus 

~]f}.o c.3--, = ]/2b,M)c-~ 
w = ]  0 

and so 

if n 2 = 0 
if n 2 > O  

{0 ~b(M) c a(M) if n 2 = 0 
z3 (M) = if n 2 > O. 

It remains to show that n 2 = 0  if and only if all the /~-invariants of M are 
congruent (rood 4). It is known that the spin structures on M are in one-to-one 
correspondence with the characteristic sublinks C of L (i.e.C. L i -  L~. Li (rood 2) 
for all components  L~ of L), and their/~-invariants are given by 

/z c = cr -- C- C + 8 Aft(C) (mod 16) 
(see Appendix C). 

It is evident that C is characteristic if and only if it contains all L~ with 
L~.L~ odd (since Li.Lj  is even for i~-j by assumption). Now if n z =0,  then (work- 
ing mod4)  # c = t r - g = f l ( M )  for all characteristic C (since C.C=2).  If nz>0 ,  
however, then #c=fl(M) if C contains an even number  of Li with Li.L~=2, 
and #c=  fl(M)+ 2 otherwise. [] 

(6.4) Corollary I f  M is a Z/2Z-hornology sphere, then 

~3 (M) = + c ~ 

where c = e ( - ~ ) ,  p(M) is the It-invariant of  M, and the sign is chosen according 
to whether lH1 (M)I = + 1 or _+ 3 (mod 8). 

Proof Since b (M)= rk H 1 (M; Z/2 Z)= O, we must show 

fl(M)-- u(M) + fi(M) (mod 8) 

where 6 (M) = 0 if I H1 (M) I = + 1 (mod 8), and 6 (M) = 4 otherwise. 
First note that n o = n 2 = 0  (in the notat ion of the proof of Theorem 6.3). 

In addition, after a change of basis we may assume that A is diagonal (rood 4) 
with m i diagonal entries congruent to j (rood 8). 
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Working mod 8 we have 

,~ ~-~ m I - -  m3--~-  m 5  - -  m 7 

IH1 (M)I =_ 3,,3 5,,, 7m7_={+ 13 if otherwise, m3 +ms is even 

C.C=ml + 3m3 + 5ms + 7m7 

where C is the (unique) characteristic sublink of L. Thus 

f l (M)=a- -2 -# (M)+C.C-2  

-#(M)+4(ma+ms)=-#(M)+~(M). [] 

(6.5) Remarks (1) z3(M) is not in general determined by Hi(M) and the #- 
invariants of M (whereas %(M) is, see w 7). For  example, for M = L(4, 1)4~ L(8, 1) 
one readily computes fl(___M)= +2  whence z3(q-M)= ___2i. Yet M and - M  
have the same homology and #-invariants. 

(2) Let v(M)=rkHl(M). Then the modified invariant cVtM)z3(M ) (see 
Remark 1.8) is always a Gaussian integer. This follows from Theorem 6.3 and 
the elementary observation that b(M) = fl(M) + v(M) (mod 2). 

7 T h e  c a s e  r = 4 

In this section we give a formula for "r4(M ) in terms of the #-invariants of 
spin structures on M (Theorem 7.1). It is derived using Rohlin's Theorem on 
the signature of spin 4-manifolds from a related formula (7.2) which involves 
the Arf invariants of sublinks of a framed link L with ML=M.  It turns out 
that Formula (7.2) can be shown directly to be an invariant of M using only 
elementary properties of the Arf invariant and [K1], and this in turn yields 
a new short proof of Rohlin's theorem (see Appendix C). 

(7.1) Theorem Let M be a closed, oriented 3-manifold. Then 

z4(M ) = ~ c "~M~ 
0 

where c = e ( - 3 )  and #(Mo) is the #-invariant of the spin structure 6) on M 
(the sum is taken over all spin structures). 

Proof Choose a framed link L of n components and signature a with ML = M. 
By Theorem 4.17, 

2 

~,(M)=I/51-2"c" E (e> JLo 
r  

where the doubly cabled components of L c are oppositely oriented, and 

(e)=~ss~,[e + 2j+ I J ( -  l)' (c ; J). 
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Here S is the sublink of L which is cabled once (S depends on e), and the 
sum is over all j > 0  with e + 2 j + l < 4 .  

First we show that < e ) = 0  for any c in which some %=0 .  Indeed, each 
j with j p = 0  in the sum can be paired with j', identical to j except that j ; =  1. 
The corresponding terms in the sum differ only in the p,h position, where we 

have [ 0 + 0 +  1 ] ( -  1)~ (~)=  1 for j and [ 0 + 2 +  1 ] ( -  1)1 (11)= - 1 for j', and there - 
fore cancel. 

Now if c has all c~ = 1 or 2, then 

<c> =~ssl/~"s 

where S (as above) is the sublink of all Li with c i=  I, and n s is the number 
of components of S. Furthermore,  recall from Remark4.12 that JL~ 
= a 1/2 2"-"s-  t, where a = ( - l )  A~r~L~) or 0, depending upon whether L c is proper 

or not  (see Appendix C). But L ~ is proper if and only if S is characteristic, 
since the components of L - S  are doubled. Hence 

JL~=(-- 1)Arf(S)]~ 2n-"s- 1 

if S is characteristic, and 0 otherwise. 
Putting these calculations together gives 

17.2) 
C 

2 Ca - C" C + 8 Arf(C) 

C 

where the sum is over all characteristic sublinks C of L. It is shown in Appen- 
dix C that characteristic sublinks C of L naturally correspond to spin structures 
O on M, and the associated #-invariants/~(Mo) are given by a - C .  C + 8 Arf(C) 
(mod 16) (see Eq. (C.3)). Thus Formula  (7.2) may be written as in the statement 
of the theorem. 

(7.3) Remark There is, of course, a quicker proof of Theorem 7.1 using the 
Symmetry Principle 4.20, which we leave to the reader. 

8 Applications of the Symmetry Principle 

In this section, the Symmetry Principle is used to simplify the formulas for 
z,(M), and to split %(M) into finer invariants. Several applications are given. 
We begin by reformulating the Symmetry Principle. 

The function c~ k and the sum mL.k 

Let L be a framed link and k be an Jg-coloring of L. Denote the corresponding 
even colored sublink of L by Ek. The Symmetry Principle (4.20) describes how 
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the invariant JL,k changes if the color k on some component  K is switched 
to r - k :  it is multiplied by 

i ( r -  2JK 'K + 2Ek 'K  

Now we give a formula when several colors are switched in this way, and 
show how to apply this to the study of the 3-manifold invariant r,. 

For  each sublink S of L, let k s denote the coloring of L obtained from 
k by switching the color as above on each component  of S. Then applying 
the Symmetry Principle repeatedly, we have 

(8.1) dL.ks = i ~'k(s) JL,k 

for some Z/4 Z-valued function ~k on the sublinks of L, where 

(8.2) q5 k (K) = (r -- 2) K. K + 2 Ek- K (mod 4) 

for a single component  K of color k. Noting that there is a one to one correspon- 
dence between the sublinks of L and the elements of H2(WL; Z/2Z),  where W L 
is the 4-manifold defined by L(see w q5 k may be viewed as a function 

(~k: H2(WL; Z/2Z)-*Z/4Z. 

(8.3) Lemma I f  r is odd, then (9 k is a quadratic enhancement of  the Z / 2 Z  inter- 
section form �9 on Hz(WL; Z/2Z). I f  r is even, then fb k is linear. 

Proof For  r odd, we must show 

q~k(S + T) = ~bk(S ) + ~bk(T ) + 2(S. T) (mod 4) 

for any (sublinks) S and T in Hz(WL; Z/2Z). Note that by (8.2), qhk(K)+K.K 
is even (since r is odd), and so this is immediate for S =  T - K .  The general 
case now reduces easily to the case when T= K and S is an arbitrary sublink 
of L not  containing K. 

In this case, consider So =Ek  ~ S (the even colored sublink of S) and $1 = S 
- S o  (the odd colored sublink of S). Now compute ~bk(S + K) by first switching 
colors on the components  of S (this gives qSk(S)), and then switching the color 
on K (which adds ( r - 2 )  K . K + 2 ( E k + S ~ - S o ) . K = ~ p k ( K ) + 2 ( S I - - S o )  
-K(mod4),  since the parities of all the colors on the components  of S have 
changed). Hence, 

~b k (S + K) = ~b k (S) + q~k (K) + 2 (S. K) (rood 4) 

since S. K = ($1 + So)" K = ($1 - So). K (mod 2). 
When r is even, ~bk(K ) is even by (8.2). The argument now proceeds as 

above except that the parities of the colors on S remain unchanged, and so 
switching the color on K simply adds q~k(K)- Thus ~k(S+K)=dpk(S) 
+ q~,(K) (mod 4). []  

For  any function q~: V--*Z/4Z on an n-dimensional Z/2Z-vector  space V, 
consider the Monsky sum [Br] 

m4, = E i~(v)" 
v~V 
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If 05 is linear, then m e vanishes unless 05 is identically zero, in which case m e = 2" 
[Br, Lemma 3.1]. If 05 is quadratic (i.e. 05(v+w)=05(v)+05(w)+2v.w for some 

symmetric bilinear form �9 on V) then m e is either 0 or  of the form ~f2ae(l/8) a, 
where d=n+nul l i tyz / zz05  and fl is the Brown invariant of ~b (see w or [Br, 
Theorem 1.20] for the nonsingular case). 

Now, for any coloring k of L, let 

(8.4) mL,k=me~lrk= ~ i e~Cs) 
S < L  

where T k is the sublink of L consisting of all components  with colors unequal 
to r/2 (and of course mL,k= 1 if Tk is empty). Note that mL,k=me~k for r odd, 
since Tk = L in this case. 

In view of(8.1), these sums may be used to compute the 3-manifold invariants 
rr(M), where M =  ML. In particular, define two colorings k and k' of L to be 
equivalent if on each component,  the corresponding colors are either equal or  
add up to r. Note  that each equivalence class contains 2 Irkl elements, and exactly 
one of these is minimal (where k is called minimal if no color exceeds r/2, also 
written k < r / 2  in multi-index notation). Now we may group the colorings into 
equivalence classes and rewrite ~r(M)=ct L ~ [k] JL,k from Definition 1.5 (using 
[k] = [r - k]): 0 < k-<, 

(8.5) Theo remr , (m)=c~  L ~ mL,k[k]JL,k. 
O<k=<r/2 

This reduces the number of terms by roughly a factor of 2" where n is 
the number of components in L. Thus it is of interest to evaluate the sums 
mL,k. 

(8.6) Lemma Let L be a framed link and k be a coloring of L. I f  r is even, 
then 

[-2 1Tk I i f  05k I Tk is identically zero 
mL,k = ]0 otherwise 

where T k is the sublink of  L consisting of  components with colors strictly less 
than r/2 in the coloring k. 

For r odd, 
mL,k = i rEk 'Ek  m L  ' I , 

where 1 is the constant 1-coloring and E k is the even colored sublink o f  L for 
the coloring k. 

Proof  The formula for even r follows immediately from the fact that 05k is 
linear (Lemma 8.3) and the remarks above. For  r odd, it suffices to establish 
the following: 

Assertion. I f  k and k' are colorings of  L which differ on only one component 
K, with colors k and k' respectively, then 

(mL. k, if  k = k' (mod 2) 
mL'k=~ie~(K)mL,k, if  k ~ k '  (mod 2). 

The formula in the Lemma then follows by induction on the number  of 
components in Ek (since for k even, Ek=Ek,  u K ,  and so as r is odd, rEk. E k 
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=rEk,. Ek, + 2rEk,.K +rK.  K =rEk,. Ek, + 2Ek. K +(r-- 2) K. K--rE~,. Ek, +c~k(K) 
(mod 4)). 

The assertion is obvious for k - k ' ( m o d  2), since qSk=q5 k, by (8.2), and so 
we assume that k and k' have opposite parities, 

First some notation. We shall write ~b for ~b k and ~b' for ~bk,; these are both 
quadratic forms on V= HE(WL; Z / 2 Z )  by Lemma 8.3, Observe that g k, = Ek + K 
(in V) and so 

~b' (S) - ~b (S) + 2 (S. K) (mod 4) 

for any S in V (e.g. ~ '(K)----qS(K)(mod4)).  Also, let V 1 be the 1-dimensional 
Z/2Z-vector  space generated by N with N . N =  1, and q5 -L be the quadratic 
forms on V 1 given by ~b +" (N) = _+ 1(rood 4). Note that 

me~=l+i .  

Now to prove the assertion, it remains to show that m~=ietK~rne.. There 
are three cases. 

Case I c~(K)= 0 (mod 4). Then q5 and ~b' are equivalent, i.e. there is an isometry 
T on (V,-) with ~b'=~boT. Indeed, define T ( S ) = S + ( S . K ) K  for any S in V (In 
the language of the calculus of framed links, we slide over K each component  
of L - - K  which links K oddly.) It follows that mq~ = mq~, = i ~K~ me,. 

Case 2 ~b (K)-= + 1 (rood 4). Then q~ @ ~b + and qS' | q5 +" are equivalent (as forms 
on V ~  1/1). Indeed, an explicit isometry T is given by T ( S ) = S + ( S . K ) ( K + N )  
for S in V (e.g. T(K)=N)  and T(N)=K.  (As framed links, we slide off K and 
over N each component  of L - K  which links K oddly.) It follows that (1 + i)m~ 
=(l+_i)m,,, since Monsky sums multiply under  direct sums, and so m e 
-=- i +- L rn4~" -_ ir m4j," 

Case 3 th (K) = 2 (rood 4). Then q~ E) ~b + O ~b + and  qS' G q~ - G ~b - are equivalent 
(as forms on VO V1G V~). To see this, consider r  + and r  
Note that 0 ( K + N ) = - 1  and ~ ' ( K + N ) = I ,  and so we are in the situation 
of case 2 (with q~ replaced by ~ and K replaced by K + N). Thus ~b 0)~b + and 
~ ' |  are equivalent. It follows that (t+i)2m~=(1--i)2mr and so m~= 
--me,=i~(K~rne,. [] 

The case of odd r 

Combining Theorem 8.5 and Lemma 8.6 we obtain the following formula for 
zr(M) when r is odd (where M = ML as usual). 

(8.7) Theorem I f  r is odd, then 

zr(M)=rnL, lO~l. ~ irEk'ekEk]JL,k, 
0 < k < r / 2  

where Ek is the even colored sublink of L for the coloring k. 

We now derive some consequences of this formula. 
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Splitting .['or odd r 

Observe that there is a natural quadratic form q~L on (H2(WL; Z /2Z) , ' )  given 
by 

4a(S) = S, S (mod 4) 

with associated Monsky sum 

(8.8) mL=m4,~ = Z i s s = ] / ~ " e  ~ z3(M), 
S < L  

where the last equality follows from the formula for z3(M ) in (6.1). It is readily 
verified that 

{m~ if r -  3 (mod 4) 
mL'l = if r--=- 1 (mod 4) 

and so we deduce from Theorem 8.7 that z, splits as a product for odd r: 

(8.9) Corollary I f  r is odd, set 

O<k<r/2 

with the + or - sign chosen according to whether r - 3  or r - 1  (rood4). (Here 
n is the number of  components in L and a is the signature of  the linking matrix 
of  L.)  Then 

,M,  ~z3(M)z'r(L) /f r - 3 ( m o d 4 )  
~rt ~-~3(M)z , r (L)  /f r = l ( m o d 4 ) .  

In particular zr (M)=0 whenever z3(M)=0.  

The Corollary suggests that z'r(L), if invariant under the moves of the calculus 
of framed links (K-moves), would be a more useful invariant of M =  ME than 
zr(M) because it would not vanish for "trivial" reasons. It is evident that it 
is invariant when z3(M)~0,  since z3(M) and %(M) are, and in fact it is invariant 
in general: 

(8.i0) Theorem I f  L is a framed link and r is odd, then T',(L) (defined in (8.9)) 
is invariant under K-moves on L, and hence defines an invariant z',(M) of  the 
associated 3-manifold M = ME. 

Proof We adopt the notat ion of the proof in w 5 of Theorem 1.6 (which estab- 
lished the invariance of zr(M)). In particular we have a K-move L*--, U of type 
e=  _+l, a fixed coloring i of L, and induced colorings i ~ k  of /X for each k 
(the color of the new component  K). Note that K- K = ~. 

Let E denote the even colored sublink of L ~ -  K for the coloring l u k (this 
is independent of k), and as above El and E ~  k denote the even colored sublinks 
of L and /~  for the colorings ] and I u k, respectively. Observe that 

J'E w K if k is even 
(8.11) El'~k= ) E if kis  odd. 
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It follows that  

where 
E~k .  E ~ k =  E,. El + e6k (mOd 4) 

6~={1 if k = E . K ( m o d 2 )  
0 if k ~ E. K (mod 2), 

since E. E = E~. E,+ e(E. K) 2 (by the way framings change under  K-moves, see 
w Using this, the proof of the Theorem reduces (as in the proof (1.6)) to 
the identity 

(8.12) (1- i~)bc  ~ ~ i~r[k]&~,,~k=JL,,, 
O<k<r/2 

which is the analogue of (5.3). 
To prove (8.12), consider the contribution Sk = (1 -- i ~') b c ' i ~ *  [k] JL,.I,~ Ot 

each color k to left hand side. Using the Symmetry Principle (4.20) we have 

(8.i3) Sk = b c ~ ( [k] JL"a ~ k + [r -- k ] JL~,l,~ ~-  ~)). 

Indeed, [r--k-]JL~lu(r_k)=i~('-2)+2~Ef~k'X)[k]dL~l~k=i~tr-2)+26k[k]JL,,l~k (since 
E ~ k . K = b k ( m O d 2 )  by (8.11)). Thus to prove (8.13), it suffices to show 
(l - W) i ~6~' = 1 + i ~tr- z) + 2 ~, which is readily verified. 

Now the left hand side of (8.12) can be rewritten using (8.13) as 

bc ~ Y'. [k]Jgo,~k. 
O < k < r  

But this is just the left hand  side of(5.3), and so (8.12) follows. [] 

As an application, we illustrate the use of Theorem 8.10 in studying the 
manifolds Ka obtained by surgery on K with integer framing a. Recall from 
Example 4.21 that  the value of the Jones polynomial of K at the fifth root 
of uni ty  is an invariant of K ,  provided the framing a ~ 2 (mod 4). This is in 
fact true for all a. In particular, by Theorem 8.10 

, - - 6  q2a 

is an invariant of Ka (where q=e( i /5 ) ,  and the right hand  side is obtained 
using (4.10) and Corollary 4.11). It  follows that Vx(q) is as well. We have proved: 

(8.14) Theorem Let K and K' be knots in S 3 whose Jones polynomials have 
distinct values at  the f i f th  root of  unity e(1/5). Then the 3-manifolds K ,  and 
K'a (obtained by surgery with framing a)  are distinct for each integer a. 

Homology spheres and the Casson invariant 

For another application of Theorem 8.7, consider the 3-manifold Kp/q obtained 
by p/q Dehn surgery on a knot  K in S 3. Then we have: 
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(8,15) Corollary (periodicity for homology spheres for odd r) I f  r is odd, then 
zr(Kx/,)= z,(K1/(,+~)) for every integer n. The same statement holds for the invar- 
iants z'~. 

Proof K~/, may be obtained by surgery on a two component  link L consisting 
of K with the zero framing together with a meridian J (unknotted) of K with 
framing - n. 

Observe that the linking matrix of L has zero signature. (Note that it follows 
immediately that z~(K~/,)= zr(K1/(n + 4.r)), by the Definition 1.5 of zr and the way 
that the invariants JL.k change under change of framing (3.27b).) One readily 
computes mL, ~= 2 and so by Theorem 8.7 

r~(K~/,)=2b z ~ [j] [k] i 'E~'G~ 
O<j,k<r/2 

where j and k are the colors on J and K respectively, and Ej,~k is the associated 
even colored sublink of L as usual. 

Evidently Ejuk.E~u k is 0 i f j  is odd, and is - n  or 2 - - n  i f j  is even (depending 
upon whether k is odd or even), that is 

Eju k'Ej~ k ~-- 2 ( j -  l ) ( k -  i) + n(j 2 - 1 )  (mod 4). 

Also we have 

JL U k ]  t_.~j~_~ ~ 

by Lemma 3.27c. Thus  

zr(K1/n)= 2 b 2 Z [ j][ jk]  ir(2(j-1)(k-1)+n(j2-1))t-n(JZ-1)JK, k 
O<j,k<r/2 

= 2 b  2 ~ [j][jk](--1)(J-l~(k-1)qn(j2-1)(rE-l)/4Jg,k 
O<j,k<r/2 

since i= t  r and q = t  4. (Note that (r z -  1)/4 is an integer since r is odd.) It is 
now evident that changing n to n + r does not change z,, since q" = 1. 

The analogous result for z' r follows immediately from Corollary 8.9 since 
za(K~/n)= 1 by Corollary 6.5, whence r',(K~/n)=z,(K1/,). [] 

2 2 (r~) 1 ( 2 _  q_q4), and a straight_ (8.16) Example Let r=5 ,  Then b =~-s in  2 ~ = 1 0  

forward calculation from the last formula in the proof of the previous proposition 
yields 

Z5 (K1/n) = �89 (2 -- q -- q4)((1 + [2] z q3 n) _1_ [2] (1 -- q 3,) JK)), 

where JK =JK,z as usual. 
It is i l luminating to write this formula in terms of the reduced Jones polyno- 

mial WK of K, defined by VK(X)=I--P(x)WK(x),  where P ( x ) = ( l - x ) ( 1 - - x 3 ) .  
(That VK can be so written follows from the evaluations (4.12) VK(1)= VK(~O ) = 1, 
where ~o=e(1/3), and  Vk(1)=0. Note that P(1)=P'(1)=P(co)=O. The polyno- 
mials W K are tabulated in Jones'  original papers [J1, J2].) Now, since JK = [2] 
(1 --P(q) W(q)) by (4.10) and Corollary 4.11, we compute 
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(8.17) zs(K1/.)= 1 --(i +q)(1 _q3.) WK(q). 

(Recall that ~__~oq2= 0.) 

There is an interesting consequence of this formula, relating the Casson 
invariant 2=2(K1/,) (see [AM]) with z=zs(K1/,). (This relationship was first 
observed experimentally using data generated in Mathematica [Wo].) 

n tl 
First recall from Casson's surgery formula that 2 =~- AK(1), where A K denotes 

the normalized Alexander polynomial of K. But V~'(1)=-3A~(1) by a well- 
known skein computation [J2, p. 369], and so 

(8.18) 2 = n  WK(1) 

since P(1)=P'(1)=O and P"(1)=6. 
Next observe from (8.17) that z is an element of the ring Z[-q] of cyclotomic 

integers in the cyclotomic field Q [q] (where q = e(1/5)). Consider the map 

T: Z [q] --* Z/5 Z 

given by T(Y" 2j q J) = ~, 2j(mod 5) (= - t r (~ 2j qJ)(mod 5)). Observe that T is both 
an additive and a multiplicative homomorphism (i.e. T(c~ + fl) = T(~) + T(fl) and 
r(c~ fl) = r(~) T(fl)). Evidently r (z  - 1) = 0 (or equivalently tr(r - 1) = 0(mod 5)). 

Noting that T(WK(FI) ) = WK(1)(mod 5), it follows from (8.17) and (8.18) that 

2 - n  T((I  + q ) ( t  __q3n))(mod 5) 

for n ~ 0(mod 5). (If n -  0(mod 5), then 2 -= 0(mod 5).) 
The last expression is in fact independent of n. To see this, write 

1 --'C 1 n'C 
( i  + q) (1  - -  q3n) - ~__q U2 U3n 

4 

where uj= ~ .  An easy computation (using the fact that j~= l(1- qJ)= 5) shows 

that T(uj)=j(mod 5) forj  = + 1 (mod 5) and T(uj)= - j ( m o d  5) forj = + 2(mod 5). 
It follows readily that 

(8.19) 

(Note that this holds even if n=0(mod 5), for then z=  1 by (8.17), and so the 
right hand side is 0 as expected.) Thus the mod 5 Casson invariant is determined 
by z. In summary, we have 

(8.20) Theorem Let M be a homology sphere obtained by Dehn surgery on a 
knot in S 3, and let q be the fifth root of unity e(l/5). Then zs(M) is a cyclotomic 
integer (i.e, an element of the ring Z[q]) .  Furthermore, the element a(M) 
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= z s ( M ) -  1 =zs (M)- - z s (S  3) has zero trace, is divisible by 1 - q ,  and satisfies 

2(M)= tr (~(~q)) (mod 5) 

where 2 denotes the Casson invariant. 

(8.21) Remark The theorem holds equally well for connected sums of homology 
spheres~ each of which is obtained by Dehn surgery on a knot  in S 3. 

The case of even r 

From Theorem 8.5 and Lemma 8.6, we obtain the formula 

(8.23) z r (M)=a  L ~ 21T~l[k]JL.k 
O < k < r / 2  
4~hlT,= 0 

for even r, where as usual M = M L and Tk is the sublink of components whose 
colors are less than r/2 for the coloring k. 

Observe that the condition Ck]Tk = 0 can be replaced by the more restrictive 
condition Ck=0. For  if Ck+0  on some r/2-colored component  K, then the 
Symmetry Principle applied to K yields JL,k = --JL,k (since q5 k is even valued 
for r even), and so 3L,k=0. 

Furthermore, the condition q~k=0 holds if and only if 

(8.24) E k . K = - K . K ( m o d 2 )  if r - -0 (mod  4) 

Ek.K--O (mod 2) if r - 2 ( m o d  4) 

for each component  K of L, where E k is the even colored sublink for k. A 
coloring k satisfying (8.24) for all K will be called a characteristic coloring 
(since for r divisible by 4 this is just  the condition that E u be a characteristic 
sublink of L, see Appendix C). Thus we have 

(8.25) Theorem I f  r is even, then 

r , (m) = at, ~ 21 rkl [k] JL.k 
0 < charac t  er is t ick < r /2  

where Tk is the sublink of L consisting of  components with colors strictly tess 
than r/2 in the coloring k. 

Homology spheres 

For  an application, consider once again the homology spheres K1/. obtained 
by 1/n Dehn surgery on a knot  K in S 3 (cf. Proposition 8.15). 

(8.26) Corollary (periodicity for homology spheres for even r) I f  r is even, then 
z,(K1/,) = "gr(K1/(n+(r/2))) f o r  every integer n. 



534 R. Kirby and P. Melvin 

Proof. The argument is analogous to the proof of Corollary 8.15, and we adopt 
the notation used there. Using Theorem 8.25 in place of Theorem 8.7, we obtain 

z,(K1/,) =b2 ~ 21Tj~t [3"] [j k] t-"(J2-')JK,k. 
0 < e h a r a e t e r i s t i c j  u k _< r / 2  

Now if r -0 (mod4) ,  then j • k  characteristic means that j and k+n are odd. 
If r -2 (mod4) ,  then it means that j and k are odd. In either case, j is always 
odd and so j 2  1 is divisible by 8. Thus the term t "(2~-a) (which is the only 
term that depends on n) can be rewritten as (q2)mn for some integer m. Since 
q2 has order r/2, the Corollary follows. [] 

Splittings for even r 

Recall from Corollary 8.9 and Theorem 8.10 that for odd r, the invariant zr(M) 
can be written as a product of two other invariants of M. It turns out that 
for even r, it can be written as a sum of invariants. 

For r divisible by 4, these are invariants of spin structures on M. That 
this should be so is suggested by the fact that the only terms which contribute 
to ~r(M) come from colorings whose even colored sublinks are characteristic, 
and characteristic sublinks correspond to spin structures. 

(8.27) Theorem Let M be a 3-manifold and 0 be a spin structure on M. Choose 
a framed link L for which M=ML,  and let C be the characteristic sublink corre- 
sponding to (9 (see Lemma C.1). I f  r =0(mod 4), then 

z~(M, 0 ) = ~  L ~ 21r*l [k] JL,k 
O < k  <=r/2withEk =C 

is an invariant of the spin manifold M o. Furthermore, 

z~(M) = ~  z~(M, O) 
@ 

where the sum is over all spin structures on M. 

Remark. zr(M, 0) can equally well be written as 

(8.28) rr(M, O)= ~L ~. [k] JL,k 
O < k < r w i t h E k = C  

using Lemma 8.6 and the fact that k and r - k  have the same parity (for even 
r). 

Proof of Theorem 8.27 We must show that the right hand side of (8.28), denoted 
z,(L, C), is invariant under K-moves (L, C)~--~(U, C ~) of characteristic pairs (see 
Appendix C). Here 

C~=~C+K if C.K  is even 
lc if C. K is odd 
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is the characteristic sublink of/-5 (Remark C.2), where C denotes both the charac- 
teristic subtink of L and the corresponding sublink of /5 and K is the new 
component  of E (as usual). 

Proceeding as in the proof of Theorem 1.6 in w or Theorem 8.10 above, 
the proof of the invariance of r,(L, C) reduces to the identity 

(8.29) b c ~ ~ [k] JL~.,~,k = Jg., 
O < k < r  

k ~ C ' K ( m o d 2 )  

for any coloring I of L with E~ = C. 
To prove this identity, first assume that C . K  is even. Then for odd k we 

have qS~. k (K) -- (r -- 2) e + 2 E~,~ k" K --= 2 + 2 C- K = 2 (mod 4), and so by the Symme - 
try Principle (4.20), 

(8.30) [r - k ] J L~,k,~,-k)= -- [k] JL~.l~,k" 

It follows that the condition k - C . K ( m o d 2 )  may be omitted in the sum in 
(8.29), as the additional terms cancel in pairs, and so (8.29) reduces to the identity 
(5.3). 

If C . K  is odd, then for even k we have ~Oluk(K)==-2+2(C+K).K=-2(mod4), 
and (8.30) follows. Thus (8.29) holds in this case as well, and so the first statement 
in the Theorem is proved. 

The last statement in the Theorem follows immediately from Theo- 
rem 8.25. [] 

(8.31) Example If r = 4 ,  then "c4(M , O)=c u(M~ where c = e ( - 3 / 1 6 ) .  Indeed, 

since b =  1/2 and [2] = l ~ ,  we compute %(M, 0)=C~Jc.2/1/2 Icl, where a is the 
signature of a framed link L with M = ML and C is the characteristic sublink 
corresponding to O. Using Corollary4.11 and Remark4.12,  it follows that 
z4(M, O)=c~-C'c+arf(C)=c "~M~ (Note that this yields a proof  of Theorem 7.1 
without cabling, cf. Remark 7.3.) 

For  r - 2 ( m o d  4), the invariant zr(M) splits as a sum of invariants, one for 
each element in H~(M; Z/2Z).  Indeed, the only terms which contribute to the 
computat ion of'cr(M ) come from colorings whose even colored sublinks E inter- 
sect each component  of L evenly (where M = MD. Such sublinks E are in one-to- 
one correspondence with elements c~ of H~(M; Z/2Z).  In particular, ~ is the 
unique class which is one on meridians of E and zero on meridians of L -  E. 

(8.32) Theorem Let M be a 3-manifold and ~ be an element of  H 1 (M; Z/2Z).  
Choose a framed link L for which M = M L, and let E be the sublink corresponding 
to ct (see above). I f  r = 2(rood 4), then 

O < k  < r / 2  w l t h E ~  = E 

is an invariant of  (M, ~). Furthermore, 

~,(M)=Y~r(M, ~) 
c~ 

where the sum is over all elements ct in H ~ (M; Z/2Z).  
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The proof is similar to the proof of Theorem 8.27 and is left to the reader. 
Note that one uses a calculus for pairs (L, E), with E. K even for all K, where 
the K-move replaces E by E' given by 

E' = f E  if E. K is even 
( E + K if E- K is odd. 

(8.33) Example If c~=0, then the corresponding sublink E is empty, and so 
to compute zr(M, 0) we only consider odd colorings of L (where M =  ML). It 
follows readily that 

i-a 
~6(M, O)= ~S~<LJS,3 

since b =  1/~12, c=i -1 and [3 ]=2 .  

Appendix A. Identities in J 

As noted after (2.20), the relation YX=XY-[H] may be generalized to Y"X 
= X Y" - [n] [H + n -  1] Y"- 1. A more general formula is 

(A.1) Y"Xk=o<_i<=~n(,,.k(--1)i[n][i]![~ ] [i],[H+n-ki -l+i]Xk-iY"-i 

H + m [H + m- - j  + 1 ] /[ j]  !), which follows by induction (w oro[ on 
k using the identity [a] [H + c + b] + [b] [H + c - a] = [a + b] [H + c]. 

In particular, we will need (A.1) when k=n: 

(A.2) Y"X"=o<=~i<= (-1)i[~]2[i]!2[H--tl 

For our  purposes, it is convenient to expand the term 

(A.3) [H-il+i]-- [i] !(sl-- s-) i (K2_K2)(sK2_gK2)...(si_,K2_gi_t~2) 

in powers of K:  

(A.4) Lemma 

(K2 j~2)(sK2 ~ 2 )  ... (si-lKZ g -1/~2)= }~ ( _  1)i-JcijK4j-21 
O<=j<=i 

~.2 ,~.) 
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Proof We use double induction starting with the cases j = i  (where c ,  
= s ~  i(i-ll  is the coefficient of K 2i) and j = 0  (where c io=g  ~  
= ?(;-  l) is ( - 1 )i times the coefficient of R 2 ~). 

Recursively, c i i= J -  1 c~ 1,j- 1 - { -  l c~_ 1,~ for j < i, so c~j is determined by 

andcko fork<j .  But t '2j-i)'i l) l t /satisfies the same recursive formula, using Ckk 
the quantized Pascal relation U J  

(A.5) s j~]=s i [ i - -1]  [ i - 1 ]  
b-1]+[ ; ]" [] 

Using (A.3-4) we may rewrite (A.2) as 

D] 
X , - i  y,-~ Kaj-  2~ 

o<=j<_~<=,, �9 ~ ~ IJJ 

We are now in a position to complete the proof  of Theorem 3.20. 

(A.7) Theorem The identity 

is satisfied in ~r where R = ~, cq | fli is the R-matrix given in Theorem 2.18. 

Proof Using Theorem 2.18, the left hand side is 

~ c,~bX" K~ R z Y" K b = ~  c,~bg"~"- 2) X" Y" K "+b-z 

and the right hand side is 

E enab yn Kb K 2 Xn Ka= E enab sn(b+ 2) yn xn  K a+b+ 2 ' 

where the sums are over all O<n<r  and O<a,  b<4r.  Multiplying by 4rR7 e 
and substituting for C,ab, the left hand side becomes 

~'~ (S--S~ n -~ab+(b+a)n-3n gn yn K~+b-4=E )~npX, y ,  K v 
(A.8) ~ [n]! 

and the right hand side becomes 

(A.9) ~ (s--s~"[n] ! ~b-(b+a)n-3n xn  Y" Ka+b = Zw P,;, X" Y" K v 

summed over all 0 < n < r and 0 < p  < 4  r. It remains to show that coefficients 
,a,, v and p,p of X" Y ' K  v are equal for all n and p. 
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From (A.8) we compute 

~np= Z ( S-S~n ~ab+(b+a)n-3n 
a+b_4=p(modO,,) [t'I]! 

( S-~)n ta2-(p+4)a--(p+ l )n  

= S [hi! 
O = < a < 4 r  

(S--S-) n ta2 _ pa_ 2p_ 4_(p+ l)n 
= Y, In]! 

O ~ a < 4 r  

where the last equality is derived by replacing a by a +  2, and noting that the 
sums ~ and ~ are equal. 

O_<_a<4r - 2=<a<4-r- -  2 

To compute  p.p, first use (A.6) to move Y" past X" on the left side of 
(A.9) 

(S--g)" pb_(b+a)n_3n(__l) j 1_/.] ! xn_iyn_iKa+b+4j_2i  
o=<.< ,  I n ] !  i ( s - s 3  ~ " " 

O<_a,b<4r 
O<j<i<n 

It follows as above that p.p is 

Z (S__ff)n+i ta2_a(p_4j+2i)+(n+i)(p-4j+2i+3)+(2j_i)(i_l) 
o<.<4~ I n + i ] !  

O<=j<=i<r--n 
�9 n + i  2 [ i ] !  

[,+,1 [, l 
= ~ In]! k i JkJ] O < a < 4 r  

O<=j<=i<r--n 

where the second equality follows by cancellation and substitution of a -  2j  + i 
for a. 

Since n and p are fixed, 2.p and P.p have a common factor 

c=(~-~" Z t"~-P~ 
[ n ] r  o ~ , < , ,  

If p is odd, then C = 0. Indeed, is an integer in this case, and so we 

can replace a by a + ~  in the sum: 

1 _ p 2  
Z ta~-Pa=t 4 ~ t a2-a. 

O < a < 4 r  O<=a<4r 

But t (2r-a+l)2-(2r-a+l)=t-2r+a2-a=-- t  aa-a, since t4r=l, and so the terms in 
the sum on the right cancel in pairs. Thus 2,p = p,p = 0. 
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For  p even, we divide 2,p and p,p by C, and it remains to show that 

O < j < i < r  L ~ J L ] J  

where m = p n + 3 n + 2j  p -  4 j  z -- 4 j  n -  2 j  is independent of i. 
It  is straightforward to check that  the term on the right hand side of (A.10) / 

is equal to the left hand side. [Note that  corresponding to i = j = r - n - 1  P 
\ 

n + i i this case.) 
/ 

We now finish by showing that  for fixed j < r - n - 1 ,  the sum over i on 
the right of (A.10) is zero. Factor ing out ( -  1) j t", it suffices to show 

(A.,  i) j<=~<~_,t~(2J+2"+4~'[nq[il~]=O. 

It is convenient at this point to use the binomial q-coefficients [hi _ s~(,_~, In] 
(see (2.29)). The left hand side of (A.11) then becomes [kJq-  [k] 

t2j2+4irn§ M t ,2 E, qi + n]q! 
~=<i<,-. ~ [ i ]  [J]q q [n]q![.j]q! j<_i<~-,, [i--j]q! " 

The last sum is just ~ qi[i+ n]q... [ i - j +  1]q. To see that this is zero, note 
j < i < r - n  

that  the product  of brackets ranges from a high of [ r - 1 ] q  when i = r - n - 1  
to a low of [1] when i=j. Thus we may extend the range of i to 0=<i<r ,  
as that only adds terms containing a factor of either [ r ]q=0  or [0]q=0.  Hence 
the left hand side of (A. 11) is a multiple of 

r - I  

qi[i + n-[q ... [ i - - j+ 1]q 
i=0 

1 " " ( q i - j +  1 
- ( q _ l ) . + i ~ q ' ( q ' + " - l ) . . .  --1) 

( 2n§ ) 
| q i  aki+bk - ( q _ l ) . + j  ~ ~, + q  (for suitableak, bk) 

i \ k = l  / 

1 tli+bk) 
-- ( q _  i)n§ ~- -+(~  q"k+ 

1 / , - 1  \ 
- ,  ~,.+j Y,+/Y ' .  q'} 

~q--l]  k \i=o / 

= 0  

since the sum of the r'U-roots of unity is zero. [ ]  
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Appendix B. The Jones polynomial at the sixth root of unity 

In this appendix we derive an expression for the value of the variant ~'L of 
the Jones polynomial at q =e(~) (see Remark 4.12). There are of course similari- 
ties between our derivation and that of Lipson [Lp] for the Jones polynomial 
vL. 

Let A be a symmetric matrix over Z/3 Z. The corresponding quadratic form 
is classified up to Witt equivalence by its nullity d A and Witt class o9 A in the 
Witt group W(Z/3 Z ) =  Z / 4 Z  (see e.g. [MH]). These invariants may be computed 
as follows: diagonalize A (over Z/3Z)  writing all entries as 0 or + 1. Then 
dA is the number  of diagonal O's, and ~o A is the trace (or signature) viewed 
as an integer mod 4. 

Set 

2 A  = 1 / 3  dA ( - -  i) ~ �9 

Note that 2 multiplies under block sum. If A is the mod 3 reduction of a matrix 
representing the quadratic form of a link L, write 2L = 2A. 

(B.1) Theorem VL=2L at q=e(~). 
Proof Let L, (e = + ,  --,  0) be as in Fig. 4.4a. Choose corresponding connected 
Seifert surfaces F~ which locally appear as in Fig. B.2 and coincide otherwise. 

F+ 2"_ Fo 

Fig. B.2 

With respect to suitable bases of HI(F~), the associated symmetrized Seifert 
matrices A t satisfy 

Ao) 
By a change of basis (first diagonalizing Ao rood 3) we may arrange that either 

A+-(a)GB, A_=-(a-1)GB, 

(for A o nonsingular), or 

a + - - - ( ;  bo)@B, A _ - ( a b l  ; ) . B ,  

for some matrix B. Here (3 denotes block sum. 
Now set 

d~ = d a ~  - -  d~ 

(D~ = ( D A ~  - -  ( I )  B 

2,  = 2 a ] 2 B  = ~f3do( _ iFo.  

Ao - B (mod 3) 

A o - (0 )  (9 B (mod 3) 
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IfA o is nonsingular, or A 0 is singular with b#0,  we have 

d+ d_ do o+ ~o_ Oo 
a=O]  1 0 0 0 - 1  0 
a - l /  (mod3) 0 1 0 1 0 0 
a - 2  0 0 0 - 1  1 0 
b # 0  0 0 1 0 0 0 

2+ 2_ 20 

1/3 i i 
--i ]/3 1 
i - i  1 
1 1 

For Ao singular with b=0,  the de are 1 more than the corresponding d~ in 
the nonsingular case, and the co~ remain the same, and so the 2~ go up by 

\ " /  ~- [1 \  1 ~ 2  (1~) ( 1 1 2 )  a factor of 1/3. Now for q = e | z ] = ~ +  i, s - - g = e  - e  - =i,  and 
one readily verifies that 

q 2 + - 4 2 _  =(s-s-)2o 

in all cases. Multiplying by An gives 

q 2L+ --~t 2L_ =(S-- S~.~Lo 

since 2Lo=)~A~ by definition. It is evident that 2unknot= 1, and so VL= 2L as 
desired. [] 

Appendix C. /Mnvariants 

Let M be an oriented, closed connected 3-manifold. A spin structure 6) on 
M can be viewed as a homotopy class of trivializations of the tangent bundle 
zM over M-point [K2]. It is well known that M has a spin structure, since 
wz(zM)=0. It follows by obstruction theory that the number of distinct spin 
structures is equal to the number of elements in H I (M; Z/2Z)=Ha (M; Z/2 Z). 

Recall that the #-invariant of M o is defined to be the signature (rood 16) 
of any smooth, compact spin 4-manifold W with spin boundary M s, 

tL(Mo) = a (W)  (mod 16). 

This is well defined by Rohlin's theorem, which states that the signature of 
a smooth, closed spin 4-manifold is divisible by 16. 

Now suppose that M is described by ~ framed link L, so M = ML = O WL 
(see w 1). A sublink C of L is characteristic if C. Li-= Li" Li(mod 2) for all compo- 
nents L~ of L, and the pair (L, C) is then called a characteristic pair. 

(C.1) Lemma There is a natural one-to-one correspondence between the spin 
structures on M L and characteristic sublinks o f  L. 

Proo f  Assign to any spin structure O on M L the sublink C of L consisting 
of all components L i such that O does not extend across the 2-handle in WL 
attached to L~. An elementary geometric argument shows that C must be charac- 
teristic (see e.g. w 3 of [MK]). 

The map carrying O to C is one-to-one. Indeed, if C is assigned to some 
other spin structure O', then 6) and 6)' agree on the link E in M L which is 
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the core of the surgery on L. Since H = H I ( M L ;  Z/2Z)  is carried by E, we 
have t9 = O' by obstruction theory. 

It remains to show that there are exactly I HI characteristic sublinks (as 
this is the number  of spin structures). To see this, recall that the mod 2 linking 
matrix A of L is a presentation matrix for H, and so [HI=  [ker A [. But C (viewed 
as a column vector of O's and l's) is characteristic if and only if A C = D ,  where 
D is the main diagonal of A, and so the number  of characteristic sublinks 
is I kerAI as well. []  

If 0 is a spin structure on M L and C is the corresponding characteristic 
sublink of L, then the spin manifold (ML)~ will be denoted by ML. c. 

(C.2) Remark The argument in [K1] on the calculus of framed links for ori- 
ented 3-manifolds yields a calculus of characteristic pairs for spin 3-manifolds. 
In particular, ML,c=ML, c , as spin manifolds (i.e. there is a diffeomorphism 
between them which preserves spin structures) if and only if one can pass from 
(L, C) to (E, C') by isotopy in S 3 and a combinat ion of the following two moves 
of characteristic pairs (cf. w 1): 

Move 1 (blow up) Add (or delete) a disjoint unknotted component with framing 
+_ 1 and replace C by C' = C + K. 

Move 2 (handle slide) For some i +j, slide L i over Lj  to get E i = Li + Lj and replace 
C by 

I C if C does not contain L~ 

C' = C -- (Li + L j) + E i if  C contains L i and Lj 

(C - L i + (Lj + Ei) if C contains L i but not Lj  

(cf. Remark 6.2). As in [FR],  these moves may be combined into one, the K-move, 
defined as in w 1 (Fig. 1.3) with 

C ,=  I ' C + K  if C - K  iseven 

lc if C . K  is odd. 

Here, C denotes both the characteristic sublink of L and the corresponding 
sublink of L'. Note that it can happen that ML, C = ML,c, for some C :# C'. 

Now let (L, C) be a characteristic pair. Note that C is a proper link (i.e. 
characteristic as a sublink of itself, or equivalently L~.(C-L~) is even for all 
components L~ of C), and therefore has a well defined Arf  invariant Arf(C). 
If L is oriented, then define the p-invariant of (L, C) to be 

(C.3) p(L, C) = t r -  C. C + 8 Arf(C) (rood 16) 

where a = a(WL) is the signature of the linking matrix of L. 

(C.4) Theorem i~(L, C) is an invariant of  the spin manifold mL,c. 

Proof. By the previous remark, it suffices to show that p(L, C) is independent 
of the orientation on L and is invariant under moves 1 and 2 of characteristic 
pairs. 
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First suppose that the orientation on a component K of L is reversed, giving 
(E, C'). Evidently a remains unchanged. If C does not contain K, then C.C 
and Aft(C) are unchanged as well, and so /l is unchanged. If C contains K, 
then homologically C ' = C - 2 K ,  and so C ' . C ' = C . C - 4 K . ( C - K ) .  Thus the 
invariance of p follows from the fact that Arf(C')-  Aft(C) + �89 K. ( C -  K)(mod 2), 
or equivalently 

(__ 1)Arf(C')--Arf(C)=(__ 1)�89 K). 

(Note that K. ( C - K )  is even since C is characteristic.) This fact can be proved 
by elementary methods using Seifert surfaces, but it is quicker to use the formula 
for the Jones polynomial at i (Remark4.12), which gives ( - 1 )  gmc'l Ar,Cl 
= Vc,(i)(Vc(i)) -1, and the Jones reversing result (see Proposition 4.3 of [L2]), 
which gives Vc,(i)=(--1)~K'(C-K)Vc(i ). (Note: Jones' reversing result can be 
proved using Remark 3.26 and Corollary 4.11.) 

If L is changed by Move 1, then a and C. C change equally (by _+ 1) and 
Aft(C) remains unchanged, and so/l  is unchanged. 

If L is changed by Move 2, sliding L; over L i to get E i=Li+Li ,  then a 
is unchanged, and C. C and Aft(C) change only if C contains L i. In that case, 
since /~ is independent of orientation, we can change the orientation of L i after 
the handle slide (E i = - L  i). Then homologically C'= C, and so C'.C'= C. C. 
Also Arf(C')= Arf(C), since the Arf invariant does not change under orientation 
preserving band connected sum, and evidently we can get C from C' by summing 
E i and E i appropriately. Thus # is unchanged. O 

(C.5) Corollary t~(Mt~,c)=l~(L, C). 

Proof It is known that (L, C) may be changed by moves of characteristic pairs 
to (E, C') with C'=O, and so W L, is a spin 4-manifold bounded by ML,c [Ka]. 
Thus #(ML, c)=a(W~,)(mod 16)=ME, C')=ML, C). [] 

Remark. Normally Rohlin's theorem is used to show that the /l-invariant is 
a Z/16Z invariant (rather than a Z/8Z invariant as the algebra of intersection 
forms predicts). One may, however, reverse the order of things by showing the 
invariance of g from the calculus of framed links (Lemma C.4), and then deduce 
Rohlin's theorem: 

(C.6) Corollary (Rohlin's Theorem) I f  W is a smooth, closed spin 4-manifold, 
then a(W)=0(mod 16). 

Proof Using smoothness, decompose W as a handlebody with one 0 and one 
4-handle. We may assume that W has no 1 or 3-handles, since they may be 
changed into 2-handles by surgery (preserving the spin structure and signature 
a). Now Wo= W-(4-handle)= W L, with ML=S 3, for some flamed link L. Since 
WL is spin, the characteristic sublink corresponding to the (unique) spin structure 
on S 3 is empty, and so #(L, 0)=6(WL)(mod 16). But S3=M0 as well, and so 
p(L, 0)=/~(0, 0)=0 by (C.4). Thus a(W)=a(WL)=--O(mod 16). [] 

Whether this proof is really easier depends on ones view of the calculus 
of framed links whose proof ([K 1]) uses Cerf theory. 
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