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INTEGRALITY AND SYMMETRY OF QUANTUM
LINK INVARIANTS

THANG T. Q. LE

0. Introduction. Quantum invariants of framed links whose components are col-
ored by modules of a simple Lie algebgaare Laurent polynomials inl/? (with
integer coefficients), whereis the quantum parameter amtan integer depending
on g. We show that quantum invariants, with a suitable normalization, are Laurent
polynomials inv2.

We also establish two symmetry properties of quantum link invariants at roots of
unity. The first asserts that quantum link invariants;tatroots of unity, are invariant
under the action of the affine Weyl groug,, which acts on the weight lattice. A
fundamental domain o, is the fundamental alcov€,, a simplex. LetG be the
center of the corresponding simply connected complex Lie group. There is a natural
action of G on C,. The second symmetry property, in its simplest form, asserts that
quantum link invariants are invariant under the actiowadf the link has zero linking
matrix. The second symmetry property generalizes symmetry principles of Kirby and
Melvin (the sh case) and Kohno and Takata (thg shse) to arbitrary simple Lie
algebra.

0.1. Quantum invariants.Supposd. is a framed link withn ordered components
and M, ..., M,, are modules of a simple complex Lie algelgrarhen the quantum
invariantJ; (M, ..., M,,) is a rational function in the variable'/?, wherev is the
quantum parameteand D is a number depending an (See [RT1], [Tu]; we recall
the definition of quantum invariants in 81.) The Jones polynomial (see [J0]) is the
simplest in the family of quantum link invariants: Whegn= sl, and the modules
equal the fundamental representatidp, is the Jones polynomial, with a suitable
change of variable. The reader should be able to reléteany other variable if it is
known that the quantum integpf] is given by

vt —ph
nl= v—v1’

0.2. Integrality. A priori J; is a rational function in'/?. Lusztig's result on the
integrality of theR-matrix implies that/; is a Laurent polynomial in'/? with in-
teger coefficientg¢see a detailed proof in §1.4.2 below). We study the integrality of
the exponentof v. One of our main results shows that is essentially a Laurent
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polynomial in v2. More precisely, suppose all the modulgs, ..., M,, are irre-
ducible; thenJ;, belongs tov?Z[v*2], wherep is a rational number determined by
the linking matrix of L (see the strong integrality theorem in §82). Thus one can get
rid of fractional and odd powers efby using a suitable normalization. For example,
suppose that the normalization of the quantum invariant is chosen so that the value
of the unknot is 1; then the value of anpframedknot is in Z[v*2].

The strong integrality theorem does not follow directly from the integrality result
of Lusztig. To prove it, we have to use a geometric lemma about special presentation
of links and a result of Andersen on quantum groups at roots of unity.

0.3. Symmetry |.To formulate the symmetry properties, it is more convenient to
use another normalization of quantum invariants,

OrMq,....Mp) =J (Mq1,....,.Mp)JymMa,...,Mp),

whereU ™ is the trivial link with m components and each has zero framing. This
normalization is the one used in the definition of quantum 3-manifold invariants.

Since irreduciblgz-modules are parametrized by the Xet of dominant weights
both J; and Q; can be considered as functions fraii, )™ to Z[v*Y/P]. The set
X+ is the part of the weight lattic& which lies in a Euclidean spadg,. For each
positive integer- there is defined theundamental alcov€,, which is a simplex in
hr (see 82). The reflections along the facet<pfgenerate the affine Weyl group
W,, for which C, is a fundamental domain. The affine Weyl group plays an important
role in the theory of affine Lie algebras (see [Kac]).

We show that when? is a primitiverth root of unity, quantum invariants have very
nice symmetry properties expressed in fingt and the second symmetry principles
The first asserts tha®; is componentwise invariant under the action of the affine
Weyl group. More precisely, wher? is anrth root of unity,

QL(Awl'Ml’ cre Awm'Mm) = QL(AMl’ Tt A//’m)’

wherewsy, ..., w, € W, andK,t is the simple module of highest weight Here the
dot means the dot action, and all, ..., um, wi-u1,..., Wy - Uy, are inX4. For a
stronger statement that describes the maximal group of symmetry, see 82.

Thus when considering quantum invariants at roots of unity, one could restrict the
colors—that is, the modules assigned to components of linkse-ta fundamental
domain of the affine Weyl group. The simplé€x contains only a finite number of
elements inX .. For example, the sum over all weightsXn_ could be replaced by
the sum over all weights id,. This happens in the theory of quantum 3-manifold
invariants.

0.4. Symmetry ll.Let G be the (necessarily finite abelian) center of the simply
connected complex Lie group associated witlThe groupG is also known as the
fundamental group; it is isomorphic to the quotient of the weight lattice by the root
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lattice. There is a natural action 6f on C, (see §2). Supposé? is a primitive rth
root of unity. In its simplest form, the second symmetry principle says ¢hatis
invariant under the action @ if the linking matrix of L is zero. In general, under the
action of G, Q; is multiplied by atwisting factordetermined by the linking matrix
of L. More precisely, suppose, ..., im € Cr, g1, ..., gn € G; then

QL (Agl‘ﬂl’ e Xgl11'ﬂnz) = vrt QL (K/,Lj_’ LERE) A[Lm)a

where the dot action is, as usual, the one shifted by the half-sum of positive roots and

where
t=(r—h) Z lij(gilgj)+2 Z lij(gi I 1),
1<i,j<m 1<i,j<m
with / being the Coxeter number (see Table 1). Hérg is the linking matrix, and
(- | -)'s are scalar products naturally defined using the standard scalar prodgict on
For a stronger statement, see §2.

The action ofG is induced from that of thextended affine Weyl groLiphe second
symmetry principle, in fact, describes how quantum invariants behave under actions
of the extended affine Weyl group.

For g = sk, the second symmetry principle was discovered by Kirby and Melvin
[KM] and for g = sl, by Kohno and Takata [KT1]. Our contribution in these cases
is the explicit relation between the twisting factor and the scalar produgt Dhis
relation makes the second symmetry principle more understandable and easier to deal
with. We also consider all primitiveth roots of unity, not onlye?*!/”. Our proof is
different from those of [KM] and [KT1], though it borrows some ideas from [KM].

In order to handle all simple Lie algebras, we have to use deep results of Lusztig and
Andersen on quantum groups.

0.5. In[KM]and [KT2], the second symmetry principle was used to define a finer
version—the projective version—of quantum 3-manifold invariants. The values of the
projective version, so far defined only fg& sl,, were proved to be algebraic integers
(see [Mu], [MR], [TY]). Then Ohtsuki showed that, fgr= sl», the projective version
has aperturbative expansigmwhich is a power series invariant of rational homology
3-spheres; see [Oh1] (see also [Le2] for thecsse). This result led Ohtsuki to the
definition of finite-type invariants of 3-manifolds (see [Oh2]). In a forthcoming paper
[Le3], we will generalize these results to arbitrary simple Lie algebras.

0.6. Various properties of quantum link invariants were proved by first establish-
ing the properties foflundamental modulesnd then usingablings(see, e.g., [MW],
[Yo]). This approach has been widely used for classical Lie algebras (series ABCD),
since the invariants corresponding to fundamental representations are essentially the
Homflypt and the Kauffman polynomials, which have simple skein relations. The case
of exceptional Lie algebras has not been well studied. We do not use that approach in
this paper. To uniformly handle all simple Lie algebras we extensively utilize results
in quantum group theory.
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B@ BZ D( D(
At | godd | ceven| €¢ | rodd | ceven | B8 | E7 | 8| Fal G2
1 2 2 2 1 1 1112
¢+1 2 1 1 4 2 3|1 2|11

Zov1| 2o Z5 V&) Ly |Zoxly | 23| Z2| 1| 1
e+1| 2 20 20 |2¢-2| 2¢—-2 | 12|18 |30 12
hY | £4+1|2¢—-1|2¢—1|¢+1|2¢—2| 2¢—2 | 12|18|30| 9

S| QY| ~

Alo|lkRr|RP|w

0.7. The paper is organized as follows. In 81 we recall necessary facts about
guantum groups and the definition of quantum link invariants. The integrality theorem,
the two symmetry principles, their refinements, and their corollaries are presented in
§2. Finally, 83 contains proofs of main theorems.
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theory. He also thanks W. Menasco, who provided a proof of Proposition 3.6, and the
referee, for valuable corrections and comments.

1. Quantum groups and quantum link invariants

1.1. Quantum groupsWe recall here some facts from the theory of quantum
groups, following [Lu2] (see also [Ka]). We do not use thvadic version, so the
R-matrix does not lie in the quantum group.

1.1.1. Cartan matrix and rootsLet (a;;)1<; j<¢ be the Cartan matrix of a sim-
ple complex Lie algebrg. There are relatively prime integeds, ...,d, in {1, 2,3}
such that the matrixd;a;;) is symmetric. Letd be the maximal ofd;). The reader
uncomfortable with Lie algebra theory might want to consider only the dasel,
that is, the simply laced case (seri¢® E), for which many formulas become much
simpler. The values af and other data for various Lie algebras are listed in Table 1.

We fix a Cartan subalgebtaof g and basis rootas, ..., «a, in the dual spacé*.
Leth be theR-vector space spanned by, ..., «,. The root lattice” is theZ-lattice
generated by;, i = 1,..., ¢. Define the scalar product & so that(w; | o)) = d;aj.
Then(a | @) = 2 for everyshortroot «.

LetZ, be the set of all nonnegative integers. The weight latiqgesp., the set of
dominant weightsx ) is the set of alk € by such thati, o;) := 2(A | o)) /(@i | ;)
eZ (resp.,(r,a;)eZy)fori=1,...,¢. LetA,..., e be the fundamental weights;
that is, thex; € by are defined byA;, o)) = §;; or (A; | aj) = d;8;;. ThenX is the
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Z-lattice generated bys, ..., ;. The root latticer’ is a subgroup of the weight lattice
X, and the quotient; = X/Y is called thefundamental grouplf u € X anda € Y,
then(u | o) is always an integer.

Let p be the half-sum of all positive roots. Then= A1 +---+ X1, € X,. Finite-
dimensional simplgi-modules are parametrized ¥/, : for every » € X, there
corresponds a unique simplemoduleA ;.

1.1.2. The Hopf algebral and its integral form. Consider the algebrai =
Z[v,v~1] and its fractional fieldQ(v), wherev is an indeterminate. The Hopf al-
gebradl, known as the quantum group associated wijtis defined ovefQ(v) and is
generated byr;, F;, K,, withi =1,...,¢ anda € Y, subject to some relations. We
refer the reader to [Lu2] for the set of relations and the definitions of the coproduct
A and the antipodd; the precise formulas are not used in the sequel. Note that the
coproduct in [Lu2] is the same as the one in [Tu], but opposite to the one in [Ka]
and [KM]; correspondingly, our antipode is the inverse of that in [Ka] and [KM].
In [Lu2], the two latticesX, Y are in different spaces, dual to each other. Here we
consider bothX andY as subsets of the same spage(using the scalar product).

One of the relations says th&t, . g = Ko Kg = KgK, andKp = 1. HenceK _, =
K;L

Lusztig introduced an integral versigfit of U, similar to the KostanZ-form of
classical Lie algebras. For each positive integgelet

p din _y,—din

E? F? v
(p) i (») i
E" = ——, F"'=——  where[pli!=| | ———.
' [p]i! ' [p]i! [Pl ,[[1 v —y=di

Then 4 is the si-subalgebra ofi. generated b)El.(”), Fl.(”), Ko, Withi =1,...,n,
p ey, anda €Y. Itis known thatya inherits the Hopf algebra structure @if
1.2. Category ofil-modules

1.2.1. Finite-dimensionall-modules of type 1.SupposeM is aal-module. For
everyv € X, let

M’ = {x € M | Ko(x) = v x for every root}.

The subspacé/”’ is called the subspace of weight its elements are vectors of
weightv.
Let ¢ be the category dinite-dimensionalover Q(v)) U-modulesM such that

M:@M“.

veX

It is known that on every € €, both El.(”) and Fl.(p) equal zero for sufficiently
large p.
A morphism in is just alu-linear homomorphism. IM, N are in¢, thenM @ N
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is also in%. Thus% is atensor categoryalso known as a monoidal category; see,
e.g., [Ka], [Tu]).

The categorys is semisimple, and its simple objects are parametrized by the set of
dominant weights(; . For everyx € X, there is a unique simpf-moduleA; € €,
with a vectorx of weight\ such thatEi(”) (x)=0foreveryi =1,...,£ andp > 1.
The moduleA,, called themodule of highest weight, can be considered as the
deformationof the corresponding modulg; of the Lie algebra. Everyai-module
in € is the direct sum of simple modules of the forfy). The decomposition of
the tensor product of two simpf-modules in€ is exactly the same as that of the
tensor product of correspondiggmodules. Hence, the tensor categ®ns tensorly
equivalent to the tensor category of finite-dimensigpaiodules.

If vis aweight ofA;, thenx —v is a sum of positive roots. In particular-v € Y.

1.2.2. Dual modules.As usual, using the antipod® for every M € € one can
define the duall-moduleM* € 6. By definition, M* = Homg,, (M, Q(v)), and for
everya €U, f € M*, x € M, one hadaf)(x) = f(S(a)x). The dual ofA, is A,,
wherev = —wg(r) andwyg is the longest element of the Weyl group.

1.2.3. The elemenk1p,. Forg e Y, =Y '_ ki, let Kg = [T Kkidiey
Replacingk by K has the following effect: Ik is a vector of weight, thenkﬁ(x) =
v18) (x) (replacing the bracke., 8) by the scalar produat. | 8)).

Note that 2, as the sum of all positive roots, is always in the root latiicélence,
(20 | n) € Z for everyu € X. The elementsﬁizp play an important role.

1.2.4. The evaluation and coevaluation mapehe ground fieldQ(v) is the -
module A;, with A = 0. The algebrau acts onQ(v) via the co-unit. The module
Q(v) is the unit of the tensor product i6.

The left evaluation map ev M*®@ M — Q(v), defined by eM f ® x) = f(x), is
-linear. But the mapt @ M* — Q(v) defined by(x ® ) — f(x) is notU-linear.
However, the one twisted blf(_zp is: The map ev: M @ M* — Q(v), defined by
eV, (x® f) = f(K_2,x), isU-linear.

Similarly, the coevaluation maps

coey : Q(v) — M®M*, defined by coenl) = ) " x,®x;,
coev : Q(v) — M*®M, defined by coem1) = Y " x7 ® K2, (xy),

arel-linear. Here{x,} is a basis of\f and{x}} is the dual basis id/*.

1.2.5. Canonical basis.Lusztig and Kashiwara introducedcanonical basisb;,
for thedl-moduleA ;. The setB;, is aQ(v)-basis of theQ (v)-vector spacey;.. Let
4\, bethed-lattice inA; generated by, . Theny leaves the latticg A ; invariant,
AWU(4A)) C gA,. The setB, consists of weight vectors; that is, the intersection
B;,N(A,)" is aQ(v)-basis of the vector spaca ;)" for every weightv.
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1.3. The braiding and the twist

1.3.1. The quasR-matrix. Let ® be the quasik-matrix of [Lu2]; it is aninfi-
nite sum

=) a,®bs. (11)

whereaqy, by are inlU. SO® belongs to an appropriate completiorfiofU. On every
M € €, all theay, by, except for a finite number of them, act as zero. Hence it makes
sense to consider the operat@r M @ N - M ® N for everyM, N in €.
In particular, there i® : Ay ® A, — A, ®A,. Lusztig proved tha® is invertible
and that bott®, ©~1 leave 4 A; Q4 s\, invariant. Let us take the set® y, with
x € B, andy € B,, as a basis of\; ® A,,, and call it thetensor product basisThen,
in this basis, the matrices 6§, ® 1 have entries ind = Z[v, v1].
Moreover, Lusztig proved thad, @~ can be defined ovex. This implies that
theasy, bs in the formula (1.1) of® can be chosen ipal.

1.3.2. Braiding. Let D be the least positive integer such thHagx | v) € Z for
everyu,v € X. Equivalently,D is the least positive integer such thaX c Y. The
numberD (see Table 1) is always a divisor of the determinant of the Cartan matrix.

Letv/P be a new variable such that/?)? = v. To define the braiding, we extend
the ground field toQ (vY/?) by taking tensor products @i and every module if¢
with Q(v¥/P). By abuse of notation, we still us®, € to denote the corresponding
objects (after taking tensor products).

For twoU-modulesM, N in 6, letw : MQ N — M ® N be defined by

Vaxey) =v""xey,

if x e MV andy € N*. Note that(v | ) is always in(1/D)Z.
Leto : M®N — N ® M be the flip:o (x ® y) = y®x. Then the braiding operator
c=c(M,N):M®N — N® M is defined by

c(M,N)=cVO 1:MQN — N®M.

Thenc¢ commutes with the action ¢fl. Actually, ¢ is equal to the inverse of the
commutativity isomorphism in [Lu2, Chapter 32].

The mapV is called the diagonal part of the braiding. It is because of the diagonal
part that we need to extend the ground fieldQow/?). It is clear now that if we
take the tensor product bases as the bases & A, andA, ® A;, then the matrix
of the braidinge has entries irZ[v*Y/P]. A slightly stronger result is given below.

SupposeM = A, andN = A,. If u/,v" are weights of\/, N, respectively, then
bothu —u” andv —v’ are in the root lattic&’. Since the scalar product of an element
in Y and an element iX is always an integer, we see that

(W' [v) = (| v) (modZ).
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Hence, in any basis that is the tensor product of bases consisting of weight vectors,
the matrix ofw has entries in“" 4. Thus we have the following.

ProrposiTioN 1.1 In the product bases, the matrix of the braidingA, @ A, —
A, ® A, has entries i s = v Z[v*L] and its inverse has entries in
—(nv) ¢
v .

1.3.3. The twist. Recall that® = ) " a; ® by, where the sum is infinite and, b, €
a. Let (see [Lu2, Chapter 6])

Q=" S(ay)bs.

This sum should be considered as an element of some completitn ince on
M € € only a finite number of terms in the sum survive, one can d&ind/ — M.
For everyM € 6, letd =0(M) : M — M be defined by

0(x) = v t*MQ(x) if x e M.

Thené is invertible, commutes witht-actions, and is known as a quantum Casimir
element (see [Lu2, Chapter 6]). We call it ttvdst Moreover, for anyM, N € €, one
has that

9(M®N)[9(M)®9(N)]’l:c(N,M)c(M,N), (1.2)

whose proof is similar to that of [Ka, Proposition VII1.4.5].
The twisté can also be described as follows. First, note f{a&f P N) =0 (M) PH
6(N). Every M in 6 can be uniquely expressed in the form

M= P Mgy,

)\EX+

whereM;, is the direct sum of a finite number of copies of the simple modyle
The twistd acts onM;, as the scalas®*21*) times the identity.

1.3.4.% is a ribbon category. It is known that®€, together with the braiding
and the twis®, is aribbon category(see [Ka], [Tu]). Actually€ is the same as the
categoryUy,(g)-Mody, in [Ka, Chapter XVII] or the category’, g in [Tu, Chapter
XI]. Both [Ka] and [Tu] use thé:-adic version of quantum group, which is not suitable
for studying the roots of unity case.

1.3.5. The variable. In knot theory, another variable= v2 is usually used. The
reader should not confuse thjswith the quantum parameter used in the definition
of quantum groups by several authors. For examplegdsrequal tog? in [Ka] and
[Tu]. In the expression “quantum invariant at ath root of unity,” therth root of
unity is g (but notw).

1.4. Quantum link invariants.lt is known that any ribbon category gives rise to
operator invariants diramed links whose components are colored by objects of the
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FiGure 1. Elementary tangle diagrams, composition, and tensor product

D

category. We first review the definition, following [KM] and [Tu].

1.4.1. Framed tanglesA tangleT is an oriented 1-manifold properly embedded
(up to isotopy) inR2 x [0, 1], with 7 c 0x R x 3[0, 1]. Defined_T = T N(R? x 0)
andd,.T = TN(R%x 1), and callT a(k,!)-tangle if|d_T| =k and|d.,.T| = . Thus
alink is a(0, 0)-tangle.

A framed tangleis a tangleT equipped with a normal vector field that is stan-
dard (1,0,0) on aT. As usual, we consider framed tangles up to isotopy relative
to the boundary. IrR3, there is a natural way to identify framings of a component
with integers.

A diagram of a tangle is its regular projection or &2, together with the informa-
tion on over- or undercrossings. A diagram defines a blackboard framing in which the
normal vector is alwaysl, 0, 0). A diagram ofT is goodif the blackboard framing
is coincident with the framing of .

It is well known that every tangle diagram can be factored intoefeenentary
diagrams Do—Dg4 depicted in Figure 1 using theompositiono (when defined) and
thetensor producty of diagrams.

1.4.2. Operator invariants of colored framed tangleA.coloring of a tanglel’ is
an assignment of an object in the categério each component df. This induces a
coloring of T as follows: IfC is an arc of coloM, then assigiM to each endpoint
of C whereC is oriented down and assign the dual objg€tto each endpoint where
C is oriented up. Tensoring from left to right, this gives theundary objects .
assigned t@.. T. By convention, the empty product is the unitén(the ground ring
QYP)).

There exists a uniqué-linear operatot/r : T_ — T4, assigned to each colored
framed tangleT, that satisfies/r.,7 = Jr o Jr/, Jrer = Jr ® Jys, and, for the
tangles given by the elementary diagrams with blackboard framing,

JDOZid, JDl=eV1, JD/lZGVr,

Jp, = coey, Jp, = coey, Jps=c, Jp,=c L.
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Here we assume thaly, D> have orientation pointing from left to right, while’, D,
are the same tanglés;, D, but with reverse orientation. In particular [ifis a framed
link with m ordered components, thely (M1, ..., M,;,), for My, ..., M,, € €, isin
QWYP).

We see that only the braidingandl?ﬂp take part in the construction df-. Many
problems are thus reduced to questions abautd I?izp. Since in the product bases
the matrices of andK 12, have entries i [vtY/P], we see thaiy (A, ..., Ay,,) iS
always a Laurent polynomial in™/?, that is,J; € Z[v*YP]. Masbaum and Wenz!
in [MW] proved this fact forg = sl, using idempotent decompositions.

Later we see that every link can be decomposed i@ braidsand tangle dia-
grams without crossing points. We then prove thatwhenT is a pure braid, can be
expressed through the twigtonly (no need to use the braiding). Thus one needs to
use only the twist and?izp. Both are simple, since their actions on highest-weight
modules are easily described.

1.4.3. Relation to the Kontsevich integraQuantum invariants of links can also
be defined through the Kontsevich integral; see [LM] and [Ka, Chapter XX]. Roughly
speaking, one first takes the (framed version) Kontsevich integral of allirtken
plugs in theweight systemoming from the modules ., ..., A, of the Lie algebra
g. The result, after a change of variable JiIS(A ., ..., Ay,,).

This approach avoids the theory of quantum groups (although the Kontsevich in-
tegral has its origin in quantum group theory). Some properties of quantum link
invariants can be easily seen from this point of view. Some other properties, such as
the ones proved in this paper, are easier to prove using quantum group theory. Actu-
ally, we do not know how to prove the results of this paper by using the Kontsevich
integral theory.

1.4.4. The trivial knot. SupposeU is the trivial knot. Then/y; (M) is called the
guantum dimensioof M; its value is well known:

o ptela) _ —(utpla)
v(Ay) = 1_[ vole) — y—(ple)

positive rootsx

(1.3)
| p20ok) -1
B " v2ple) — 1
posmve rootsx
2(pu+plw(p))
sn(w)v
= Z"’GW M(w) , (1.4)

ZIUGW sn(w)vz(plw(p))

where W is the Weyl group and smw) is the sign of the linear transformatian.
Noting that(u | 2p) is always an integer, we get the following.

CoroLLARY 1.2 One has that/y (A,,) is either inZ[v?,v=2] or in vZ[v?, v™2].
More precisely,/y (A,,) € v#2P7[v2, v=2].
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1.4.5. Sum, tensor product, and framinghe following facts are well known; see
[Ka], [Tu]. One has thesum formula

JILMeM,..)=J.(M,..)+J.(M,...), (1.5)

where the dots denote the colors of the components other than the first.
Let 7@ be the link obtained fronT by replacing the first component by two of
its parallel push-offs (using the framing). Then one hagémsor product formula

Jr(M®N,...)=Jra(M,N,...). (1.6)

Supposel’ is obtained fromL by increasing the framing of the first component
by 1. Then one has thfeaming formula

T Ay, ) =vBF2PI0 (AL, (1.7)

1.4.6. (1, 1)-tangles. Suppose thaf is a(1, 1)-tangle and that the open compo-
nent ofT is the first component whose colords. ThenJr is an operator frond/ to
M, commuting with the action dil. WhenM is a simpleu-module,J7 is a scalar
operator, and thus there is a scalar invarigntM, ... € Z[v*YP] such that

Jr(M,..)=Jr(M,...)xid.
If we close the(1, 1)-tangleT to get a framed link., then
JLM,..)=Jr(M,...)x Jy(M). (1.8)

2. Integrality and symmetry

2.1. Integrality. By integrality we mean the integrality of the coefficients and the
exponents ob in J;. Recall thatD is the least natural number such tkiat| u') €
(1/D)Z for everyu, 1" in the weight latticeX.

2.1.1. Weak integrality. We have seenthdy (M1, ..., M,,) is always inZ[v*1/P].
A little stronger statement is the following.

ProposiTiON 2.1 (Weak integrality) The quantum invariant/z (A, ..., Ay,,)
lies in v/ Z[v*Y] = ¢//?Z[¢*Y/?], where f is a (generally fractional) number de-
termined by the linking matrig;;)1<; j<m Of L. f = Zlii’jSm Lij(ui | ).

Proof. If x € M, then K42,(x) = v*2°Mx. Note that(2p | v) is an integer,
since 2, as the sum of all positive roots, is always in the root latlicdt follows
that in any basis consisting of weight vectof‘s_tzp has entries ifZ[v¥1].

The braidinge: A, ® A, — A, ® A, has entries in“") s (see Proposition 1.1)
in the product bases; its inverse has entriesft*")«{. Counting the positive and
negative crossing points of a good diagraniajives the desired result. O
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2.1.2. Strong integrality. The weak integrality says that the quantum invariant is
essentially a Laurent polynomial in. The fractional power can be eliminated by
a suitable normalization. We have here a stronger statement, which says that the
quantum invariant is essentially a Laurent polynomiak?n

THEOREM 2.2 (Strong integrality) The invariant/y (A, ..., A,,) isinvPZ[p+?]
= ¢P/?7[q*1], wherep is a (generally fractional) number determined by the linking
matrix /;; of L:

1
p= 2 lj(wilug)+ Y GitD @ ui) e S2.

1<i,j<m 1<i<m

The proof, which is presented in 83.6, is much more difficult than that of the weak
integrality. We have to use a geometric lemma about special presentation of links
together with a result of Andersen on quantum groups at roots of unity. The use of
guantum groups at roots of unity seems unnatural, since the strong integrality does
not have anything to do with roots of unity (see also the remark in §3.6.7). Andersen
constructed an algebra homomorphism from the gquantum group=at-¢ to the
guantum group abt = ¢, wheree is some root of unity. Heuristically, this implies
some kind of symmetry betweenv andv, which leads to the fact thaly, depends
essentially only on?.

Remarks. (a) The factoi”/2 could be understood as the contribution of the diag-
onal part of theR-matrix.

(b) If the link L is replaced by a tangl&, then one cannot get such nice results
about the exponents as in the strong integrality theorem.

(c) If we use the normalization

Jo(Apgs oo M) =0 P (A, Ay,

thenJ, is a link invariant with values iZ[v2, v—2]. Note that we can defing, only
for simplemodules irfé. The normalizatiory; does not behave well under the action
of the Weyl group (see below), and we do not use it in the sequel.

CoroLLARY 2.3 Consider the knot case. L&f (A ) be the nonframed version of
the quantum invariant of knots, normalized so that the unknot takes Yathat is,

JLO (AM)

Ju(Ay)’

whereL? is the framed knot with framing zero and of knot typeThenJi(AM) €
Z[v*2.

Remark. When the linkL has more than one component, then in general, the
quotientJy /Jywm) is not a Laurent polynomial, but rather a rational functiom .

T (M) =

The following corollary is useful in the theory of quantum invariants of 3-manifolds.



QUANTUM LINK INVARIANTS 285

(See [Le3]; for the casg = sl,, the corollary was proved in [Le2], using cabling.)

CoroLLARY 2.4 If all the u;’s are in the root lattice, the (A, ..., A,,) IS
in Z[v*?] = Z[¢g*1].

Proof. The second term in the expression of the expopeasin 27, since(p | i)
isin Z. The first term is

Zlij(lh' |uj) = Zlii(ui | Mi)—i-ZZlij(Mi | ).
ij i

i>j

Since(a | «) is even for every in the root lattice, we see that the first term is i, 2
too. Hence, the exponeptis an even number. O

2.2. The first symmetry principleRecall thaty = v2. We show that ify is anrth
root of unity, thenJ;, has nice symmetry.

2.2.1. The Weyl group and the affine Weyl grouget C be thefundamental cham-
ber:

C={xehpl0<(x]ap), i=1,....¢}.

Then X4y = XN C. The Weyl groupW, by definition, is generated by reflections
along the facets of'. It is a finite subgroup of the orthogonal groupigf, andC
is a fundamental domain of it. Lé¥, be the group of affine transformation g§
generated by and the translation grouy. Since the root lattice is invariant under
the action ofW, one hadW, = W x rY.

Let g be the highest short root. Wheh= 1, that is, when all the roots have the
same lengthgo is simply the highest root. Thiendamental alcoves defined by

Cr={xeC|(x|ag) <r}={xebhg|0= (x,a) <r for every positive rootr}.

Its topological closure, is an¢-simplex and is a fundamental domain of the affine
Weyl groupW,. (See, e.g., [Kac, Chapter 6]; one has to apply the theory in [Kac] to
the dual root lattice.) MoreoveW, is generated by the reflections along the facets
of C,.

2.2.2.J; as a function on the weight latticeLet us define, forus, ..., u, €
p+Xy,
JL(uts ooy tim) = I (Apa—ps ooy Apy—p) € Z[pFHP].

The shift by p is more convenient for us. The formula is good only when all the
Ui,...,um are inp+ Xy = XN C°, whereC is the interior of the fundamental
chamberC. We extend the definition to every point ¥ as follows.

If one of they ; is on the boundary of the chamb@rthen letJ (i1, ..., un) = 0.
For everyu € X, there existasw € W such thatw(u) € C; moreover, ifw(uw) is
in the interior of C, then such av is unique. For arbitraryis, ..., u, € X, choose
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w1, ..., w, € W such thatw;(u;) € X+. Then define (recall that $w) is the sign
of w)
JL(1s s ) = SN(w1) - - SNwp) Jr (W1 (), - - Win (fhim)).-
Using formulas (1.3), (1.4) for the unknot, we see that the formula

2(plo) _ 1
v
Ju(p) = p—(r=rlp) l_[

positive rootsy

v_Z(P‘Ol) -1 (21)

is valid for everyu, not only inp + X, but also inX.

2.2.3. Another normalizationLet U™ be the zero-framing trivial link of: com-
ponents. Recall that

Or(g, ooy tm) = JL (15 -y o) X Jgem (U1, -5 )

This normalization is more suitable for the study of quantum 3-manifold invariants
and helps us to get rid of the sign in many formulas. Thef; is componentwise
invariant under the action of the Weyl group: For every ..., w,, € W,

Or(wi(pa), - Wi (tm)) = QL (U1, -, i)

2.2.4. First symmetry principle Recall thaty = v2. Supposef, g belong to the
sameq®Z[g*1], wherea € (1/2D)Z. We say thatf = g at primitive rth roots of

unity and write

®
f=g

if, for every primitiverth root of unity&, one has

q “flg=t =a “8lg=¢-
There is no need to fix ar2th root of &. When writing f & g, we always assume
that f andg belong to the samg*Z[¢*1].

TuEOREM 2.5 (First symmetry principle) At primitiverth roots of unity, the quan-
tum invariantQ; is componentwise invariant under the action of the affine Weyl group
W,. This means, for evenys, ..., w,, € W,

01 (W11, s Wi () 2 QL ., ). (2.2)

If one of thew, ..., wn is on the boundary of ., thenJy (i1, ..., tm) @ 0.

Note that by the strong integrality, the left-hand side and the right-hand side of (2.2)
belong to the samg*Z[¢*1]. We also show thaf; is componentwisskew-invariant
under the affine Weyl group: For eveay, ..., w, € W,,

Jr(wi(pa), ... wi () © S(w1) - - Sw) L (1, - s ).
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FIGURE 2. The A; case

Remark. One can drop the “primitive” in the statements of the theorem.

2.3. The second symmetry principl®ecall thatC, is a fundamental domain of
the action ofW onh,. Because of the first symmetry principle, at primitité roots
of unity, it is enough to considef (i1, ..., wy,) With @; in C,N X, a finite set. It
turns out that we can do better. There is a finite gréuacting onC,, and although
Jr. is not really invariant under this action, it behaves quite nicely.

2.3.1. The extended affine Weyl group and the center gthuprecall thatW, =
W x rY. Note thatX is invariant under the action of the Weyl group. L&t be the
group generated by and translation by X. ThenW, = W x rX. If A € X and
w € W, thenw(r) — A is in Y. This impliesW, is anormal subgroupf W,. We have
an exact sequence

1— W, — W, — G — 1,

whereG = X/Y is thefundamental groumf the root data. It is known that is

isomorphic to the center of the simply connected complex Lie group associated with

g and that|G| = det(a;;). The groupG for various Lie algebras is listed in Table 1.
Taking the action ofW, modulo the action oW,, we get an action o6 on C,

that can be described explicitly as follows. SuppgseX is a liftof g € G = X/Y.

There is a uniquev € W, such thatw(C, +rg) = C,. Then, foru € C,,

gw) =w(u+rg) € C,.

Forg e D andu € X, we define a scalar produ | 1) := (g | u), which is well
defined as an element {i/D)Z/Z. Similarly, for g1,g2 € G, let (g1 | g2) = (81 |
g2) € (1/D)Z/1.

2.3.2. Examples df and its action. Here we give examples of the cases A,
and Bz. Wheng = sl (the A3 case), the spads; is one-dimensional. The basis root
and the weight are depicted in Figure 2(a). The simglgis the interval[0, A1].
The nontrivial element ot; = 7, acts as the reflection about the midpaoint /2;
see Figure 2(b).

When g = sl3 (the A2 case), the spacky is two-dimensional and = 1. The
basis roots and weights are depicted in Figure 3(a). The sinthléxthe equilateral
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FIGURE 3. The A, case
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FIGURE 4. The B, case

triangle with vertices at A1, andri,. The groupG = Z3 acts as rotations by
2rik/3 about the center point; see Figure 3(b).

Wheng is of B; type, the spacéy, is again two-dimensional, with; = 2, d, =
1. The basis roots and weights are depicted in Figure 4(a). The simdpléx the
triangle with vertices at 0ri1/2, andri2. The nontrivial element of; = Z, acts
as the reflection about the dashed line that sepaf@tésto two equal halves; see
Figure 4(b).

2.3.3. Second symmetry principle

THEOREM 2.6, SUppoOs@Ly, ..., i, € C, andga, ..., gm € G. Then

Or(g1(1), - &m(m)) = V" QL (11, ..., fim), (2.3)

at primitive rth roots of unity. Here depends only on the linking matrik;) of L:
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t=0—=h) Y Lij(gilg))+2 D lij(silwj—p).

1<i, j<m 1<i, j<m

with  being the Coxeter number of the Lie algelarésee Table 1).

Remark. The factorv” = ¢"*/2 makes both sides of (2.3) belong to the same
q“ZIg*).

For the special casgs= sl andg = sl,,, the theorem was proved by Kirby and
Melvin [KM] and Kohno and Takata [KT1]. In [KM] and [KT1], théwisting factor
v"" is derived by direct computations. Here we express the twisting factor through the
scalar product il . We also have the result for every primitivth root of unity.
SinceW, = W x rX and sinceQ; is componentwise invariant und@r, (2.3) is
equivalent to the statement that for, ..., x,, € X,

OrL(u1+rxt, ..., n+rXy)
(r:) v”[(”_h)Zlij(xi|xj)+221ij(xiWj_P)]QL(ML ey ). (2.4)

COROLLARY 2.7. Supposel has zero linking matrix. The® (i1, ..., un), at
primitive rth roots of unity, is invariant under componentwise actiopf

CoRrOLLARY 2.8 If u; — p is in the root lattice and; € C,, then

01 (g1(100); -, & () LV IEH G Q) (s, i)

The corollary follows from Theorem 2.6, since the second term in the expression of
t in the theorem is in 2. These corollaries have application in the study of quantum
3-manifold invariants. In a subsequent paper, we will use Corollary 2.8 to define the
projective version of quantum invariants and its perturbative expansion.

2.4. Refined versions of symmetry principlé&hen(r, d) # 1, we can strengthen
both symmetry principles. Actually, we formulate the result so that it includes the
(d,r) = 1 case. In the refined versions, the symmetry groups are larger, actually,
the largest possible. For example, if one wants to construct quantum invariants of 3-
manifolds, one has to use the refined versions because of the nondegeneracy property
in Proposition 2.10 below.

2.4.1. Refined versions df,., W,, W,. If (r,d)=1,letX' =X andY' =Y.
If (r,d) # 1, then(r,d) = d > 1. In this case, leX’ (resp.,Y’) be theZ-lattice
generated by; /d; (resp.,«;/d;), i =1,...,£. In other words, if(r,d) # 1, thenX’
is the lattice dual td with respect to our scalar product, that¥,= {x € br | (x|
y) € Z, for everyy € Y}, and similarly,Y’ is the lattice dual toX. If (d,r) # 1, then
X', Y’ is a realization of the root lattice and the weight lattice of the dual root system
whose Cartan matrix is the transpose of the original one.
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In any caseX C X', Y C Y'. Note thatX’ andY’ are invariant unde#, and if
x € X/, thenx —w(x) € Y’ for everyw € W. Let us define

W=WxrY, W =WxrX.
ThenW, is a normal subgroup dﬁ/;, and we have an exact sequence
1— W — W — G — 1, (2.5)

whereG’ = X’/Y’. Note thatG’ is always isomorphic t@.

The latticesX’, Y’ thus depend on the root data (of the Lie alggiyrand whether
(r,d) = 1 or not. There is a unifying definition good feweryr, as described in the
following lemma, which is easy to prove.

LeMmMmA 2.9. One has that

rX'={xeX|(x|y) erZ foreveryyeY},
rY'={yeY|(x|y) erZ foreveryx € X}.

2.4.2. The fundamental domain®f. If (r,d) =1, letC, = C,. Otherwise, let
C§={x€C|(XI/30)<r},

where g is the long highest root. The closué is a simplex and a fundamental
domain ofW/. In any case&,. C C,, and if(d,r) # 1, thenC;. is strictly less tharC,.

In fact, if (r, d) # 1, then it can be shown that the volume®fis ]_[le(d/d,-) times
that of C;.. One important property of’. is the following nondegeneracy property,
proved in [AP].

ProposITION 2.10 (see [AP]) Suppose: € €/ and &? is a primitive rth root of
unigy. Then the quantum dimensidn(u)|,—. = 0if and only if u is on the boundary
of C;.

Proof. This follows from the explicit formula of the quantum dimension (2.1).

O

This proposition shows that the &t (but notC, in general) is exactly what should
be used in the construction of the topological quantum field theory.

2.4.3. Actions of;” and the quadratic form o”’. Again, the exact sequence (2.5)
leads to an action &’ on C... Explicitly it can be described as follows. Suppg@se X
is a lift of g € G’ = X’/Y’. There is a uniquev € W/ such thatw(C/ +rg) = C..
Theng(u) : = w(u+rg) for everyu e C..

Forg € G’ andu € X (not X’ here), let us define the produ@t | 1) : = (g | w),
which is well defined as an element@ moduloZ. If ¢ is a 2Drth root of unity,
thenz2Pr €M js well defined as a complex number.
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FIGURE 5. The B, case

Similarly, for g1,g2 € G/, let (g1 | g2) = (g1 | &2), defined as an element i@
modulo(1/(d,r))Z. If ¢ is a 2Drth root of unity andk an integer divisible byd, r),
then ¢2P7k(s1182) s well defined as a complex number. A little bit more difficult to
see is that Pk (¢19) is well defined as a complex number for evgrg G’. But this
follows from the evenness of the quadratic fo¢m-) on the root lattice.

When(r,d) = 1, we could drop all the primes. Note that all the “prime” versions,
suchasY’,Y’,C,, W/, ..., depend on the root data and whethet/) = 1 or not. The
groupG’ is isomorphic toG; however, the scalar product @¥ depends on whether
(r,d) =1 ornot.

Let us consider an example whénd) # 1. Thend = 2 or 3. If we wantG’ to not
be trivial, then we are left with only two cases: tBe or C, series of Lie algebras.
Let us consider the case B8p (see Figure 5). In this cas. is a half ofC, such that
C/ is the triangle with vertices at,®11/2, rA2/2. The nontrivial element of’ = Z>
acts as the reflection about the dashed line in Figure 5(c).

2.4.4. Refined symmetry principle®oth symmetry principles remain valid if we
replaceW,, C, by W/, C,.. However, one has to take care of the Coxeter numbers.

THEOREM 2.11 (Refined first symmetry principle)At primitive rth roots of unity,
Q| is componentwise invariant under actions Wf: For w1,...,un € X, wi,
S Wy € W,
(r)
Or(wi(ua), ... wn(m)) = QL (U1, .-\ ). (2.6)

If one of thew ; is on the boundary of’, thenJy (i1, ..., lm) o,

SinceW, c W/, the refined version implies the nonrefined version. We also prove
that J;, is componentwisskew-invariantunderW,: Forwy, ..., w,, € W/,

Jr(wi(pa), .- i () © Sn(w1) - - Sw) L (11, - s fm). (2.7)

Certainly this identity implies (2.6). It also implies the second statement of the
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theorem: If one Of,ul,..-l/xm, say, u1, is on the boundary off;, then there is
reflection along a facet af’. that fixesu1. The sign of any reflection is-1. Hence,
Jr(1, -y i) © 0. Another way to prove the second statement is the following.
By (1.8), JL = JrJy(n1). If u1 is on the boundary o€/, then by Lemma 2.10,
Ju () @ 0. HenceJy, @ 0. )

Again, because of the first symmetry, it is enough to restrict the colar’$ when
considering quantum invariants. Liet be the dual Coxeter number g{see Table 1).

Tueorem 2.12 (Refined second symmetry principlebupposeus, ..., u, € C,
andgi,...,gm € G’. Then, at primitive-th roots of unity,

01 (81(110); - &m(1tm)) =" QL (U1, -, fhm), (2.8)

wheret’ is determined by the linking matrix &f;

V=0—mY Lij(gi | g)+2) lij(gi | 1j—p).
ij iJ
with
o h i@ =1
dhY if(d,r) # 1

Note thatv""" in (2.8) is well defined as a complex number; see §2.4.3. Again, the
factorv™” = ¢""'/2 makes both sides of (2.8) belong to the saff&[¢g=1].

Since the action of;’ is obtained from the action of the extended affine Weyl group
W/, letus describe how;, behaves under the actiondf . Recall that! = W xr X’
and thatQ; is componentwise invariant undéf. We need only to describe ho@;,
behaves under the translation grouy'. Supposes, ..., x, € X’; then,

Or(u1+rxt, ..., Wm +rxp)
@ 0 (u1, ”"Ium)vr[(r*h/)Zlij(xi|xj)+221ij(xi|Mj*p)]' (2.9)

The theorem certainly follows from this statement.

3. Proofs

3.1. Quantum groups at roots of unityWe recall the theory of quantum groups at
roots of unity, following [An], [AP], and [Lu2] and then prove some auxiliary facts.

3.1.1. Quantum group at roots of unity and its category of modulgsppose
¢ € C is a number such thaf is anrth primitive root of unity. There is either a
primitive 2rth root of unity or a primitiverth root of unity. The latter can happen
only whenr is odd. Fix a number such that? = ¢. If a € (1/D)Z, then bys“ we
mean¢ P4,
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Let .U be the algebrgU ® C, whereC is considered as ati-algebra by mapping
v to . Then A is a Hopf C-algebra, called a quantum group at a root of unity
(Lusztig’s version). The Cartan subalgebra,8f is not generated (ove#f) by the
K, alone; one needs the elements

)= [T K = )

€ 4U,
t vsd,' —_ U—Sd,' A

s=1

wherei =1,...,£andr=1,2,3....
For a.AU-moduleM and a weight € X, let

M" = {x €M | Ky(x)=¢"%x and |:Kta"] (x) = |:<U’ta">} x},

whereforx e Z, 1t €Z,t > 0,

[x] ! gdi(x—s+1) _ o—di(x—s+1)
t.
1

ngi —c —sd;
s=1

Let .6 be the category of finite-dimensionall-modulesM such that
M = @UGXMU

and thatEl.(p) (x) = Fl.(p) (x) = 0 on M for sufficiently largep.

Using the same formulas as in the case @¢év), we define dual modules and the
evaluation and coevaluation maps. We define the twisind the braidingc using
the same formulas of andc, replacingvl/D by ¢. Then (€, .0, .c) is a ribbon
category. In particular,

OM, NY[0(M)®:0(N)]™* = .c(N, M) x .c(M, N). (3.1)

3.1.2. Simple modulesIn general% is not semisimple: there are modules i
that are indecomposable, but not simple.

Sincey A, is invariant undeg U, there is definedA; =4 Ay ® C, which is a,U-
module in,€. Herea is in X .. Sincee is a root of unity, A, may not be simple. But
A, always has a unique quotieny, that is asimple U-module. This,U-module
L, € /% is also of highest weight. If A # u, thenL, is not isomorphic ta.,. If
A € Cl, then, A, is a simple;U-module, that iSL, = Aj.

3.1.3. Composition factors and the twigt In general, ifM € .6, thenM may
not be a direct sum of simple modules. However, there is a decreasing sequence of
submodulesM = Mg > M1 D --- D M, = 0 such thatM; /M;,1 is simple. The
quotientM,; /M; 1 is called acompositiorfactor of M.
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In [AP], as a corollary of the linkage principle, it was proved that for evérg .6,

M= P M. (3.2)

KeCy

Here My, is the maximal submodule a¥ such that each composition factor of
it is isomorphic toL, with v in the W/-orbit of x under the dot action, that is,
v=w(u+p)—p for somew € W,.

LemMa 3.1 If v is in the W/-orbit of u (under the dot action), then

gWut2ol) _ (w+2pl2)

Proof. Supposer = w(u + p) — p. Using the fact that/? is a 2 Dth root of
unity, it is easy to check the statement for the case whénin W and the case when
w is a translation by a vector inr’. O

Note that the twistd acts as the scalaf**2*!") on A, (see §1.3.3); hence, it
acts as the same scalar on any composition factpngt Thus we get the following.

ProPOSITION 3.2, In the above notation, the twist acts as scalars(“+2011)
on M[lt]'

3.1.4. Quantum link invariantsRecall that,6 is a ribbon category. Thus if
is a framed link, then there is defined the invariguiy (M4, ..., M,,) € C, where
My, ..., M, are in €. Although we use the notation witd it is understood that
«J 7 depends on the choice of a Dth root of ¢, since the twist and the braiding do.
However, this is not essential, since one can always get rid of fractional powers of
by a suitable normalization.

Obviously whenM ; = eDpjs then

SJL(SAulw-vsAum) = ‘IL(AMl’ ""AUm)|ul/D:§ )

where the right-hand side means the valudofA ,,, ..., A,,) atv¥/? =¢.

Many modules are not direct sumsaf, . We can also define invariants of framed
links colored by these modules. The presence of these modules helps us to relate
values of quantum invariants at various

The simplest argument goes as follows. Suppbsea framed1, 1)-tangle whose
open component is colored hy;. ThenJ7 (A, ) is a scalar operator from;, to A,

Jr(A) = Jr(Ay)id,  with Jr(Ay) € Z[vEYP].

Hence, when specialized at/? = ¢, the map,Jr(:Ay) : s Ay — Ay is also a
scalar operator (although\; may not be irreducible):

s]T(sAk) = sz(sAk)id~
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Here,Jr (. A,) is a complex number obtained from (A;) by puttingv? = ¢.
It follows that if M is a compositionjactor ofA;, then,J (M) : M — M is also
a scalar operator with threamescalar. Jr (: A,). In particular,

eI (L) = eI (cA2). (3.3)

ProposiTION 3.3 If ;A and,; A, have a common composition factor and’ifs
a (1, 1)-tangle, then

ajT(sAA) = ajT(sAu)‘
3.2. Lemmas on quantum dimensions and signs

LEmMa 3.4 Recall thath’ = hif (d,r) =1andh’ =dh" if (d,h) # 1.
(a) For everyxy, x2 € X', the number’(x1 | x2) is an integer.
(b) For everyx € X’, one has

2p|x)=h(x|x) (mod2 and 2p | x)=dh” (x| x) (mod 2.
(c) For everyxy, x2 € X (not X’), one has
(W —h)(x1 | x2) € Z, and (W' —h)(x1]|x1) € 2Z.

Proof. (a) Supposéd,r) =1. ThenX’ = X, and(x1 | x2) € (1/D)Z. The values
of i’ = h and D in Table 1 show that is divisible by D. Henceh'(x1 | x2) € Z.

Now supposdd,r) # 1; then(d,r) = d > 1. This meang is of type B, C, F3,
or G». Note thatX’ is the Z-lattice generated by;/d;, and (A;/d; | 1;/d;) =
(1/d;)(A™Y);;, where A~1 is the inverse of the Cartan matrix. Explicit calculation
shows that(;/d; | A;/d;) € (1/D")Z, where D' = 2 for By, F2, G2, and C, with
£ even, andD’ = 4 for C, with £ odd. In any caseD’ dividesdh", and hence
dh¥ /D' €.

(b) Note that if the statement is true for= x1 and x = x», then it is true for
x = x1+x2. Hence, it is enough to restrict oneself to the case whisrin a basis set.
If (d,r)=1, abasissetifr;,i =1,...,¢};if (d,r) # 1, a basis set i§\; /d;,i =
1,...,¢}. One can easily check the statement for each simple Lie algebra.

(c) If (r,d) =1, thenh’ = h and both statements are trivial.

Suppos€r, d) # 1; thenh’ = dhY. Again one needs only to verify the statements
whenxy, x2 is in a basis set oK, say,x; = A;,x2 = A;. Recalling that(x; | 1) =
(A~1);;d;, one can easily check both statements. O

LemmMma 3.5 Recall thatU is the unknot. Lef € X. At primitiverth roots of unity,
one has
Ju(u+ry)=Jy(n) and  Qu(u+ry)=Qu(u) foreveryyeY’,
Ju(utrx) = (D@ ) and  Quu+rx) = Qu(u) foreveryxe X',
Juw() =snw)Jy(n) and  Qu(w(w)) = Qu(n) foreveryw e W,.
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For theQ; version, the statements are much simpler, since there is no sign.

Proof. The first two identities fory follow from the formula (2.1), if we remem-
ber that-(x | @) € rZ for everyx € X', € Y (see Lemma 2.9). The third identity for
Jy follows from the first one and the fact thag is skew-invariant under the action
of the Weyl groupW. All the identities forQy follow from the corresponding ones
for Jy. O

3.3. Proof of refined first symmetry principlél'he proof utilizes results from [AP]
in the theory of quantum groups. We focus only on the first componeit 8tippose
the color of this component ig. Cut the link at a point on the component to get a
(1,1)-tangleT. Then by formula (1.8) we have

JL() = Jr(w) Ju ().

Since at primitiverth roots of unity we have (see Lemma 3.5)
Ju(w(w)) = sn(w)Jy (),

it is enough to show thair (w(w)) = Jr(w) at primitive rth roots of unity. Here
we W/.

From [AP, Section 3] and [Ja, Chapter II] we know that & w(w), then there is a
sequence ok, ..., us suchthat;_, andL,_, are composition factors @i\ ,, and
¢ Ay, respectively, and two consecutiv,;, . A,;,, have a common composition
factor. It follows from Proposition 3.3 that(L) = J(u) at primitive rth roots of
unity. This proves the refined first symmetry principle.

3.4. Proof of refined second symmetry principl&s argued in §2.4.4, we need to
prove (2.9). We use a result of Lusztig, which we first recall.

3.4.1. Atensor product theoremRecall that? is a primitiverth root of unity. Let

r
X, = X , O —,i=1,...,4¢.
{xe +|<xa><(r,d,~)l }

One can check thaC, N X ) C X,.

Itis easy to check that § € X, then there exists uniquec X, andv e r X' N X
such thatr = A +v. We denote©@ = 1 € X, andé® = v/r € X’. Lusztig [Lul]
proved that, agl-modules,

L: =L, QL.

This is quite nontrivial and very different from the classical case. It is similar to
Steinberg’s tensor product theorem for algebraic groups over fields of positive char-
acteristic. In [Lul] the proof is given only for the caged) = 1. However, the proof

can be generalized to the caged) # 1 (see the arguments of [AP, Theorem 3.12]).
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3.4.2. The square of the braiding dn. ® L,,. Assume that, as in 83.4.1,€ X,
andv € (rX’NX.y). The square of the braiding (L., Ly).c(L;, L,) is an operator
acting onL; ® L,,, commuting with the action gfu. ButL, ® L, = L;, is asimple
module. Hence, the square of the braiding is a scalar operator,

SC(LU’ L}L)SC(L)H LV) = bA,v Id?

whereb, , € Cis a constant.
For the tangle diagram®s, D4 of Figure 1 corresponding to,c~1, we have
D3 = D3D;*. It follows that

EJD3(L)»5LU) zbk,U8]D4(L)uLv)- (34)

This means the operator of a positive crossing and the one of a negative crossing are
proportional. The proportional fact®s, , can be calculated as follows. By (3.1),

()2 = O(Lr® L) [:6(Ly) ®:0(L,)] .

Using L; ® L, = L;, and the fact thaté acts onL,, as the scalag#+2°I1) (see
§1.3.3), we see that

by, = 20V, (3.5)

3.4.3. The square of the braiding dn ® L,. We continue to assume that, as in
the previous subsection,e rX’'N X, . We show that,.c)? acts as a scalar operator
onL,®L,. Itis enough to show that (L, ® L, ) is a scalar operator, since

2=0(L,®L)[0(L)®O(L,)] ™

The structure of the module, and its tensor powers can be understood by classical
Lie theory, via the quantum Frobenius map (see [Lu2, Chapter 35]). Every weight
of L, must be of the formv — «, wherea € rY’. The tensor produck, ® L, is
completely reducible:

Lv & Lv = @rLI’

wherer € 2v —rY’.

The twistd acts onL, as a scalar operator, with the scaléir-2°!?) (see Proposition
3.2). Whenr € 2v—rY’, itis easy to see that the scalar is always equafto 212",
This mean® (L, ® L,) is a scalar operator with the scakdf’*+2°12V)

So we have? = b, id, where the value ob, can be calculatedh( = £2"I"); we
do not need this value). It follows thdb,(L,, L,) = b, Jp,(Ly, Ly).

For example, supposg is a (1, 1)-tangle with framing zero. Let us calculate
«J7(L,). We switch over- or undercrossing at some points in a good diagraf of
to get the trivial(1, 1)-tangle. With each switching we have to multiply the quantum
invariant byb, or (by)~ L. Since the framing is zero, we conclude tbﬁy(Lv) =1.
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3.4.4. Reduction to the framing-zero cas¥le show here that if (2.9) is true for a
link L, then it holds true for any link obtained from by altering the framing of the
components. It is sufficient to consider the case when we increase the framing of the
first component by 1. Then the left-hand side of (2.9) is multiplied by

ALHS = gmatrxitplustrai—p)

and the right-hand side by

ARHS = gWatplua—p) orlr—h") (xalxn)+20x1|u1—p)]

Hence, to show that| ys = arpys it is enough to prove that

1 = "W el +2(lo)]

which follows from Lemma 3.4. (The term in the square bracket of the exponent is
divisible by 2 by Lemma 3.4.)

3.5. A special case By virtue of the result of the previous subsection, we assume
from now on that 0= I17 = lpp = ---. Supposé& € X,. Thené = £© 4D (see
the notation in §3.4.1). In this subsection we assumeytbat. ., u,, € X+. We show
that

OL(Aes Ay D) L0701 (A0, s ooy Apiy ) (3.6)

where
k=) 1Y),
J
By Lemma 2.9,7(¢® | @) € rZ for everya € Y. Sincew(u;) — p; isin ¥
for everyw € W/, we have thae? ¢@ ki) = g2 V1w 1t follows thate?* is
invariant under the action oi/. Thus using the refined first symmetry principle,
we see that to prove (3.6) we can assume fhat.., u, are inC,. In this case
ey, =Ly;, j=2,...,m. Hence, to prove (3.6) one just needs to show that

SQL(SAfv L,uz’ EEER) Lum) = 82”(5 QL(&A,;%(O), L,uz, cee Llim)' (37)

Cut L at a point on the first component to geth 1)-tangleT. From Lemma 3.5
we know that. Oy (: Ag) = - Qu(: Ag). Hence, by formula (1.8), identity (3.7) is
equivalent to

siT(SAS’ L,U«Z’ tre Lﬂm) = 82rK8jT(8AS(O)7 L;,Lga R Lﬂm) (38)

Using (3.3) we can replace\s and. A¢«o by, respectivelyLs andL; o in (3.8).
The Lusztig theorem says; = L, ® Lgo), wherev = r&@D_ By the tensor product
formula (1.6), we have

eJ7(Le, Lyg. - Lyy) = eJ 7@ (Lv, Le©, Lyg. - Ly, )
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There are two parallel push-offs of the first componenfpfet us denote the one
colored withL, by K. If we removek, then from7 @ we getT.

In the tangle diagrarii®, consider a crossing point & with the jth component
whose color isL,;. By formula (3.4), switching over- or undercrossing results in a
factord,,; , orits inverse. Switching over- or undercrossing to unlink the component

K from other components, frorfi® we get7’. Then we have

e T 7@ (Lo Leos Lyigs s L) = [ | (Bruyn)™ X ed 1 (Los Le s Lugs -+, L)

—.

I
AN

J

4
=[] (buy0)¥ e Tk Lo)ed 1 (Lew. Luys . L, )

]j=

[y

(3.9)

In §3.4.3 we showed that/  (L,) = 1. Using the values d,,, in (3.5), from (3.9)
we get (3.8).

3.5.1. The case whex» = --- = x,, = 0. We prove (2.9) by assuming thag =
--- = x;; = 0. Recall that the framings df are zero. In this case, (2.9) reads

Or(ma+rx1, u2, ..., 1m) © 2 [T Gal=)] Or(m1, 2, ... mm).  (3.10)

By the refined first symmetry principl€) ;. is invariant under the translation lay”’.
Hence, we can further assume that+rx; and all1, ..., u,, are in the interior of
the fundamental chambétr, that is, they are ip + X ..

Replacingu ; by 1 — p, we see that (3.10) is equivalent to

) "y .
Or(Apytrsy Apige -2 Apy,) = 0?12 llj(xlluj)]QL(A/wAuzv-wAum)- (3.11)

Note that(u1+rx1)©@ = (1)@ and(u1+rx1)® = (u1)® +x1. Applying formula
(3.6) foré = ug+rxg and foré = 1 and then comparing the right-hand sides of the
resulting identities, we get (3.11).

3.5.2. End of proof of second symmetry principM/e continue to assume that the
framings are 0/11 = --- = l,,;, = 0. The result of the previous subsection certainly
holds true if we replace the first component by any component. Successively adding
rx1 to w1, rxo to u2, and so on, we get

Or(ua+ras, ... pim+rxm) 0¥ QL (11, ptm). 3.12)

where

T= Zlij(xi | 1) —P)+Zli,i(xi | ;).
ij

i>]
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FIGURE 6. Braid closure
By Lemma 3.4}/ (x; | x;) € Z, and hence
2r(xi | xj)=2(r—h")(x; | x;) (mod?2,

and eventually

2r Y (xi|xj)= (=R Lj(xi | x;) (mod2.
i>j ij
This means that whev? is anrth root of unity, the second term in the formulawof
can be replaced by —#") Y, ; 1;j(x; | x;), and (3.12) becomes (2.9). This completes
the proof of the refined second symmetry principle.
Consider the nonrefined version. Dividing the right-hand side of (2.9) by the right-
hand side of (2.4), the quotientig®' ~ 2l @ilx)) By Lemma 3.4(c), if all thex;'s
are inX andv? = 1, theny"®'~MXlij@ilx)) = 1. Hence (2.9) implies (2.4), which,
in turn, implies the nonrefined version of the second symmetry principle.

3.6. Proof of the strong integrality
3.6.1. Presentation of links as plat closures of pure braids

ProrosiTioN 3.6. Every nonframed link has a diagram of the foffipo T o T;,
whereT, and T; do not have any crossing arfdis a pure braid.

Proof (W. Menasco).First consider the case whérhas only one component, that
is, L is a knot. TherL is thebraid closureof a braidg (see Figure 6).

The natural projection from the braid group to the symmetric group miapsan
element with only one cycle, sindeis a knot. Any two such elements are conjugate in
the symmetric group. Since braids of the same conjugacy class have the same closure,
we may assume that the projectionfbnto the symmetric group is the permutation
(12---n). This means, after some over- or undercrossing switchings, frave get
a braid isotopic to8’ described in Figure 7(a). The isotopy can be assumed to be
horizontal

The closure ofg’ is presented in Figure 7(b); it is a trivial knot. It could be hor-
izontally isotoped into the diagram in Figure 7(c) and, eventually, into the one in
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I

(@) (b) (©) (d)

FIGURE 7. The trivial knot

A N N N AN A AN n
. \__| .
a pure braid > f‘ a pure braid
(a) (b) (©)

FiGure 8. The plat closure

Figure 7(d). Now from this picture we go back Ioby horizontal isotopyinside
the parallel strip as indicated in Figure 8(a), and undo the over- or undercrossing
switchings using finger moves (see Figure 8(b)). We get the desired presentation (see
Figure 8(a)).

The proof for the case wheh has many components is quite similar. The result,
for a link of two components, is described in Figure 8(c). O

3.6.2. Quantum invariants of pure braidSupposer is a pure braid whose com-
ponents are colored M1, ..., M, € 6. ThenJy (M4, ..., M,) is an operator acting
on the vector spacs#f1 ® --- ® M,. We show here thafr can be expressed though
the twistd alone.

If T is the square oDy, that is,T is a full twist (see Figure 9(a)), then (see §1.3.3)

Jr(M1, M2) = [6(M1) ®6(M2) ] "0(M1® Mp).

Hence, in this casd; can be expressed througtralone. Similarly, ifT = D%, then
Jr can be expressed through

If T is the tangle in Figure 9(b), which is obtained from the one in Figure 9(a) by
taking parallels, thedr can also be expressed througghlone, by the tensor product
formula. Here the band stands for a bunch of parallel lines.

Now we claim that every pure braid can be obtained from those in Figure 9(b)
and their mirror images by using composition and tensor product. In fact, the pure
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@) (b) (© (d)
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/

FiGure 9. The full twist and its parallels

braids depicted in Figure 9(c) and their mirror images generate every pure braid (using
composition and tensor product). But these pure braids can be expressed through the
ones of Figure 9(b), as shown in Figure 9(d) for a simple case.

HenceJr, whenT is a pure braid, can be expressed throdglising Lemma 3.6
we see that for a linkL, up to a framing factor,/; can be expressed through
andK+2,.

3.6.3. The map. Letg: Z[vtYP] — Z[v*Y/P] be the algebra homomorphism
defined byp(v1/P) = ¢™/Pyl/P Thengp(v) = —v ande?P = id. Hence, the space
Z[v*YP] decomposes into eigenspacespofwhose eigenvalues areDgh roots of
unity, e#**, with @ = 0,1/D, ..., (2D —1)/D. The eigenspaces gf are v*Z[v*2].
Also x € Z[v*YP]is in the eigenspace”? Z[v*2] if and only if p(x) = " x.

Thus to prove the strong integrality theorem, one needs to show that

(T (Apgeeo i Ap)) =T (Apgs o Apy),s (3.13)
with
a= lej(ui | Mj)+Z(lii +1)(2p | i) € %Z-
ij i
Since both sides of (3.13) are Laurent polynomialsif, it is enough to prove
(3.13) wherv/P = ¢27i/2Dr for every sufficiently large odd.

3.6.4. The algebra homomorphisin Let us fix anodd integerr. Let ¢ be a
primitive 2rth root of unity. Then—¢ is a primitiverth root of unity.
Andersen in [An] showed that there is alyebrahomomorphism

@ U — U

with the following properties. IfV is a U-module, then pulling back via, we get
a _.U-modulegp*(M). If M is the highest-weight module of highest weightthat
is, M = A, theng*(M) is also the highest-weight,U-module of highest weight
w, thatis,p*(:A,) = _¢A,. Note that both/ andg* (M) have the same underlying
vector space ovet.
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In order to consider quantum invariants of links, we need to filxth root of e
and aDth root of —e. Fix an arbitraryDth root¢ of ¢, and choose’ = ¢™'/P; =
p()|yyp—, @S theDth root of —e. Now we can defingd, .c, _.0, _.c.

In general,p does not commute with the coproduct. M and N are two .-
modules, there may be two different-module structures oM ®¢ N, one via the
coproduct of_.a (the usual one) and one viaand the coproduct ofu. However,
we have the following.

LEMMA 3.7. LetM; = Ay, j =1,...,n. The spaceM1 ® --- ® M,, has two
_sU-module structures as described above. Then the twistcts the same way in
the two different module structures. Similarly, evéy, g € Y acts the same way in
the two different module structures.

Proof. The statement foK s follows from the fact that foik s, the mapp com-
mutes withA, ¢(A(Kg)) = A(¢(Kp)), which, in turns, follows from the definition
of g : g(Kp) = K™ (see [An]).

The statement fo# follows from the fact that the action éfis totally determined
by the highest weight (see Proposition 3.2). One needs to decompgage- - @ M,
using (3.2) and applying Proposition 3.2. O

3.6.5. The action of the twistAgain letM; = .A,;, j =1,...,n. There are two
actions of_,U on M1 ®---® M,,. By the result of the previous subsection, the twist
_¢0 acts the same way in the two structures. On this same vector sgage, - @ M,,
acts the twist0 of oU.

PrOPOSITION 3.8 LetM; = eAp- oOnM1®---® M,, the two operators. .6 and
<0 are proportional:

_o0 = ittt 20luat i) g

Proof. As .U-modules, one has (see (3.2))
M1®--- @M, = ZM[\;]-
veC;

On M}, -6 acts as the scala”V+2°1V) (see Proposition 3.2). On that same subspace
M.y, —¢0 acts (throughp) as the scalafe’) P +201V) = 7i(+20v) ¢ Dv+20Iv) Hence
on M[,,],

_e0 = T2V g (3.14)

Note thatuy + --- 4+ u, — v is in the root lattice. Using the fact that the scalar
product of a vector in the root lattice and a vector in the weight lattice is always in
Z, one can easily show that

W+2p | v)= (1t +pa+2p | u1+---+pn) (Mod 2Z).
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It follows that the proportional factar™ +2¢1V) in (3.14) does not depend an
and is always equal tg7i(#1t+int2pluat-+in) This proves the proposition. O

3.6.6. Pure braid. Suppose that a framed tandiehas a good diagram that is a
pure braidon n strands, and suppose that the strands are coloreéd byvhich are
sAU-modules. TheRJr (M, ..., My) is an operator acting oW1 ® --- Q@ M,,.

Using g, one can considef to be colored by .A-modulesp*(M ;). Hence, there
is defined the operatar, J; acting on the same spagé; ®---Q M,,.

ProprosiTION 3.9, Suppose;; is the linking number of thah and the;jth compo-
nents of the pure braid'. Suppose also tha/; = A, ;. Then onM1®---® M, the
two operators_. Jr and.Jr are proportional:

bmi

—eJr=e""cJr,

whereb =371 i<, 20 (i | 1))

Proof. Since the pure braids in Figure 9(b) generate every pure braid, we assume
T is as in Figure 9(b). We suppose that the bandihad parallel lines whose colors
areMy, ..., M,_1, and the remaining line has coldf,. Then by the tensor product
formula (1.6),

iSJT(M]J sy M}’l—l? Ml’l)
-1
= [£0M1® - @My_1) @ :0(M)]| 10 (M1®-+- @ My_1® M,,).

Using the relation betwees® and_.6 in Proposition 3.8, we get the desired result.
O

3.6.7. End of proof of the strong integrality theorerAs noted in §3.6.3, we need
to prove (3.13). Using the framing formula (1.7), it is easy to check that if (3.13)
holds true for a framed link, then it does for every framed link obtained frdirby
altering the framing. Hence, we may assumbas any framing we wish.

By Lemma 3.6, we can assume thatas a nonframed link, has a diagrdin=
T,oT oT;, whereT is a pure braid diagram, arfd and7; do not have any crossing
points. Alter the framing oL so thatD is a good diagram of it. Then the framing
of the jth component is always even, sinfds a pure braid.

We know that the operators Jr and, Jr are proportional. Now we prove thafr,
and. Jy, are proportional ta. Jr, and_, Jr;, respectively. Let us consider a diagram
corresponding to a maximal or a minimal point. The corresponding operator involves
only K17,. Suppose the component is colored ay; . Then, K1z, (x) = e*@°Mx
if x € (:A2)". Similarly, _.K12,(x) = (—&)*@Mx. Note that ifv is a weight,
thenu —v € Y. Using the fact tha{2p | «) € 27 for everya € Y, we see that
_¢K+2, is proportional to. K+2, on . A;, with the proportional factot—1)°1W.

The proportional factor does not depend on the sigt®$. Thus, Jr, and, Jr, are
proportional to_, J7, and_. J7;, respectively.
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Now it is clear thatx := _.J;/.J;, can be presented as the product of three
scalar factors:

—eJ —eJ —eJ —eJ
ST ey (3.15)
gJL s]T gJTu SJTI
The first factor can be calculated using Proposition 3.9. Let us calculate the product
of the second and third factors. If we repla€eoy the trivial pure braid’’, then we
get a trivial link L’ of m components. The value df is known, and one has

e U _ gy @oluatetin) — pri@olat i)

eJr
HereA,,....,A,, are colors of the link. Applying (3.15), witli’ replaced byr”,

we see that the product of the second and the third factd i& 111+ +um)
Using Proposition 3.9 to calculate the first factor, we see that

30 = ™ 1< jam lij (il )+ @plpat-+im)]

Remember that; is even, and2p | u;) is always an integer. We can alter the second
term in the square bracket to get the value

3¢ = i1 jam lij (il )+ @pl (a1t Dpwat+Gmm+ D m)] _ el
wheree™ ¢ is the one in (3.13). Thus we have
=€ ;. (3.16)

If we replacev?? by ¢ in (3.13), then the right-hand side becora&¥ . J; . The
left-hand side, remembering thatis an algebra homomorphism, Jg|,1/0_./. The
latter is_, J;. Hence (3.16) implies that (3.13) holds truev#f? = ¢. Sincez can
take any Drth root of unity withr odd, (3.13) must hold true for eveny/?. This
completes the proof of the strong integrality theorem.

Remark. As noted earlier, the use of roots of unity in the proof of the strong inte-
grality seems very artificial. One could avoid roots of unity if the following question
has an affirmative answer.

Question. Is it true that in the product of the canonical basefgf ®---Q A,
the twistd has entries in#1t-thm+2pluat-+um) 7y +2]?
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