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INTEGRALITY AND SYMMETRY OF QUANTUM
LINK INVARIANTS

THANG T. Q. LE

0. Introduction. Quantum invariants of framed links whose components are col-
ored by modules of a simple Lie algebrag are Laurent polynomials inv1/D (with
integer coefficients), wherev is the quantum parameter andD an integer depending
on g. We show that quantum invariants, with a suitable normalization, are Laurent
polynomials inv2.
We also establish two symmetry properties of quantum link invariants at roots of

unity. The first asserts that quantum link invariants, atrth roots of unity, are invariant
under the action of the affine Weyl groupWr , which acts on the weight lattice. A
fundamental domain ofWr is the fundamental alcovēCr , a simplex. LetG be the
center of the corresponding simply connected complex Lie group. There is a natural
action ofG on C̄r . The second symmetry property, in its simplest form, asserts that
quantum link invariants are invariant under the action ofG if the link has zero linking
matrix. The second symmetry property generalizes symmetry principles of Kirby and
Melvin (the sl2 case) and Kohno and Takata (the sln case) to arbitrary simple Lie
algebra.

0.1. Quantum invariants.SupposeL is a framed link withm ordered components
andM1, . . . ,Mm are modules of a simple complex Lie algebrag. Then the quantum
invariantJL(M1, . . . ,Mm) is a rational function in the variablev1/D, wherev is the
quantum parameterandD is a number depending ong. (See [RT1], [Tu]; we recall
the definition of quantum invariants in §1.) The Jones polynomial (see [Jo]) is the
simplest in the family of quantum link invariants: Wheng = sl2 and the modules
equal the fundamental representation,JL is the Jones polynomial, with a suitable
change of variable. The reader should be able to relatev to any other variable if it is
known that the quantum integer[n] is given by

[n] = vn−v−n

v−v−1
.

0.2. Integrality. A priori JL is a rational function inv1/D. Lusztig’s result on the
integrality of theR-matrix implies thatJL is a Laurent polynomial inv1/D with in-
teger coefficients(see a detailed proof in §1.4.2 below). We study the integrality of
the exponentsof v. One of our main results shows thatJL is essentially a Laurent
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polynomial in v2. More precisely, suppose all the modulesM1, . . . ,Mm are irre-
ducible; thenJL belongs tovpZ[v±2], wherep is a rational number determined by
the linking matrix ofL (see the strong integrality theorem in §2). Thus one can get
rid of fractional and odd powers ofv by using a suitable normalization. For example,
suppose that the normalization of the quantum invariant is chosen so that the value
of the unknot is 1; then the value of anyunframedknot is inZ[v±2].
The strong integrality theorem does not follow directly from the integrality result

of Lusztig. To prove it, we have to use a geometric lemma about special presentation
of links and a result of Andersen on quantum groups at roots of unity.

0.3. Symmetry I.To formulate the symmetry properties, it is more convenient to
use another normalization of quantum invariants,

QL(M1, . . . ,Mm) := JL(M1, . . . ,Mm)JU(m)(M1, . . . ,Mm),

whereU(m) is the trivial link withm components and each has zero framing. This
normalization is the one used in the definition of quantum 3-manifold invariants.
Since irreducibleg-modules are parametrized by the setX+ of dominant weights,

both JL andQL can be considered as functions from(X+)m to Z[v±1/D]. The set
X+ is the part of the weight latticeX which lies in a Euclidean spaceh∗R. For each
positive integerr there is defined thefundamental alcovēCr , which is a simplex in
h∗R (see §2). The reflections along the facets ofC̄r generate the affine Weyl group
Wr , for whichC̄r is a fundamental domain. The affine Weyl group plays an important
role in the theory of affine Lie algebras (see [Kac]).
We show that whenv2 is a primitiverth root of unity, quantum invariants have very

nice symmetry properties expressed in thefirst and the second symmetry principles.
The first asserts thatQL is componentwise invariant under the action of the affine
Weyl group. More precisely, whenv2 is anrth root of unity,

QL

(
�̄w1·µ1, . . . , �̄wm·µm

) =QL

(
�̄µ1, . . . , �̄µm

)
,

wherew1, . . . ,wm ∈Wr and�̄µ is the simple module of highest weightµ. Here the
dot means the dot action, and allµ1, . . . ,µm, w1 ·µ1, . . . ,wm ·µm are inX+. For a
stronger statement that describes the maximal group of symmetry, see §2.
Thus when considering quantum invariants at roots of unity, one could restrict the

colors—that is, the modules assigned to components of links—toC̄r , a fundamental
domain of the affine Weyl group. The simplex̄Cr contains only a finite number of
elements inX+. For example, the sum over all weights inX+ could be replaced by
the sum over all weights in̄Cr . This happens in the theory of quantum 3-manifold
invariants.

0.4. Symmetry II.Let G be the (necessarily finite abelian) center of the simply
connected complex Lie group associated withg. The groupG is also known as the
fundamental group; it is isomorphic to the quotient of the weight lattice by the root
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lattice. There is a natural action ofG on C̄r (see §2). Supposev2 is a primitiverth
root of unity. In its simplest form, the second symmetry principle says thatQL is
invariant under the action ofG if the linking matrix ofL is zero. In general, under the
action ofG, QL is multiplied by atwisting factordetermined by the linking matrix
of L. More precisely, supposeµ1, . . . ,µm ∈ C̄r , g1, . . . ,gm ∈G; then

QL

(
�̄g1·µ1, . . . , �̄gm·µm

) = vrtQL

(
�̄µ1, . . . , �̄µm

)
,

where the dot action is, as usual, the one shifted by the half-sum of positive roots and
where

t = (r−h)
∑

1≤i,j≤m
lij

(
gi | gj

)+2
∑

1≤i,j≤m
lij

(
gi | µj

)
,

with h being the Coxeter number (see Table 1). Here(lij ) is the linking matrix, and
(· | ·)’s are scalar products naturally defined using the standard scalar product ong.
For a stronger statement, see §2.
The action ofG is induced from that of theextended affine Weyl group. The second

symmetry principle, in fact, describes how quantum invariants behave under actions
of the extended affine Weyl group.
For g = sl2, the second symmetry principle was discovered by Kirby and Melvin

[KM] and for g = sln by Kohno and Takata [KT1]. Our contribution in these cases
is the explicit relation between the twisting factor and the scalar product ofg. This
relation makes the second symmetry principle more understandable and easier to deal
with. We also consider all primitiverth roots of unity, not onlye2πi/r . Our proof is
different from those of [KM] and [KT1], though it borrows some ideas from [KM].
In order to handle all simple Lie algebras, we have to use deep results of Lusztig and
Andersen on quantum groups.

0.5. In [KM] and [KT2], the second symmetry principle was used to define a finer
version—the projective version—of quantum 3-manifold invariants. The values of the
projective version, so far defined only forg = sln, were proved to be algebraic integers
(see [Mu], [MR], [TY]). Then Ohtsuki showed that, forg = sl2, the projective version
has aperturbative expansion, which is a power series invariant of rational homology
3-spheres; see [Oh1] (see also [Le2] for the sln case). This result led Ohtsuki to the
definition of finite-type invariants of 3-manifolds (see [Oh2]). In a forthcoming paper
[Le3], we will generalize these results to arbitrary simple Lie algebras.

0.6. Various properties of quantum link invariants were proved by first establish-
ing the properties forfundamental modulesand then usingcablings(see, e.g., [MW],
[Yo]). This approach has been widely used for classical Lie algebras (series ABCD),
since the invariants corresponding to fundamental representations are essentially the
Homflypt and the Kauffman polynomials, which have simple skein relations. The case
of exceptional Lie algebras has not been well studied. We do not use that approach in
this paper. To uniformly handle all simple Lie algebras we extensively utilize results
in quantum group theory.
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Table 1

A"
B" B"

C"
D" D"

E6 E7 E8 F4 G2" odd " even " odd " even

d 1 2 2 2 1 1 1 1 1 2 3

D "+1 2 1 1 4 2 3 2 1 1 1

G Z"+1 Z2 Z2 Z2 Z4 Z2×Z2 Z3 Z2 1 1 1

h "+1 2" 2" 2" 2"−2 2"−2 12 18 30 12 6

h∨ "+1 2"−1 2"−1 "+1 2"−2 2"−2 12 18 30 9 4

0.7. The paper is organized as follows. In §1 we recall necessary facts about
quantum groups and the definition of quantum link invariants. The integrality theorem,
the two symmetry principles, their refinements, and their corollaries are presented in
§2. Finally, §3 contains proofs of main theorems.

Acknowledgements.The author would like to thank M. Finkelberg, C. Kassel,
G. Masbaum, T. Ohtsuki, T. Takata, and H. Wenzl for helpful and stimulating discus-
sions. He is grateful to H. Andersen for explaining many results in quantum group
theory. He also thanks W. Menasco, who provided a proof of Proposition 3.6, and the
referee, for valuable corrections and comments.

1. Quantum groups and quantum link invariants

1.1. Quantum groups.We recall here some facts from the theory of quantum
groups, following [Lu2] (see also [Ka]). We do not use theh-adic version, so the
R-matrix does not lie in the quantum group.

1.1.1. Cartan matrix and roots.Let (aij )1≤i,j≤" be the Cartan matrix of a sim-
ple complex Lie algebrag. There are relatively prime integersd1, . . . ,d" in {1,2,3}
such that the matrix(diaij ) is symmetric. Letd be the maximal of(di). The reader
uncomfortable with Lie algebra theory might want to consider only the cased = 1,
that is, the simply laced case (seriesADE), for which many formulas become much
simpler. The values ofd and other data for various Lie algebras are listed in Table 1.
We fix a Cartan subalgebrah of g and basis rootsα1, . . . ,α" in the dual spaceh∗.

Let h∗R be theR-vector space spanned byα1, . . . ,α". The root latticeY is theZ-lattice
generated byαi, i = 1, . . . ,". Define the scalar product onh∗R so that(αi | αj )= diaij .
Then(α | α)= 2 for everyshort rootα.
LetZ+ be the set of all nonnegative integers. The weight latticeX (resp., the set of

dominant weightsX+) is the set of allλ ∈ h∗R such that〈λ,αi〉 := (2(λ | αi))/(αi | αi)
∈ Z (resp.,〈λ,αi〉 ∈ Z+) for i = 1, . . . ,". Let λ1, . . . ,λ" be the fundamental weights;
that is, theλi ∈ h∗R are defined by〈λi,αj 〉 = δij or (λi | αj ) = diδij . ThenX is the
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Z-lattice generated byλ1, . . . ,λ". The root latticeY is a subgroup of the weight lattice
X, and the quotientG= X/Y is called thefundamental group. If µ ∈ X andα ∈ Y ,
then(µ | α) is always an integer.
Let ρ be the half-sum of all positive roots. Thenρ = λ1+·· ·+λ" ∈ X+. Finite-

dimensional simpleg-modules are parametrized byX+: for every λ ∈ X+, there
corresponds a unique simpleg-module�̄λ.

1.1.2. The Hopf algebra� and its integral form. Consider the algebra� =
Z[v,v−1] and its fractional fieldQ(v), wherev is an indeterminate. The Hopf al-
gebra�, known as the quantum group associated withg, is defined overQ(v) and is
generated byEi,Fi,Kα, with i = 1, . . . ," andα ∈ Y , subject to some relations. We
refer the reader to [Lu2] for the set of relations and the definitions of the coproduct
. and the antipodeS; the precise formulas are not used in the sequel. Note that the
coproduct in [Lu2] is the same as the one in [Tu], but opposite to the one in [Ka]
and [KM]; correspondingly, our antipode is the inverse of that in [Ka] and [KM].
In [Lu2], the two latticesX,Y are in different spaces, dual to each other. Here we
consider bothX andY as subsets of the same spaceh∗R (using the scalar product).
One of the relations says thatKα+β =KαKβ =KβKα andK0 = 1. HenceK−α =

K−1
α .
Lusztig introduced an integral version�� of �, similar to the KostantZ-form of

classical Lie algebras. For each positive integerp, let

E
(p)
i = E

p
i

[p]i ! , F
(p)
i = F

p
i

[p]i ! , where[p]i ! =
p∏
n=1

vdin−v−din

vdi −v−di
.

Then�� is the�-subalgebra of� generated byE(p)
i ,F

(p)
i ,Kα, with i = 1, . . . ,n,

p ∈ Z+, andα ∈ Y . It is known that�� inherits the Hopf algebra structure of�.

1.2. Category of�-modules

1.2.1. Finite-dimensional�-modules of type 1.SupposeM is a�-module. For
everyν ∈X, let

Mν = {
x ∈M |Kα(x)= v〈ν,α〉x for every rootα

}
.

The subspaceMν is called the subspace of weightν; its elements are vectors of
weightν.
Let � be the category offinite-dimensional(overQ(v)) �-modulesM such that

M =
⊕
ν∈X

Mν.

It is known that on everyM ∈ �, bothE(p)
i andF (p)

i equal zero for sufficiently
largep.
A morphism in� is just a�-linear homomorphism. IfM,N are in�, thenM⊗N
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is also in�. Thus� is a tensor category(also known as a monoidal category; see,
e.g., [Ka], [Tu]).
The category� is semisimple, and its simple objects are parametrized by the set of

dominant weightsX+. For everyλ ∈X+, there is a unique simple�-module�λ ∈ �,
with a vectorx of weightλ such thatE(p)

i (x) = 0 for everyi = 1, . . . ," andp ≥ 1.
The module�λ, called themodule of highest weightλ, can be considered as the
deformationof the corresponding modulē�λ of the Lie algebrag. Every�-module
in � is the direct sum of simple modules of the form�λ. The decomposition of
the tensor product of two simple�-modules in� is exactly the same as that of the
tensor product of correspondingg-modules. Hence, the tensor category� is tensorly
equivalent to the tensor category of finite-dimensionalg-modules.
If ν is a weight of�λ, thenλ−ν is a sum of positive roots. In particular,λ−ν ∈ Y .
1.2.2. Dual modules.As usual, using the antipodeS, for everyM ∈ � one can

define the dual�-moduleM∗ ∈ �. By definition,M∗ = HomQ(v)(M,Q(v)), and for
everya ∈ �, f ∈M∗, x ∈M, one has(af )(x) = f (S(a)x). The dual of�µ is �ν ,
whereν =−w0(µ) andw0 is the longest element of the Weyl group.

1.2.3. The element̃K±2ρ . For β ∈ Y , β = ∑"
i=1kiαi , let K̃β = ∏n

i=1Kkidiαi .
ReplacingK by K̃ has the following effect: Ifx is a vector of weightν, thenK̃β(x)=
v(ν|β)(x) (replacing the bracket〈λ,β〉 by the scalar product(λ | β)).
Note that 2ρ, as the sum of all positive roots, is always in the root latticeY . Hence,

(2ρ | µ) ∈ Z for everyµ ∈X. The elementsK̃±2ρ play an important role.

1.2.4. The evaluation and coevaluation maps.The ground fieldQ(v) is the�-
module�λ, with λ = 0. The algebra� acts onQ(v) via the co-unit. The module
Q(v) is the unit of the tensor product in�.
The left evaluation map evl :M∗⊗M →Q(v), defined by evl(f ⊗x) = f (x), is

�-linear. But the mapM⊗M∗ →Q(v) defined by(x⊗f )→ f (x) is not�-linear.
However, the one twisted bỹK−2ρ is: The map evr :M⊗M∗ →Q(v), defined by
evr (x⊗f )= f (K̃−2ρx), is�-linear.
Similarly, the coevaluation maps

coevl :Q(v)−→M⊗M∗, defined by coevl(1)=
∑
s

xs⊗x∗s ,

coevr :Q(v)−→M∗⊗M, defined by coevr (1)=
∑
s

x∗s ⊗K̃2ρ(xs),

are�-linear. Here{xs} is a basis ofM and{x∗s } is the dual basis inM∗.

1.2.5. Canonical basis.Lusztig and Kashiwara introduced acanonical basisBλ
for the�-module�λ. The setBλ is aQ(v)-basis of theQ(v)-vector space�λ. Let
��λ be the�-lattice in�λ generated byBλ. Then�� leaves the lattice��λ invariant,
��(��λ) ⊂ ��λ. The setBλ consists of weight vectors; that is, the intersection
Bλ∩(�λ)

ν is aQ(v)-basis of the vector space(�λ)
ν for every weightν.
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1.3. The braiding and the twist

1.3.1. The quasi-R-matrix. Let 7 be the quasi-R-matrix of [Lu2]; it is an infi-
nite sum

7=
∑
s

as⊗bs, (1.1)

whereas,bs are in�. So7 belongs to an appropriate completion of�⊗�. On every
M ∈ �, all theas,bs , except for a finite number of them, act as zero. Hence it makes
sense to consider the operator7 :M⊗N →M⊗N for everyM,N in �.
In particular, there is7 :�λ⊗�µ →�λ⊗�µ. Lusztig proved that7 is invertible

and that both7,7−1 leave��λ⊗� ��µ invariant. Let us take the setx⊗y, with
x ∈ Bλ andy ∈ Bµ as a basis of�λ⊗�µ, and call it thetensor product basis. Then,
in this basis, the matrices of7,7−1 have entries in� = Z[v,v−1].
Moreover, Lusztig proved that7,7−1 can be defined over�. This implies that

theas,bs in the formula (1.1) of7 can be chosen in��.

1.3.2. Braiding. Let D be the least positive integer such thatD(µ | ν) ∈ Z for
everyµ,ν ∈ X. Equivalently,D is the least positive integer such thatDX ⊂ Y . The
numberD (see Table 1) is always a divisor of the determinant of the Cartan matrix.
Letv1/D be a new variable such that(v1/D)D = v. To define the braiding, we extend

the ground field toQ(v1/D) by taking tensor products of� and every module in�
with Q(v1/D). By abuse of notation, we still use�, � to denote the corresponding
objects (after taking tensor products).
For two�-modulesM,N in �, let: :M⊗N →M⊗N be defined by

:(x⊗y)= v(ν|µ)x⊗y,

if x ∈Mν andy ∈Nµ. Note that(ν | µ) is always in(1/D)Z.
Let σ :M⊗N →N⊗M be the flip:σ(x⊗y)= y⊗x. Then the braiding operator

c = c(M,N) :M⊗N →N⊗M is defined by

c(M,N)= σ:7−1 :M⊗N −→N⊗M.

Then c commutes with the action of�. Actually, c is equal to the inverse of the
commutativity isomorphism in [Lu2, Chapter 32].
The map: is called the diagonal part of the braiding. It is because of the diagonal

part that we need to extend the ground field toQ(v1/D). It is clear now that if we
take the tensor product bases as the bases of�λ⊗�µ and�µ⊗�λ, then the matrix
of the braidingc has entries inZ[v±1/D]. A slightly stronger result is given below.
SupposeM = �µ andN = �ν . If µ′,ν′ are weights ofM,N , respectively, then

bothµ−µ′ andν−ν′ are in the root latticeY . Since the scalar product of an element
in Y and an element inX is always an integer, we see that

(µ′ | ν′)≡ (µ | ν) (modZ).
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Hence, in any basis that is the tensor product of bases consisting of weight vectors,
the matrix of: has entries inv(µ|ν)�. Thus we have the following.

Proposition 1.1. In the product bases, the matrix of the braidingc :�µ⊗�ν →
�ν ⊗ �µ has entries inv(µ|ν)� = v(µ|ν)Z[v±1], and its inverse has entries in
v−(µ|ν)�.

1.3.3. The twist.Recall that7= ∑
as⊗bs, where the sum is infinite andas,bs ∈

�. Let (see [Lu2, Chapter 6])

==
∑
s

S(as)bs.

This sum should be considered as an element of some completion of�. Since on
M ∈ � only a finite number of terms in the sum survive, one can define= :M →M.
For everyM ∈ �, let θ = θ(M) :M →M be defined by

θ(x)= v(ν+2ρ|ν)=(x) if x ∈Mν .

Thenθ is invertible, commutes with�-actions, and is known as a quantum Casimir
element (see [Lu2, Chapter 6]). We call it thetwist. Moreover, for anyM,N ∈ �, one
has that

θ(M⊗N)
[
θ(M)⊗θ(N)

]−1= c(N,M)c(M,N), (1.2)

whose proof is similar to that of [Ka, Proposition VIII.4.5].
The twistθ can also be described as follows. First, note thatθ(M

⊕
N)= θ(M)

⊕
θ(N). EveryM in � can be uniquely expressed in the form

M =
⊕
λ∈X+

M(λ),

whereM(λ) is the direct sum of a finite number of copies of the simple module�λ.
The twistθ acts onM(λ) as the scalarv(λ+2ρ|λ) times the identity.

1.3.4. � is a ribbon category. It is known that�, together with the braidingc
and the twistθ , is aribbon category(see [Ka], [Tu]). Actually,� is the same as the
categoryUh(g)-Modf r in [Ka, Chapter XVII] or the category�qg in [Tu, Chapter
XI]. Both [Ka] and [Tu] use theh-adic version of quantum group, which is not suitable
for studying the roots of unity case.

1.3.5. The variableq. In knot theory, another variableq = v2 is usually used. The
reader should not confuse thisq with the quantum parameter used in the definition
of quantum groups by several authors. For example, ourq is equal toq2 in [Ka] and
[Tu]. In the expression “quantum invariant at anrth root of unity,” therth root of
unity is q (but notv).

1.4. Quantum link invariants.It is known that any ribbon category gives rise to
operator invariants offramed links, whose components are colored by objects of the
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T ′T=T ′⊗T
T

T ′=◦ T ′T

D4D3D2D1D0

Figure 1. Elementary tangle diagrams, composition, and tensor product

category. We first review the definition, following [KM] and [Tu].

1.4.1. Framed tangles.A tangleT is an oriented 1-manifold properly embedded
(up to isotopy) inR2×[0,1], with ∂T ⊂ 0×R×∂[0,1]. Define∂−T = T ∩(R2×0)
and∂+T = T ∩(R2×1), and callT a (k, l)-tangle if |∂−T | = k and|∂+T | = l. Thus
a link is a(0,0)-tangle.
A framed tangleis a tangleT equipped with a normal vector field that is stan-

dard (1,0,0) on ∂T . As usual, we consider framed tangles up to isotopy relative
to the boundary. InR3, there is a natural way to identify framings of a component
with integers.
A diagram of a tangle is its regular projection on 0×R2, together with the informa-

tion on over- or undercrossings. A diagram defines a blackboard framing in which the
normal vector is always(1,0,0). A diagram ofT is good if the blackboard framing
is coincident with the framing ofT .
It is well known that every tangle diagram can be factored into theelementary

diagramsD0–D4 depicted in Figure 1 using thecomposition◦ (when defined) and
the tensor product⊗ of diagrams.

1.4.2. Operator invariants of colored framed tangles.A coloring of a tangleT is
an assignment of an object in the category� to each component ofT . This induces a
coloring of∂T as follows: IfC is an arc of colorM, then assignM to each endpoint
of C whereC is oriented down and assign the dual objectM∗ to each endpoint where
C is oriented up. Tensoring from left to right, this gives theboundary objectsT±
assigned to∂±T . By convention, the empty product is the unit in� (the ground ring
Q(v1/D)).
There exists a unique�-linear operatorJT : T− → T+, assigned to each colored

framed tangleT , that satisfiesJT ◦T ′ = JT ◦ JT ′ , JT⊗T ′ = JT ⊗ JT ′ , and, for the
tangles given by the elementary diagrams with blackboard framing,

JD0 = id, JD1 = evl , JD′
1
= evr ,

JD2 = coevl , JD′
2
= coevr , JD3 = c, JD4 = c−1.
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Here we assume thatD1,D2 have orientation pointing from left to right, whileD′
1,D

′
2

are the same tanglesD1,D2 but with reverse orientation. In particular, ifL is a framed
link with m ordered components, thenJL(M1, . . . ,Mm), for M1, . . . ,Mm ∈ �, is in
Q(v1/D).
We see that only the braidingc andK̃±2ρ take part in the construction ofJT . Many

problems are thus reduced to questions aboutc andK̃±2ρ . Since in the product bases
the matrices ofc andK̃±2ρ have entries inZ[v±1/D], we see thatJL(�µ1, . . . ,�µm) is
always a Laurent polynomial inv±1/D, that is,JL ∈ Z[v±1/D]. Masbaum and Wenzl
in [MW] proved this fact forg = sln using idempotent decompositions.
Later we see that every link can be decomposed intopure braidsand tangle dia-

grams without crossing points. We then prove thatJT , whenT is a pure braid, can be
expressed through the twistθ only (no need to use the braiding). Thus one needs to
use only the twist and̃K±2ρ . Both are simple, since their actions on highest-weight
modules are easily described.

1.4.3. Relation to the Kontsevich integral.Quantum invariants of links can also
be defined through the Kontsevich integral; see [LM] and [Ka, Chapter XX]. Roughly
speaking, one first takes the (framed version) Kontsevich integral of a linkL, then
plugs in theweight systemcoming from the modules̄�µ1, . . . , �̄µm of the Lie algebra
g. The result, after a change of variable, isJL(�µ1, . . . ,�µm).
This approach avoids the theory of quantum groups (although the Kontsevich in-

tegral has its origin in quantum group theory). Some properties of quantum link
invariants can be easily seen from this point of view. Some other properties, such as
the ones proved in this paper, are easier to prove using quantum group theory. Actu-
ally, we do not know how to prove the results of this paper by using the Kontsevich
integral theory.

1.4.4. The trivial knot.SupposeU is the trivial knot. ThenJU(M) is called the
quantum dimensionof M; its value is well known:

JU(�µ)=
∏

positive rootsα

v(µ+ρ|α)−v−(µ+ρ|α)

v(ρ|α)−v−(ρ|α)

= v−(µ|2ρ)
∏

positive rootsα

v2(µ+ρ|α)−1

v2(ρ|α)−1

(1.3)

=
∑

w∈W sn(w)v2(µ+ρ|w(ρ))∑
w∈W sn(w)v2(ρ|w(ρ))

, (1.4)

whereW is the Weyl group and sn(w) is the sign of the linear transformationw.
Noting that(µ | 2ρ) is always an integer, we get the following.
Corollary 1.2. One has thatJU(�µ) is either inZ[v2,v−2] or in vZ[v2,v−2].

More precisely,JU(�µ) ∈ v(µ|2ρ)Z[v2,v−2].
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1.4.5. Sum, tensor product, and framing.The following facts are well known; see
[Ka], [Tu]. One has thesum formula

JL(M⊕M ′, . . . )= JL(M,. . . )+JL(M
′, . . . ), (1.5)

where the dots denote the colors of the components other than the first.
Let T (2) be the link obtained fromT by replacing the first component by two of

its parallel push-offs (using the framing). Then one has thetensor product formula

JT (M⊗N,. . . )= JT (2) (M,N,. . . ). (1.6)

SupposeL′ is obtained fromL by increasing the framing of the first component
by 1. Then one has theframing formula

JL′(�µ, . . . )= v(µ+2ρ|µ)JL(�µ, . . . ). (1.7)

1.4.6. (1,1)-tangles. Suppose thatT is a (1,1)-tangle and that the open compo-
nent ofT is the first component whose color isM. ThenJT is an operator fromM to
M, commuting with the action of�. WhenM is a simple�-module,JT is a scalar
operator, and thus there is a scalar invariantJ̃T (M,. . . ) ∈ Z[v±1/D] such that

JT (M,. . . )= J̃T (M,. . . )× id .

If we close the(1,1)-tangleT to get a framed linkL, then

JL(M,. . . )= J̃T (M,. . . )×JU(M). (1.8)

2. Integrality and symmetry

2.1. Integrality. By integrality we mean the integrality of the coefficients and the
exponents ofv in JL. Recall thatD is the least natural number such that(µ | µ′) ∈
(1/D)Z for everyµ,µ′ in the weight latticeX.

2.1.1. Weak integrality.Wehave seen thatJL(M1, . . . ,Mm) is always inZ[v±1/D].
A little stronger statement is the following.

Proposition 2.1 (Weak integrality). The quantum invariantJL(�µ1, . . . ,�µm)

lies in vfZ[v±1] = qf/2Z[q±1/2], wheref is a (generally fractional) number de-
termined by the linking matrix(lij )1≤i,j≤m of L: f = ∑

1≤i,j≤m lij (µi | µj ).
Proof. If x ∈ Mν , then K̃±2ρ(x) = v(±2ρ|ν)x. Note that(2ρ | ν) is an integer,

since 2ρ, as the sum of all positive roots, is always in the root latticeY . It follows
that in any basis consisting of weight vectors,K̃±2ρ has entries inZ[v±1].
The braidingc :�µ⊗�ν →�ν⊗�µ has entries inv(µ|ν)� (see Proposition 1.1)

in the product bases; its inverse has entries inv−(µ|ν)�. Counting the positive and
negative crossing points of a good diagram ofL gives the desired result.
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2.1.2. Strong integrality.The weak integrality says that the quantum invariant is
essentially a Laurent polynomial inv. The fractional power can be eliminated by
a suitable normalization. We have here a stronger statement, which says that the
quantum invariant is essentially a Laurent polynomial inv2.

Theorem 2.2 (Strong integrality). The invariantJL(�µ1, . . . ,�µm) is invpZ[v±2]
= qp/2Z[q±1], wherep is a (generally fractional) number determined by the linking
matrix lij of L:

p =
∑

1≤i,j≤m
lij

(
µi | µj

)+ ∑
1≤i≤m

(lii+1)(2ρ | µi) ∈ 1

D
Z.

The proof, which is presented in §3.6, is much more difficult than that of the weak
integrality. We have to use a geometric lemma about special presentation of links
together with a result of Andersen on quantum groups at roots of unity. The use of
quantum groups at roots of unity seems unnatural, since the strong integrality does
not have anything to do with roots of unity (see also the remark in §3.6.7). Andersen
constructed an algebra homomorphism from the quantum group atv = −ε to the
quantum group atv = ε, whereε is some root of unity. Heuristically, this implies
some kind of symmetry between−v andv, which leads to the fact thatJL depends
essentially only onv2.

Remarks. (a) The factorqp/2 could be understood as the contribution of the diag-
onal part of theR-matrix.
(b) If the link L is replaced by a tangleT , then one cannot get such nice results

about the exponents as in the strong integrality theorem.
(c) If we use the normalization

ĴL
(
�µ1, . . . ,�µm

) := v−pJL
(
�µ1, . . . ,�µm

)
,

thenĴL is a link invariant with values inZ[v2,v−2]. Note that we can definêJL only
for simplemodules in�. The normalizationĴL does not behave well under the action
of the Weyl group (see below), and we do not use it in the sequel.

Corollary 2.3. Consider the knot case. LetJ ′
L(�µ) be the nonframed version of

the quantum invariant of knots, normalized so that the unknot takes value1, that is,

J ′
L(�µ) := JL0(�µ)

JU(�µ)
,

whereL0 is the framed knot with framing zero and of knot typeL. ThenJ ′
L(�µ) ∈

Z[v±2].
Remark. When the linkL has more than one component, then in general, the

quotientJL/JU(m) is not a Laurent polynomial, but rather a rational function inv1/D.

The following corollary is useful in the theory of quantum invariants of 3-manifolds.
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(See [Le3]; for the caseg = sln, the corollary was proved in [Le2], using cabling.)

Corollary 2.4. If all the µj ’s are in the root lattice, thenJL(�µ1, . . . ,�µm) is
in Z[v±2] = Z[q±1].

Proof. The second term in the expression of the exponentp is in 2Z, since(ρ | µj )
is in Z. The first term is∑

ij

lij
(
µi | µj

) = ∑
i

lii (µi | µi)+2
∑
i>j

lij
(
µi | µj

)
.

Since(α | α) is even for everyα in the root lattice, we see that the first term is in 2Z,
too. Hence, the exponentp is an even number.

2.2. The first symmetry principle.Recall thatq = v2. We show that ifq is anrth
root of unity, thenJL has nice symmetry.

2.2.1. The Weyl group and the affine Weyl group.LetC be thefundamental cham-
ber:

C = {
x ∈ h∗R | 0≤ (x | αi), i = 1, . . . ,"

}
.

ThenX+ = X ∩C. The Weyl groupW , by definition, is generated by reflections
along the facets ofC. It is a finite subgroup of the orthogonal group ofh∗R, andC
is a fundamental domain of it. LetWr be the group of affine transformation ofh∗R
generated byW and the translation grouprY . Since the root lattice is invariant under
the action ofW , one hasWr =W �rY.

Let α0 be the highest short root. Whend = 1, that is, when all the roots have the
same length,α0 is simply the highest root. Thefundamental alcoveis defined by

Cr =
{
x ∈ C | (x | α0) < r

} = {
x ∈ h∗R | 0≤ 〈x,α〉< r for every positive rootα

}
.

Its topological closurēCr is an"-simplex and is a fundamental domain of the affine
Weyl groupWr . (See, e.g., [Kac, Chapter 6]; one has to apply the theory in [Kac] to
the dual root lattice.) Moreover,Wr is generated by the reflections along the facets
of C̄r .

2.2.2.JL as a function on the weight lattice.Let us define, forµ1, . . . ,µm ∈
ρ+X+,

JL(µ1, . . . ,µm) := JL
(
�µ1−ρ, . . . ,�µm−ρ

) ∈ Z[
v±1/D

]
.

The shift byρ is more convenient for us. The formula is good only when all the
µ1, . . . ,µm are inρ +X+ = X ∩C◦, whereC◦ is the interior of the fundamental
chamberC. We extend the definition to every point inX as follows.
If one of theµj is on the boundary of the chamberC, then letJL(µ1, . . . ,µm)= 0.

For everyµ ∈ X, there existsw ∈ W such thatw(µ) ∈ C; moreover, ifw(µ) is
in the interior ofC, then such aw is unique. For arbitraryµ1, . . . ,µm ∈ X, choose
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w1, . . . ,wm ∈ W such thatwj(µj ) ∈ X+. Then define (recall that sn(w) is the sign
of w)

JL(µ1, . . . ,µm)= sn(w1) · · ·sn(wm)JL
(
w1(µ1), . . . ,wm(µm)

)
.

Using formulas (1.3), (1.4) for the unknot, we see that the formula

JU(µ)= v−(µ−ρ|ρ)
∏

positive rootsα

v2(µ|α)−1

v−2(ρ|α)−1
(2.1)

is valid for everyµ, not only inρ+X+, but also inX.

2.2.3. Another normalization.LetU(m) be the zero-framing trivial link ofm com-
ponents. Recall that

QL(µ1, . . . ,µm) := JL(µ1, . . . ,µm)×JU(m)(µ1, . . . ,µm).

This normalization is more suitable for the study of quantum 3-manifold invariants
and helps us to get rid of the± sign in many formulas. ThenQL is componentwise
invariant under the action of the Weyl group: For everyw1, . . . ,wm ∈W ,

QL

(
w1(µ1), . . . ,wm(µm)

) =QL(µ1, . . . ,µm).

2.2.4. First symmetry principle.Recall thatq = v2. Supposef,g belong to the
sameqaZ[q±1], wherea ∈ (1/2D)Z. We say thatf = g at primitive rth roots of
unity and write

f
(r)= g

if, for every primitiverth root of unityξ , one has

q−af |q=ξ = q−ag|q=ξ .

There is no need to fix a 2Dth root of ξ . When writingf
(r)= g, we always assume

thatf andg belong to the sameqaZ[q±1].
Theorem 2.5 (First symmetry principle). At primitiverth roots of unity, the quan-

tum invariantQL is componentwise invariant under the action of the affine Weyl group
Wr . This means, for everyw1, . . . ,wm ∈Wr ,

QL

(
w1(µ1), . . . ,wm(µm)

) (r)= QL(µ1, . . . ,µm). (2.2)

If one of theµ1, . . . ,µm is on the boundary of̄Cr , thenJL(µ1, . . . ,µm)
(r)= 0.

Note that by the strong integrality, the left-hand side and the right-hand side of (2.2)
belong to the sameqaZ[q±1]. We also show thatJL is componentwiseskew-invariant
under the affine Weyl group: For everyw1, . . . ,wm ∈Wr ,

JL
(
w1(µ1), . . . ,wm(µm)

) (r)= sn(w1) · · ·sn(wm)JL(µ1, . . . ,µm).
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rλ1rλ1/20α1λ10

(b)(a)

Figure 2. TheA1 case

Remark. One can drop the “primitive” in the statements of the theorem.

2.3. The second symmetry principle.Recall thatC̄r is a fundamental domain of
the action ofW onh∗R. Because of the first symmetry principle, at primitiverth roots
of unity, it is enough to considerJL(µ1, . . . ,µm) with µj in C̄r ∩X, a finite set. It
turns out that we can do better. There is a finite groupG acting onC̄r , and although
JL is not really invariant under this action, it behaves quite nicely.

2.3.1. The extended affine Weyl group and the center groupG. Recall thatWr =
W � rY . Note thatX is invariant under the action of the Weyl group. LetŴr be the
group generated byW and translation byrX. ThenŴr = W � rX. If λ ∈ X and
w ∈W , thenw(λ)−λ is in Y . This impliesWr is anormal subgroupof Ŵr . We have
an exact sequence

1−→Wr −→ Ŵr −→G−→ 1,

whereG = X/Y is the fundamental groupof the root data. It is known thatG is
isomorphic to the center of the simply connected complex Lie group associated with
g and that|G| = det(aij ). The groupG for various Lie algebras is listed in Table 1.
Taking the action ofŴr modulo the action ofWr , we get an action ofG on C̄r

that can be described explicitly as follows. Supposeg̃ ∈X is a lift of g ∈G=X/Y .
There is a uniquew ∈Wr such thatw(C̄r+rg̃)= C̄r . Then, forµ ∈ C̄r ,

g(µ)= w
(
µ+rg̃

) ∈ C̄r .
For g ∈D andµ ∈X, we define a scalar product(g | µ) := (g̃ | µ), which is well

defined as an element in(1/D)Z/Z. Similarly, for g1,g2 ∈ G, let (g1 | g2) = (g̃1 |
g̃2) ∈ (1/D)Z/Z.

2.3.2. Examples ofG and its action. Here we give examples of the casesA1,A2,
andB2. Wheng = sl2 (theA1 case), the spaceh∗R is one-dimensional. The basis root
and the weight are depicted in Figure 2(a). The simplexC̄r is the interval[0, rλ1].
The nontrivial element ofG = Z2 acts as the reflection about the midpointrλ1/2;
see Figure 2(b).
When g = sl3 (the A2 case), the spaceh∗R is two-dimensional andd = 1. The

basis roots and weights are depicted in Figure 3(a). The simplexC̄r is the equilateral
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rλ1α0α2

rλ2

0
α1

λ1

λ2

(b)(a)

Figure 3. TheA2 case

rλ2

β0α1

rλ1/2

0
α2

λ2

α0 = λ1

(b)(a)
Figure 4. TheB2 case

triangle with vertices at 0, rλ1, and rλ2. The groupG = Z3 acts as rotations by
2πik/3 about the center point; see Figure 3(b).
Wheng is of B2 type, the spaceh∗R is again two-dimensional, withd1 = 2, d2 =

1. The basis roots and weights are depicted in Figure 4(a). The simplexC̄r is the
triangle with vertices at 0, rλ1/2, andrλ2. The nontrivial element ofG = Z2 acts
as the reflection about the dashed line that separatesC̄r into two equal halves; see
Figure 4(b).

2.3.3. Second symmetry principle

Theorem 2.6. Supposeµ1, . . . ,µm ∈ C̄r andg1, . . . ,gm ∈G. Then

QL

(
g1(µ1), . . . ,gm(µm)

) = vrtQL(µ1, . . . ,µm), (2.3)

at primitiverth roots of unity. Heret depends only on the linking matrix(lij ) of L:
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t = (r−h)
∑

1≤i,j≤m
lij

(
gi | gj

)+2
∑

1≤i,j≤m
lij

(
gi | µj −ρ

)
,

with h being the Coxeter number of the Lie algebrag (see Table 1).

Remark. The factorvrt = qrt/2 makes both sides of (2.3) belong to the same
qaZ[q±1].
For the special casesg = sl2 andg = sln, the theorem was proved by Kirby and

Melvin [KM] and Kohno and Takata [KT1]. In [KM] and [KT1], thetwisting factor
vrt is derived by direct computations. Here we express the twisting factor through the
scalar product inh∗R. We also have the result for every primitiverth root of unity.

SinceŴr = W � rX and sinceQL is componentwise invariant underW , (2.3) is
equivalent to the statement that forx1, . . . ,xm ∈X,

QL(µ1+rx1, . . . ,µm+rxm)

(r)= vr[(r−h)
∑
lij (xi |xj )+2∑

lij (xi |µj−ρ)]QL(µ1, . . . ,µm). (2.4)

Corollary 2.7. SupposeL has zero linking matrix. ThenQL(µ1, . . . ,µm), at
primitive rth roots of unity, is invariant under componentwise action ofŴr .

Corollary 2.8. If µj −ρ is in the root lattice andµj ∈ C̄r , then

QL

(
g1(µ1), . . . ,gm(µm)

) (r)= vr[
∑
lij (gi |gj )]QL(µ1, . . . ,µm).

The corollary follows from Theorem 2.6, since the second term in the expression of
t in the theorem is in 2Z. These corollaries have application in the study of quantum
3-manifold invariants. In a subsequent paper, we will use Corollary 2.8 to define the
projective version of quantum invariants and its perturbative expansion.

2.4. Refined versions of symmetry principles.When(r,d)  = 1, we can strengthen
both symmetry principles. Actually, we formulate the result so that it includes the
(d,r) = 1 case. In the refined versions, the symmetry groups are larger, actually,
the largest possible. For example, if one wants to construct quantum invariants of 3-
manifolds, one has to use the refined versions because of the nondegeneracy property
in Proposition 2.10 below.

2.4.1. Refined versions ofCr,Wr,Ŵr . If (r,d) = 1, let X′ = X and Y ′ = Y .
If (r,d)  = 1, then(r,d) = d > 1. In this case, letX′ (resp.,Y ′) be theZ-lattice
generated byλi/di (resp.,αi/di), i = 1, . . . ,". In other words, if(r,d)  = 1, thenX′
is the lattice dual toY with respect to our scalar product, that is,X′ = {x ∈ h∗R | (x |
y) ∈ Z, for everyy ∈ Y }, and similarly,Y ′ is the lattice dual toX. If (d,r)  = 1, then
X′,Y ′ is a realization of the root lattice and the weight lattice of the dual root system
whose Cartan matrix is the transpose of the original one.
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In any case,X ⊂ X′, Y ⊂ Y ′. Note thatX′ andY ′ are invariant underW , and if
x ∈X′, thenx−w(x) ∈ Y ′ for everyw ∈W . Let us define

W ′
r =W �rY ′, Ŵ ′

r =W �rX′.

ThenW ′
r is a normal subgroup of̂W

′
r , and we have an exact sequence

1−→W ′
r −→ Ŵ ′

r −→G′ −→ 1, (2.5)

whereG′ =X′/Y ′. Note thatG′ is always isomorphic toG.
The latticesX′,Y ′ thus depend on the root data (of the Lie algebrag) and whether

(r,d) = 1 or not. There is a unifying definition good foreveryr, as described in the
following lemma, which is easy to prove.

Lemma 2.9. One has that

rX′ = {
x ∈X | (x | y) ∈ rZ for everyy ∈ Y}

,

rY ′ = {
y ∈ Y | (x | y) ∈ rZ for everyx ∈X}

.

2.4.2. The fundamental domain ofW ′
r . If (r,d)= 1, letC′

r = Cr . Otherwise, let

C′
r =

{
x ∈ C | (x | β0) < r

}
,

whereβ0 is the long highest root. The closurēC′
r is a simplex and a fundamental

domain ofW ′
r . In any caseC

′
r ⊂ Cr , and if(d,r)  = 1, thenC′

r is strictly less thanCr .
In fact, if (r,d)  = 1, then it can be shown that the volume ofCr is

∏"
i=1(d/di) times

that ofC′
r . One important property ofC′

r is the following nondegeneracy property,
proved in [AP].

Proposition 2.10 (see [AP]). Supposeµ ∈ C̄′
r and ε2 is a primitive rth root of

unity. Then the quantum dimensionJU(µ)|v=ε = 0 if and only ifµ is on the boundary
of C̄′

r .

Proof. This follows from the explicit formula of the quantum dimension (2.1).

This proposition shows that the setC′
r (but notCr in general) is exactly what should

be used in the construction of the topological quantum field theory.

2.4.3. Actions ofG′ and the quadratic form onG′. Again, the exact sequence (2.5)
leads to an action ofG′ onC̄′

r . Explicitly it can be described as follows. Supposeg̃ ∈X
is a lift of g ∈ G′ = X′/Y ′. There is a uniquew ∈ W ′

r such thatw(C̄′
r + rg̃) = C̄′

r .
Theng(µ) : = w(µ+rg̃) for everyµ ∈ C̄′

r .
For g ∈ G′ andµ ∈ X (notX′ here), let us define the product(g | µ) : = (g̃ | µ),

which is well defined as an element inQ moduloZ. If ζ is a 2Drth root of unity,
thenζ 2Dr(g|µ) is well defined as a complex number.
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Figure 5. TheB2 case

Similarly, for g1,g2 ∈ G′, let (g1 | g2) = (g̃1 | g̃2), defined as an element inQ
modulo(1/(d,r))Z. If ζ is a 2Drth root of unity andk an integer divisible by(d,r),
thenζ 2Drk(g1|g2) is well defined as a complex number. A little bit more difficult to
see is thatζDkr(g|g) is well defined as a complex number for everyg ∈ G′. But this
follows from the evenness of the quadratic form(· | ·) on the root lattice.
When(r,d)= 1, we could drop all the primes. Note that all the “prime” versions,

such asX′,Y ′,C′
r ,W

′
r , . . . , depend on the root data and whether(r,d)= 1 or not. The

groupG′ is isomorphic toG; however, the scalar product onG′ depends on whether
(r,d)= 1 or not.
Let us consider an example when(r,d)  = 1. Thend = 2 or 3. If we wantG′ to not

be trivial, then we are left with only two cases: theB" or C" series of Lie algebras.
Let us consider the case ofB2 (see Figure 5). In this caseC′

r is a half ofCr such that
C′
r is the triangle with vertices at 0, rλ1/2, rλ2/2. The nontrivial element ofG

′ = Z2

acts as the reflection about the dashed line in Figure 5(c).

2.4.4. Refined symmetry principles.Both symmetry principles remain valid if we
replaceWr,Cr byW ′

r ,C
′
r . However, one has to take care of the Coxeter numbers.

Theorem 2.11 (Refined first symmetry principle). At primitiverth roots of unity,
QL is componentwise invariant under actions ofW ′

r : For µ1, . . . ,µm ∈ X, w1,

. . . ,wm ∈W ′
r ,

QL

(
w1(µ1), . . . ,wm(µm)

) (r)= QL(µ1, . . . ,µm). (2.6)

If one of theµj is on the boundary of̄C′
r , thenJL(µ1, . . . ,µm)

(r)= 0.

SinceWr ⊂W ′
r , the refined version implies the nonrefined version. We also prove

thatJL is componentwiseskew-invariantunderW ′
r : Forw1, . . . ,wm ∈W ′

r ,

JL
(
w1(µ1), . . . ,wm(µm)

) (r)= sn(w1) · · ·sn(wm)JL(µ1, . . . ,µm). (2.7)

Certainly this identity implies (2.6). It also implies the second statement of the
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theorem: If one ofµ1, . . . ,µm, say,µ1, is on the boundary of̄C′
r , then there is

reflection along a facet of̄C′
r that fixesµ1. The sign of any reflection is−1. Hence,

JL(µ1, . . . ,µm)
(r)= 0. Another way to prove the second statement is the following.

By (1.8), JL = J̃T JU (µ1). If µ1 is on the boundary of̄C′
r , then by Lemma 2.10,

JU(µ1)
(r)= 0. HenceJL

(r)= 0.
Again, because of the first symmetry, it is enough to restrict the colors toC̄′

r when
considering quantum invariants. Leth∨ be the dual Coxeter number ofg (see Table 1).

Theorem 2.12 (Refined second symmetry principle). Supposeµ1, . . . ,µm ∈ C̄′
r

andg1, . . . ,gm ∈G′. Then, at primitiverth roots of unity,

QL

(
g1(µ1), . . . ,gm(µm)

) = vrt
′
QL(µ1, . . . ,µm), (2.8)

wheret ′ is determined by the linking matrix ofL:

t ′ = (r−h′)
∑
i,j

lij (gi | gj )+2
∑
i,j

lij (gi | µj −ρ),

with

h′ =
{
h if (d,r)= 1,

dh∨ if (d,r)  = 1.

Note thatvrt
′
in (2.8) is well defined as a complex number; see §2.4.3. Again, the

factorvrt
′ = qrt

′/2 makes both sides of (2.8) belong to the sameqaZ[q±1].
Since the action ofG′ is obtained from the action of the extended affineWeyl group

Ŵ ′
r , let us describe howQL behaves under the action ofŴ ′

r . Recall thatŴ
′
r =W�rX′

and thatQL is componentwise invariant underW . We need only to describe howQL

behaves under the translation grouprX′. Supposex1, . . . ,xm ∈X′; then,

QL(µ1+rx1, . . . ,µm+rxm)

(r)= QL(µ1, . . . ,µm)v
r[(r−h′)∑ lij (xi |xj )+2∑

lij (xi |µj−ρ)]. (2.9)

The theorem certainly follows from this statement.

3. Proofs

3.1. Quantum groups at roots of unity.We recall the theory of quantum groups at
roots of unity, following [An], [AP], and [Lu2] and then prove some auxiliary facts.

3.1.1. Quantum group at roots of unity and its category of modules.Suppose
ε ∈ C is a number such thatε2 is anrth primitive root of unity. Thenε is either a
primitive 2rth root of unity or a primitiverth root of unity. The latter can happen
only whenr is odd. Fix a numberζ such thatζD = ε. If a ∈ (1/D)Z, then byεa we
meanζDa.
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Let ε� be the algebra��⊗�C, whereC is considered as an�-algebra bymapping
v to ε. Then ε� is a HopfC-algebra, called a quantum group at a root of unity
(Lusztig’s version). The Cartan subalgebra of�� is not generated (over�) by the
Kα alone; one needs the elements

[
Kαi

t

]
=

t∏
s=1

(
v1−sKαi

)di −(
v1−sKαi

)−di
vsdi −v−sdi

∈ ��,

wherei = 1, . . . ," andt = 1,2,3. . . .
For aε�-moduleM and a weightν ∈X, let

Mν =
{
x ∈M |Kα(x)= ε〈ν,α〉x and

[
Kαi

t

]
(x)=

[〈ν,αi〉
t

]
i

x

}
,

where forx ∈ Z, t ∈ Z, t > 0,

[
x

t

]
i

: =
t∏

s=1

εdi(x−s+1)−ε−di(x−s+1)

εsdi −ε−sdi
.

Let ε� be the category of finite-dimensionalε�-modulesM such that

M =⊕ν∈XMν

and thatE(p)
i (x)= F

(p)
i (x)= 0 onM for sufficiently largep.

Using the same formulas as in the case overQ(v), we define dual modules and the
evaluation and coevaluation maps. We define the twistεθ and the braidingεc using
the same formulas ofθ and c, replacingv1/D by ζ . Then (ε�, εθ, εc) is a ribbon
category. In particular,

εθ(M,N)
[
εθ(M)⊗ εθ(N)

]−1= εc(N,M)× εc(M,N). (3.1)

3.1.2. Simple modules.In general,ε� is not semisimple: there are modules inε�
that are indecomposable, but not simple.
Since��λ is invariant under��, there is definedε�λ =� �λ⊗C, which is aε�-

module inε�. Hereλ is inX+. Sinceε is a root of unity,ε�λ may not be simple. But
ε�λ always has a unique quotientLλ that is asimpleε�-module. Thisε�-module
Lλ ∈ ε� is also of highest weightλ. If λ  = µ, thenLλ is not isomorphic toLν . If
λ ∈ C′

r , thenε�λ is a simpleε�-module, that is,Lλ = ε�λ.

3.1.3. Composition factors and the twistεθ . In general, ifM ∈ ε�, thenM may
not be a direct sum of simple modules. However, there is a decreasing sequence of
submodulesM = M0 ⊃ M1 ⊃ ·· · ⊃ Mn = 0 such thatMi/Mi+1 is simple. The
quotientMi/Mi+1 is called acompositionfactor ofM.
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In [AP], as a corollary of the linkage principle, it was proved that for everyM ∈ ε�,

M =
⊕
µ∈C′

r

M[µ]. (3.2)

HereM[µ] is the maximal submodule ofM such that each composition factor of
it is isomorphic toLν with ν in theW ′

r -orbit of µ under the dot action, that is,
ν = w(µ+ρ)−ρ for somew ∈W ′

r .

Lemma 3.1. If ν is in theW ′
r -orbit of µ (under the dot action), then

ε(µ+2ρ|µ) = ε(ν+2ρ|λ).

Proof. Supposeν = w(µ+ρ)−ρ. Using the fact thatε1/D is a 2rDth root of
unity, it is easy to check the statement for the case whenw is inW and the case when
w is a translation by a vector inrY ′.

Note that the twistεθ acts as the scalarε(µ+2ρ|µ) on ε�µ (see §1.3.3); hence, it
acts as the same scalar on any composition factor ofε�µ. Thus we get the following.

Proposition 3.2. In the above notation, the twistεθ acts as scalarε(µ+2ρ|µ)
onM[µ].

3.1.4. Quantum link invariants.Recall thatε� is a ribbon category. Thus ifL
is a framed link, then there is defined the invariantεJL(M1, . . . ,Mm) ∈ C, where
M1, . . . ,Mm are in ε�. Although we use the notation withε, it is understood that
εJ T depends on the choice ofζ , aDth root ofε, since the twist and the braiding do.
However, this is not essential, since one can always get rid of fractional powers ofv

by a suitable normalization.
Obviously whenMj = ε�µj , then

εJL
(
ε�µ1, . . . , ε�µm

) = JL
(
�µ1, . . . ,�µm

)∣∣
v1/D=ζ ,

where the right-hand side means the value ofJL(�µ1, . . . ,�µm) at v
1/D = ζ .

Many modules are not direct sums ofε�λ. We can also define invariants of framed
links colored by these modules. The presence of these modules helps us to relate
values of quantum invariants at variousµ.
The simplest argument goes as follows. SupposeT is a framed(1,1)-tangle whose

open component is colored by�λ. ThenJT (�λ) is a scalar operator from�λ to�λ,

JT (�λ)= J̃T (�λ) id, with J̃T (�λ) ∈ Z
[
v±1/D

]
.

Hence, when specialized atv1/D = ζ , the mapεJ T (ε�λ) : ε�λ → ε�λ is also a
scalar operator (althoughε�λ may not be irreducible):

εJ T
(
ε�λ

) = εJ̃ T
(
ε�λ

)
id .
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HereεJ̃ T (ε�λ) is a complex number obtained from̃JL(�λ) by puttingv1/D = ζ .
It follows that ifM is a composition factor ofε�λ, thenεJ T (M) :M →M is also

a scalar operator with thesamescalarεJ̃ T (ε�λ). In particular,

εJ̃ T
(
Lλ

) = εJ̃ T
(
ε�λ

)
. (3.3)

Proposition 3.3. If ε�λ andε�µ have a common composition factor and ifT is
a (1,1)-tangle, then

εJ̃ T
(
ε�λ

) = εJ̃ T
(
ε�µ

)
.

3.2. Lemmas on quantum dimensions and signs

Lemma 3.4. Recall thath′ = h if (d,r)= 1 andh′ = dh∨ if (d,h)  = 1.
(a)For everyx1,x2 ∈X′, the numberh′(x1 | x2) is an integer.
(b) For everyx ∈X′, one has

(2ρ | x)≡ h′(x | x) (mod2) and (2ρ | x)≡ dh∨(x | x) (mod2).
(c) For everyx1,x2 ∈X (notX′), one has

(h′ −h)(x1 | x2) ∈ Z, and (h′ −h)(x1 | x1) ∈ 2Z.

Proof. (a) Suppose(d,r)= 1. ThenX′ =X, and(x1 | x2) ∈ (1/D)Z. The values
of h′ = h andD in Table 1 show thath is divisible byD. Henceh′(x1 | x2) ∈ Z.
Now suppose(d,r)  = 1; then(d,r) = d > 1. This meansg is of typeB,C,F4,

or G2. Note thatX′ is the Z-lattice generated byλi/di , and (λi/di | λj/dj ) =
(1/di)(A−1)ij , whereA−1 is the inverse of the Cartan matrix. Explicit calculation
shows that(λi/di | λj/dj ) ∈ (1/D′)Z, whereD′ = 2 for B",F2,G2, andC" with
" even, andD′ = 4 for C" with " odd. In any case,D′ divides dh∨, and hence
dh∨/D′ ∈ Z.
(b) Note that if the statement is true forx = x1 and x = x2, then it is true for

x = x1+x2. Hence, it is enough to restrict oneself to the case whenx is in a basis set.
If (d,r) = 1, a basis set is{λi, i = 1, . . . ,"}; if (d,r)  = 1, a basis set is{λi/di, i =
1, . . . ,"}. One can easily check the statement for each simple Lie algebra.
(c) If (r,d)= 1, thenh′ = h and both statements are trivial.
Suppose(r,d)  = 1; thenh′ = dh∨. Again one needs only to verify the statements

whenx1,x2 is in a basis set ofX, say,x1 = λi,x2 = λj . Recalling that(λi | λj ) =
(A−1)ij dj , one can easily check both statements.

Lemma 3.5. Recall thatU is the unknot. Letµ ∈X. At primitiverth roots of unity,
one has

JU(µ+ry)= JU(µ) and QU(µ+ry)=QU(µ) for everyy∈ Y ′,
JU (µ+rx)= (−1)(2ρ|x)JU (µ) and QU(µ+rx)=QU(µ) for everyx∈X′,
JU (w(µ))= sn(w)JU(µ) and QU(w(µ))=QU(µ) for everyw ∈W ′

r .
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For theQL version, the statements are much simpler, since there is no sign.

Proof. The first two identities forJU follow from the formula (2.1), if we remem-
ber thatr(x | α) ∈ rZ for everyx ∈X′,α ∈ Y (see Lemma 2.9). The third identity for
JU follows from the first one and the fact thatJU is skew-invariant under the action
of the Weyl groupW . All the identities forQU follow from the corresponding ones
for JU .

3.3. Proof of refined first symmetry principle.The proof utilizes results from [AP]
in the theory of quantum groups. We focus only on the first component ofL. Suppose
the color of this component isµ. Cut the link at a point on the component to get a
(1,1)-tangleT . Then by formula (1.8) we have

JL(µ)= J̃T (µ)JU(µ).

Since at primitiverth roots of unity we have (see Lemma 3.5)

JU
(
w(µ)

) = sn(w)JU(µ),

it is enough to show that̃JT (w(µ)) = J̃T (µ) at primitive rth roots of unity. Here
w ∈W ′

r .
From [AP, Section 3] and [Ja, Chapter II] we know that ifλ= w(µ), then there is a

sequence ofµ1, . . . ,µs such thatLλ−ρ andLµ−ρ are composition factors ofε�µ1 and
ε�µs , respectively, and two consecutiveε�µj , ε�µj+1 have a common composition

factor. It follows from Proposition 3.3 that̃J (λ) = J̃ (µ) at primitive rth roots of
unity. This proves the refined first symmetry principle.

3.4. Proof of refined second symmetry principle.As argued in §2.4.4, we need to
prove (2.9). We use a result of Lusztig, which we first recall.

3.4.1. A tensor product theorem.Recall thatε2 is a primitiverth root of unity. Let

Xr =
{
x ∈X+ | 〈x,αi〉< r

(r,di)
, i = 1, . . . ,"

}
.

One can check that(Cr ∩X+)⊂Xr .
It is easy to check that ifξ ∈X+, then there exists uniqueλ ∈Xr andν ∈ rX′ ∩X+

such thatx = λ+ ν. We denoteξ (0) = λ ∈ Xr andξ (1) = ν/r ∈ X′. Lusztig [Lu1]
proved that, asε�-modules,

Lξ ∼= Lλ⊗Lν.

This is quite nontrivial and very different from the classical case. It is similar to
Steinberg’s tensor product theorem for algebraic groups over fields of positive char-
acteristic. In [Lu1] the proof is given only for the case(r,d)= 1. However, the proof
can be generalized to the case(r,d)  = 1 (see the arguments of [AP, Theorem 3.12]).
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3.4.2. The square of the braiding onLλ⊗Lν . Assume that, as in §3.4.1,λ ∈ Xr

andν ∈ (rX′ ∩X+). The square of the braidingεc(Lν,Lλ)εc(Lλ,Lν) is an operator
acting onLλ⊗Lν , commuting with the action ofε�. ButLλ⊗Lν = Lλ+ν is asimple
module. Hence, the square of the braiding is a scalar operator,

εc(Lν,Lλ)εc(Lλ,Lν)= bλ,ν id,

wherebλ,ν ∈ C is a constant.
For the tangle diagramsD3,D4 of Figure 1 corresponding toc,c−1, we have

D3=D2
3D

−1
4 . It follows that

εJD3(Lλ,Lν)= bλ,ν εJD4(Lλ,Lν). (3.4)

This means the operator of a positive crossing and the one of a negative crossing are
proportional. The proportional factorbλ,ν can be calculated as follows. By (3.1),

(εc)
2 = εθ(Lλ⊗Lν)

[
εθ(Lλ)⊗ εθ(Lν)

]−1
.

UsingLλ⊗Lν = Lλ+ν and the fact thatεθ acts onLµ as the scalarε(µ+2ρ|µ) (see
§1.3.3), we see that

bλ,ν = ε2(λ|ν). (3.5)

3.4.3. The square of the braiding onLν⊗Lν . We continue to assume that, as in
the previous subsection,ν ∈ rX′ ∩X+. We show that(εc)2 acts as a scalar operator
onLν⊗Lν . It is enough to show thatεθ(Lν⊗Lν) is a scalar operator, since

c2 = θ(Lν⊗Lν)
[
θ(Lν)⊗θ(Lν)

]−1
.

The structure of the moduleLν and its tensor powers can be understood by classical
Lie theory, via the quantum Frobenius map (see [Lu2, Chapter 35]). Every weight
of Lν must be of the formν − α, whereα ∈ rY ′. The tensor productLν ⊗Lν is
completely reducible:

Lν⊗Lν =⊕τLτ ,

whereτ ∈ 2ν−rY ′.
The twistθ acts onLτ as a scalar operator, with the scalarε(τ+2ρ|τ) (see Proposition

3.2). Whenτ ∈ 2ν−rY ′, it is easy to see that the scalar is always equal toε(2ν+2ρ|2ν).
This meansθ(Lν⊗Lν) is a scalar operator with the scalarε(2ν+2ρ|2ν).
So we havec2 = bν id, where the value ofbν can be calculated (bν = ε2(ν|ν); we

do not need this value). It follows thatJD3(Lν,Lν)= bνJD4(Lν,Lν).
For example, supposeT is a (1,1)-tangle with framing zero. Let us calculate

εJ̃ T (Lν). We switch over- or undercrossing at some points in a good diagram ofT

to get the trivial(1,1)-tangle. With each switching we have to multiply the quantum
invariant bybν or (bν)−1. Since the framing is zero, we conclude thatεJ̃ T (Lν)= 1.
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3.4.4. Reduction to the framing-zero case.We show here that if (2.9) is true for a
link L, then it holds true for any link obtained fromL by altering the framing of the
components. It is sufficient to consider the case when we increase the framing of the
first component by 1. Then the left-hand side of (2.9) is multiplied by

aLHS= ε(µ1+rx1+ρ|µ1+rx1−ρ)

and the right-hand side by

aRHS= ε(µ1+ρ|µ1−ρ)εr[(r−h′)(x1|x1)+2(x1|µ1−ρ)].

Hence, to show thataLHS= aRHS it is enough to prove that

1= εr[h′(x1|x1)+2(x1|ρ)],

which follows from Lemma 3.4. (The term in the square bracket of the exponent is
divisible by 2 by Lemma 3.4.)

3.5. A special case.By virtue of the result of the previous subsection, we assume
from now on that 0= l11 = l22 = ·· · . Supposeξ ∈ X+. Thenξ = ξ (0)+ rξ (1) (see
the notation in §3.4.1). In this subsection we assume thatµ2, . . . ,µm ∈X+. We show
that

QL

(
�ξ,�µ2, . . . ,�µm

) (r)= v2rκQL

(
�ξ(0) ,�µ2, . . . ,�µm

)
, (3.6)

where
κ =

∑
j

l1j
(
ξ (1) | µj

)
.

By Lemma 2.9,r(ξ (1) | α) ∈ rZ for every α ∈ Y . Sincew(µj )− µj is in Y

for everyw ∈ W ′
r , we have thatε2r(ξ

(1)|µj ) = ε2r(ξ
(1)|w(µj )). It follows that ε2rκ is

invariant under the action ofW ′
r . Thus using the refined first symmetry principle,

we see that to prove (3.6) we can assume thatµ2, . . . ,µm are inCr . In this case
ε�µj = Lµj ,j = 2, . . . ,m. Hence, to prove (3.6) one just needs to show that

εQL

(
ε�ξ ,Lµ2, . . . ,Lµm

) = ε2rκ εQL

(
ε�ξ(0) ,Lµ2, . . . ,Lµm

)
. (3.7)

Cut L at a point on the first component to get a(1,1)-tangleT . From Lemma 3.5
we know thatεQU(ε�ξ ) = εQU(ε�ξ(0) ). Hence, by formula (1.8), identity (3.7) is
equivalent to

εJ̃ T
(
ε�ξ ,Lµ2, . . . ,Lµm

) = ε2rκ εJ̃ T
(
ε�ξ(0) ,Lµ2, . . . ,Lµm

)
. (3.8)

Using (3.3) we can replaceε�ξ andε�ξ(0) by, respectively,Lξ andLξ(0) in (3.8).
The Lusztig theorem saysLξ = Lν⊗Lξ(0) , whereν = rξ (1). By the tensor product
formula (1.6), we have

εJ̃ T
(
Lξ ,Lµ2, . . . ,Lµm

) = εJ̃ T (2)
(
Lν,Lξ(0) ,Lµ2, . . . ,Lµm

)
.
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There are two parallel push-offs of the first component ofT ; let us denote the one
colored withLν byK. If we removeK, then fromT (2) we getT .
In the tangle diagramT (2), consider a crossing point ofK with thej th component

whose color isLµj . By formula (3.4), switching over- or undercrossing results in a
factorbµj ,ν or its inverse. Switching over- or undercrossing to unlink the component
K from other components, fromT (2) we getT ′. Then we have

εJ̃ T (2)
(
Lν,Lξ(0) ,Lµ2, . . . ,Lµm

) = "∏
j=1

(
bµj ,ν

)l1j × εJ̃ T ′
(
Lν,Lξ(0) ,Lµ2, . . . ,Lµm

)

=
"∏

j=1

(
bµj ,ν

)l1j
εJ̃ K(Lν)εJ̃ L

(
Lξ(0) ,Lµ2, . . . ,Lµm

)
.

(3.9)

In §3.4.3 we showed thatεJ̃ K(Lν)= 1. Using the values ofbµ,ν in (3.5), from (3.9)
we get (3.8).

3.5.1. The case whenx2 = ·· · = xm = 0. We prove (2.9) by assuming thatx2 =
·· · = xm = 0. Recall that the framings ofL are zero. In this case, (2.9) reads

QL

(
µ1+rx1,µ2, . . . ,µm

) (r)= v2r[
∑

j l1j (x1|µj−ρ)]QL

(
µ1,µ2, . . . ,µm

)
. (3.10)

By the refined first symmetry principle,QL is invariant under the translation byrY ′.
Hence, we can further assume thatµ1+ rx1 and allµ1, . . . ,µm are in the interior of
the fundamental chamberC, that is, they are inρ+X+.
Replacingµj by µj −ρ, we see that (3.10) is equivalent to

QL

(
�µ1+rx1,�µ2, . . . ,�µm

) (r)= v2r[
∑

j l1j (x1|µj )]QL

(
�µ1,�µ2, . . . ,�µm

)
. (3.11)

Note that(µ1+rx1)(0) = (µ1)
(0) and(µ1+rx1)(1) = (µ1)

(1)+x1. Applying formula
(3.6) forξ = µ1+rx1 and forξ = µ1 and then comparing the right-hand sides of the
resulting identities, we get (3.11).

3.5.2. End of proof of second symmetry principle.We continue to assume that the
framings are 0,l11= ·· · = lmm = 0. The result of the previous subsection certainly
holds true if we replace the first component by any component. Successively adding
rx1 to µ1, rx2 to µ2, and so on, we get

QL

(
µ1+rx1, . . . ,µm+rxm

) (r)= v2rτQL

(
µ1, . . . ,µm

)
, (3.12)

where
τ =

∑
i,j

lij
(
xi | µj −ρ

)+∑
i>j

lij
(
xi | rxj

)
.
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......

ββ

Figure 6. Braid closure

By Lemma 3.4,h′(xi | xj ) ∈ Z, and hence
2r

(
xi | xj

) ≡ 2
(
r−h′

)(
xi | xj

)
(mod2),

and eventually

2r
∑
i>j

(
xi | xj

) ≡ (r−h′)
∑
i,j

lij
(
xi | xj

)
(mod2).

This means that whenv2 is anrth root of unity, the second term in the formula ofτ
can be replaced by(r−h′)∑i,j lij (xi | xj ), and (3.12) becomes (2.9). This completes
the proof of the refined second symmetry principle.
Consider the nonrefined version. Dividing the right-hand side of (2.9) by the right-

hand side of (2.4), the quotient isvr(h
′−h)∑ lij (xi |xj ). By Lemma 3.4(c), if all thexi ’s

are inX andv2r = 1, thenvr(h
′−h)∑ lij (xi |xj ) = 1. Hence (2.9) implies (2.4), which,

in turn, implies the nonrefined version of the second symmetry principle.

3.6. Proof of the strong integrality

3.6.1. Presentation of links as plat closures of pure braids

Proposition 3.6. Every nonframed link has a diagram of the formTu ◦ T ◦ Tl ,
whereTu andTl do not have any crossing andT is a pure braid.

Proof (W. Menasco).First consider the case whenL has only one component, that
is,L is a knot. ThenL is thebraid closureof a braidβ (see Figure 6).
The natural projection from the braid group to the symmetric group mapsβ to an

element with only one cycle, sinceL is a knot. Any two such elements are conjugate in
the symmetric group. Since braids of the same conjugacy class have the same closure,
we may assume that the projection ofβ onto the symmetric group is the permutation
(12· · ·n). This means, after some over- or undercrossing switchings, fromβ we get
a braid isotopic toβ ′ described in Figure 7(a). The isotopy can be assumed to be
horizontal.
The closure ofβ ′ is presented in Figure 7(b); it is a trivial knot. It could be hor-

izontally isotoped into the diagram in Figure 7(c) and, eventually, into the one in
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(d)

· · · · · ·

(c)(b)(a)

Figure 7. The trivial knot

(c)(b)

a pure braida pure braid

(a)

Figure 8. The plat closure

Figure 7(d). Now from this picture we go back toL by horizontal isotopyinside
the parallel strip, as indicated in Figure 8(a), and undo the over- or undercrossing
switchings using finger moves (see Figure 8(b)). We get the desired presentation (see
Figure 8(a)).
The proof for the case whenL has many components is quite similar. The result,

for a link of two components, is described in Figure 8(c).

3.6.2. Quantum invariants of pure braid.SupposeT is a pure braid whose com-
ponents are colored byM1, . . . ,Mn ∈ �. ThenJT (M1, . . . ,Mn) is an operator acting
on the vector spaceM1⊗·· ·⊗Mn. We show here thatJT can be expressed though
the twistθ alone.
If T is the square ofD1, that is,T is a full twist (see Figure 9(a)), then (see §1.3.3)

JT (M1,M2)=
[
θ(M1)⊗θ(M2)

]−1
θ(M1⊗M2).

Hence, in this caseJT can be expressed throughθ alone. Similarly, ifT =D2
2, then

JT can be expressed throughθ .
If T is the tangle in Figure 9(b), which is obtained from the one in Figure 9(a) by

taking parallels, thenJT can also be expressed throughθ alone, by the tensor product
formula. Here the band stands for a bunch of parallel lines.
Now we claim that every pure braid can be obtained from those in Figure 9(b)

and their mirror images by using composition and tensor product. In fact, the pure
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(d)(c)(b)(a)

Figure 9. The full twist and its parallels

braids depicted in Figure 9(c) and their mirror images generate every pure braid (using
composition and tensor product). But these pure braids can be expressed through the
ones of Figure 9(b), as shown in Figure 9(d) for a simple case.
HenceJT , whenT is a pure braid, can be expressed throughθ . Using Lemma 3.6

we see that for a linkL, up to a framing factor,JL can be expressed throughθ
andK±2ρ .

3.6.3. The mapϕ. Let ϕ : Z[v±1/D] → Z[v±1/D] be the algebra homomorphism
defined byϕ(v1/D) = eπi/Dv1/D. Thenϕ(v) = −v andϕ2D = id. Hence, the space
Z[v±1/D] decomposes into eigenspaces ofϕ, whose eigenvalues are 2Dth roots of
unity, eaπi , with a = 0,1/D,. . . , (2D−1)/D. The eigenspaces ofϕ arevaZ[v±2].
Also x ∈ Z[v±1/D] is in the eigenspacevaZ[v±2] if and only if ϕ(x)= eaπix.
Thus to prove the strong integrality theorem, one needs to show that

ϕ
(
JL

(
�µ1, . . . ,�µm

)) = eaπiJL
(
�µ1, . . . ,�µm

)
, (3.13)

with

a =
∑
i,j

lij
(
µi | µj

)+∑
i

(lii+1)(2ρ | µi) ∈ 1

D
Z.

Since both sides of (3.13) are Laurent polynomials inv1/D, it is enough to prove
(3.13) whenv1/D = e2πi/2Dr for every sufficiently large oddr.

3.6.4. The algebra homomorphism̄ϕ. Let us fix anodd integer r. Let ε be a
primitive 2rth root of unity. Then−ε is a primitiverth root of unity.
Andersen in [An] showed that there is analgebrahomomorphism

ϕ̄ : −ε� −→ ε�

with the following properties. IfM is a ε�-module, then pulling back viāϕ, we get
a −ε�-moduleϕ̄∗(M). If M is the highest-weight module of highest weightµ, that
is,M = ε�µ, thenϕ̄∗(M) is also the highest-weight−ε�-module of highest weight
µ, that is,ϕ̄∗(ε�µ)= −ε�µ. Note that bothM andϕ̄∗(M) have the same underlying
vector space overC.
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In order to consider quantum invariants of links, we need to fix aDth root of ε
and aDth root of−ε. Fix an arbitraryDth root ζ of ε, and chooseζ ′ = eπi/Dζ =
ϕ(v)|v1/D=ζ as theDth root of−ε. Now we can defineεθ, εc,−εθ,−εc.
In general,ϕ̄ does not commute with the coproduct. IfM andN are two ε�-

modules, there may be two different−ε�-module structures onM⊗CN , one via the
coproduct of−ε� (the usual one) and one viāϕ and the coproduct ofε�. However,
we have the following.

Lemma 3.7. Let Mj = ε�µj , j = 1, . . . ,n. The spaceM1⊗ ·· · ⊗Mn has two
−ε�-module structures as described above. Then the twist−εθ acts the same way in
the two different module structures. Similarly, everyKβ,β ∈ Y acts the same way in
the two different module structures.

Proof. The statement forKβ follows from the fact that forKβ , the mapϕ̄ com-
mutes with., ϕ̄(.(Kβ)) = .(ϕ̄(Kβ)), which, in turns, follows from the definition
of ϕ̄ : ϕ̄(Kβ)=Kl+1

β (see [An]).
The statement forθ follows from the fact that the action ofθ is totally determined

by the highest weight (see Proposition 3.2). One needs to decomposeM1⊗·· ·⊗Mn

using (3.2) and applying Proposition 3.2.

3.6.5. The action of the twist.Again letMj = ε�µj , j = 1, . . . ,n. There are two
actions of−ε� onM1⊗·· ·⊗Mn. By the result of the previous subsection, the twist
−εθ acts the same way in the two structures. On this same vector space,M1⊗·· ·⊗Mn

acts the twistεθ of ε�.

Proposition 3.8. LetMj = ε�µj . OnM1⊗·· ·⊗Mn, the two operators−εθ and
εθ are proportional:

−εθ = eπi(µ1+···+µn+2ρ|µ1+···+µn)
εθ.

Proof. As ε�-modules, one has (see (3.2))

M1⊗·· ·⊗Mn =
∑
ν∈C′

r

M[ν].

OnM[ν], εθ acts as the scalarζD(ν+2ρ|ν) (see Proposition 3.2). On that same subspace
M[ν], −εθ acts (through̄ϕ) as the scalar(ζ ′)D(ν+2ρ|ν) = eπi(ν+2ρ|ν)ζD(ν+2ρ|ν). Hence
onM[ν],

−εθ = eπi(ν+2ρ|ν)εθ . (3.14)

Note thatµ1+ ·· · +µn − ν is in the root lattice. Using the fact that the scalar
product of a vector in the root lattice and a vector in the weight lattice is always in
Z, one can easily show that

(ν+2ρ | ν)≡ (
µ1+·· ·+µn+2ρ | µ1+·· ·+µn

)
(mod2Z).
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It follows that the proportional factoreπi(ν+2ρ|ν) in (3.14) does not depend onν
and is always equal toeπi(µ1+···+µn+2ρ|µ1+···+µn). This proves the proposition.

3.6.6. Pure braid. Suppose that a framed tangleT has a good diagram that is a
pure braidon n strands, and suppose that the strands are colored byMj , which are
ε�-modules. ThenεJT (M1, . . . ,Mn) is an operator acting onM1⊗·· ·⊗Mn.
Using ϕ̄, one can considerT to be colored by−ε�-modulesϕ̄∗(Mj ). Hence, there

is defined the operator−εJT acting on the same spaceM1⊗·· ·⊗Mn.

Proposition 3.9. Supposetij is the linking number of theith and thej th compo-
nents of the pure braidT . Suppose also thatMj = ε�µj . Then onM1⊗·· ·⊗Mn the
two operators−εJT and εJT are proportional:

−εJT = ebπiεJT ,

whereb = ∑
1≤i<j≤n2tij

(
µi | µj ).

Proof. Since the pure braids in Figure 9(b) generate every pure braid, we assume
T is as in Figure 9(b). We suppose that the band hasn−1 parallel lines whose colors
areM1, . . . ,Mn−1, and the remaining line has colorMn. Then by the tensor product
formula (1.6),

±εJT (M1, . . . ,Mn−1,Mn)

= [
±εθ(M1⊗·· ·⊗Mn−1)⊗±εθ(Mn)

]−1
±εθ(M1⊗·· ·⊗Mn−1⊗Mn).

Using the relation betweenεθ and−εθ in Proposition 3.8, we get the desired result.

3.6.7. End of proof of the strong integrality theorem.As noted in §3.6.3, we need
to prove (3.13). Using the framing formula (1.7), it is easy to check that if (3.13)
holds true for a framed linkL, then it does for every framed link obtained fromL by
altering the framing. Hence, we may assumeL has any framing we wish.
By Lemma 3.6, we can assume thatL, as a nonframed link, has a diagramD =

Tu ◦T ◦Tl , whereT is a pure braid diagram, andTu andTl do not have any crossing
points. Alter the framing ofL so thatD is a good diagram of it. Then the framingljj
of thej th component is always even, sinceT is a pure braid.
We know that the operators−εJT andεJT are proportional. Now we prove thatεJTu

andεJTl are proportional to−εJTu and−εJTl , respectively. Let us consider a diagram
corresponding to a maximal or a minimal point. The corresponding operator involves
only K̃±2ρ . Suppose the component is colored byε�λ. ThenεK̃±2ρ(x) = ε±(2ρ|ν)x
if x ∈ (ε�λ)

ν . Similarly, −εK̃±2ρ(x) = (−ε)±(2ρ|ν)x. Note that if ν is a weight,
thenµ− ν ∈ Y . Using the fact that(2ρ | α) ∈ 2Z for every α ∈ Y , we see that

−εK̃±2ρ is proportional toεK̃±2ρ on ε�λ, with the proportional factor(−1)(2ρ|µ).
The proportional factor does not depend on the sign of±2ρ. ThusεJTu andεJTl are
proportional to−εJTu and−εJTl , respectively.
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Now it is clear thatκ := −εJL/εJL can be presented as the product of three
scalar factors:

−εJL
εJL

= −εJT
εJT

× −εJTu
εJTu

× −εJTl
εJTl

. (3.15)

The first factor can be calculated using Proposition 3.9. Let us calculate the product
of the second and third factors. If we replaceT by the trivial pure braidT ′, then we
get a trivial linkL′ of m components. The value ofJL′ is known, and one has

−εJL′

εJL′
= (−1)(2ρ|µ1+···+µm) = eπi(2ρ|µ1+···+µm).

Here�µ1, . . . ,�µm are colors of the link. Applying (3.15), withT replaced byT ′,
we see that the product of the second and the third factor iseπi(2ρ|µ1+···+µm).
Using Proposition 3.9 to calculate the first factor, we see that

κ = eπi[
∑

1≤i,j≤m lij (µi |µj )+(2ρ|µ1+···+µm)] .

Remember thatlii is even, and(2ρ | µi) is always an integer. We can alter the second
term in the square bracket to get the value

κ = eπi[
∑

1≤i,j≤m lij (µi |µj )+(2ρ|(l11+1)µ1+···+(lmm+1)µm)] = eaπi,

whereeπia is the one in (3.13). Thus we have

−εJL = eπia εJL. (3.16)

If we replacev1/D by ζ in (3.13), then the right-hand side becomeseπia εJL. The
left-hand side, remembering thatϕ is an algebra homomorphism, isJL|v1/D=ζ ′ . The
latter is−εJL. Hence (3.16) implies that (3.13) holds true ifv1/D = ζ . Sinceζ can
take any 2Drth root of unity withr odd, (3.13) must hold true for everyv1/D. This
completes the proof of the strong integrality theorem.

Remark. As noted earlier, the use of roots of unity in the proof of the strong inte-
grality seems very artificial. One could avoid roots of unity if the following question
has an affirmative answer.

Question. Is it true that in the product of the canonical bases of�µ1⊗·· ·⊗�µm ,
the twistθ has entries inv(µ1+···+µm+2ρ|µ1+···+µm)Z[v±2]?
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