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What’s wrong with Khovanov homology?
It’s almost functorial
... but not quite
... and it ought to be!

How do we fix it?
Disorientations
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Calculations
Confusions
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Recovering the original theory
Decategorifying
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What is Khovanov homology?

Bar-Natan’s model of Khovanov homology is a map from
tangles to up-to-homotopy complexes of cobordisms.

I On single crossings it is given by

� //

(
• // q // q2

)

� //

(
q−2 // q−1 // •

)

I It is a map of planar algebras: to find the invariant of a
tangle composed out of two smaller tangles using a ‘planar
operation’, apply that same planar operation to the two
smaller complexes...

Planar composition of complexes

I Given a quadratic tangle, and a pair of

complexes associated to the inner discs,

Cred

(
// // //

)
Cblue

(
// // //

)
we need to define a new complex associated to the outer
disc.

I We’ll imitate the usual construction for tensor product of
complexes, but use the quadratic tangle to combine objects
and morphisms.



Form a double complex then collapse along the anti-diagonal.
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We need to impose some relations on cobordisms in order to
make this a tangle invariant.

I Closed surface relations:

= 0 = 2

I The “neck cutting” relation:

=
1

2
+

1

2

Example
The hopf link.

Why is it actually an invariant of tangles?

We need to construct homotopy equivalences between the
complexes on either side of each Reidemeister move

Example



Khovanov homology is almost functorial

So far, I’ve described an invariant associated to tangles.
We can try to make Khovanov homology functorial,
associating to a cobordism between two tangles some chain
map between the associated complexes.
Link cobordisms can be given presentations as ‘movies’. Each
frame of a movie is a tangle diagram. Between each pair of
frames, one of the ‘elementary movies’ takes place:

I a Reidemeister move, in either direction
I the birth or death of a circle
I a ‘saddle’ move between two parallel arcs

We need to assign chain maps to each of the elementary
movies.

I The birth, death and saddle moves are easy; there are
obvious cobordisms implementing them.

I To each Reidemeister move, we assign the chain map we
constructed when showing that the two sides of the
Reidemeister move were homotopically equivalent
complexes.

To assign a chain map to an arbitrary link cobordism, we
choose a movie presentation, and compose the chain maps
associated to each elementary piece. Is this well defined?

... but not quite

Theorem (Carter and Saito)
Two movies are presentations of the same link cobordism exactly if
they are related by a sequence of ‘movie moves’.

Example (Movie moves 6-10)
Each movie here is equivalent to the ‘do nothing’ movie.

MM6

MM10

MM7

MM9

MM8

Thus to check our proposed invariant of link cobordisms is
well defined, we ‘only’ need to check that we assign the same
chain map (up to homotopy equivalence!) to either side of each
movie move.

Theorem (Bar-Natan, 2004)
The two sides of a movie move agree up to sign!

Theorem (Jacobsson, 2002)
The signs don’t come out right. (You can shuffle them around, but not
make them go away.)



... and it ought to be!

It would be nice if Khovanov homology really were functorial.
I Functors are good!
I You could identify generators in the Khovanov homologies

calculated from two different presentations of a knot.
I Khovanov’s construction of a categorification of the

coloured Jones polynomial would be easier.
I It may help Bar-Natan’s ‘re-embeddability’ argument for

mutation invariance work.
I You can define a nice 4-category, and define Khovanov

homology for a link in the boundary of an arbitrary
4-manifold.

How do we fix it?

To fix the sign problems in Khovanov homology, we’ll make
two modifications to the ‘target category’ of cobordisms.
disorientations Objects and cobordisms will be ‘piecewise

oriented’, with ‘disorientations’ where the
orientations disagree.

confusions Extra morphisms called ‘confusions’ fix some
defects in the category, and make proofs
manageable. They are ‘spinorial’ objects.

Note that we don’t need to modify the original tangles or 4
dimensional cobordisms between them; these are still just
oriented. Disorientations only appear on the (abstract)
cobordisms appearing as differentials.

Disorientations

We’ll replace the unoriented cobordism category previously
used with a category of ‘disoriented cobordisms’.

Objects Non-crossing arcs embedded in a disc, each
piecewise oriented. Each ‘disorientation mark’
separating oppositely oriented intervals also has a
preferred direction.

Morphisms Surfaces are piecewise oriented, with
‘disorientation seams’ marking the boundaries
between regions with opposite orientations. Each
disorientation seam has a ‘fringe’, indicating a
preferred side.

Example

In the oriented regions, we impose the usual cobordism
relations. We also need some rules for removing closed
disorientation seams, and reconnecting parallel disorientation
seams.



Disorientation relations

Fix a parameter ω, such that ω4 = 1.
I At ω = 1, we recover the old theory by forgetting all

orientation data. (We also recover the sign problems!)
I At ω = i , we’ll have functoriality!

Introduce some relations on disorientations:

= ω

= ω−1

= ω−1

These are consistent!

Motivation

I Our original motivation was to find a suitable modification
of Bar-Natan’s cobordism category which ‘decategorified’
to the disoriented su2 skein theory. (See, for example,
Kirby and Melvin.)

I There we have the relation

= −

reflecting the fact that the standard representation of su2 is
anti-symmetrically self-dual.

Modifying the tangle invariant

Now tangles are mapped to complexes of disoriented
cobordisms. It’s obvious where to put the seams in, if we want
to preserve orientation data away from crossings.

� //

(
• // q // q2

)

� //

(
q−2 // q−1 // •

)

Disorientation marks face to the right, relative to the direction
of the crossing.

Theorem (M&W)
This is still an invariant of tangles. We’ll see all the homotopy
equivalences for Reidemeister moves soon!



Movie moves

Now we need to check 15 movie moves. These come in several
types.

Inverses These almost trivial moves insist that the time
reverse of a Reidemeister move is also its inverse.

Circular clips These ’circular’ clips should be equivalent to the
identity. These include the 3 ‘hard’ clips that
involve a type III Reidemeister move.

Non-reversible clips These pairs of clips should be equivalent,
when read either up or down.

Inverse moves

MM1 MM5MM2 MM4MM3

These are boring; we know these are identities, because the two
successive steps are a homotopy equivalence and its inverse.

MM6

MM10

MM7

MM9

MM8

These are ‘hard’; moves 6, 8 and 10 involve the third
Reidemeister move.

MM13 MM14 MM15MM11 MM12

I Each pair of clips should give the same map, whether read
up or down.

I These ones don’t seem so bad (there are no R3 moves), but
there are lots of sign problems lurking here!

I Often there’s a sign problem one way but not the other.



Jacobsson’s sign tables

Jacobsson reported sign problems in almost every move!
MM J] ±
6 15 +
7 13 +
7 (mirror) 13 -
8 6 -
8 (mirror) 6 +
9 14 -
9 (mirror) 14 +
10 7 +

MM J] ↓ ↑
11 9 + +
12 11 - +
12 (mirror) 11 + −
13 12 - +
13 (mirror) 12 + -
14 8 + -
15 10 - +

We can calculate the corresponding table for the disoriented
theory, as a function of ω.

I At ω = 1, we recover the tables on the previous slide
I These include two disagreements with Jacobsson’s

calculations.
I David Clark, from UC San Diego, also reports finding these

discrepancies, having used Lee homology to simplify
calculations.

I At ω = i , all the signs agree.

What about all the orientations!?

I At this point it appears we need to check many
orientations of each of these movie moves; up to 16 in the
worst case.

I For now, we’ll ignore this, and just check the signs for one
oriented representative of each movie move.

I Later, the introduction of ‘confusions’ will deal with the
rest.

Calculations

Now it’s time to do the real work! We need to
I calculate explicit chain maps corresponding to

Reidemeister moves,
I These are unique up to a unit.
I We can easily write these down for the R1 and R2 moves,

but R3 will take some work; we used Bar-Natan’s cone
construction to organise this.

I detect the signs for each movie move, in at least one
orientation,

I and explain away all the other orientations!



Twist maps

The twist maps implement the Reidemeister I moves. There are
two variations.

Positive twist
u+

,,

t+
ll

Negative twist
u−

,,

t−
ll

The positive twist map is

,,

(
//

u+r



)

--

( )t+r

MM

where t+r and u+r are given by

t+r =
1

2

(
− ω−2

)

u+r =

Why these maps?

MM13: Our first example!

Each side of MM13 consists
of a twist move followed by a morse move.
Reading down the left side, we get

1

2

 − ω−2


and on the right

1

2

−ω2 +


Thus we see the two sides of MM13 differ by a sign of −ω2!

Bar-Natan’s argument

Bar-Natan gave a simple proof that Khovanov homology is
well-defined up-to-sign:

I Certain tangles are simple, in that the automorphism group
of the associated complex consists only of multiples of the
identity.

I Each of movie moves 1-10 starts and ends with a ‘simple
tangle’, and so must be a multiple of the identity.

I (Movie moves 11-15 can be done easily by hand.)
In our situation, many small tangles are still ‘simple’ in this
sense, although now there are more units in our coefficient
ring: ±1,±i . We’ll make use of this often.

Frobenius Reciprocity



Detecting the sign

We can now easily detect the sign associated to a movie move.
I Cobordisms between loopless diagrams are all in

non-positive grading.
I Because of the grading shifts in the definition of the

complex associated to a tangle diagram, homotopies must
be in strictly positive grading.

I This means not many homotopies are possible. We call a
direct summand of an object in a complex homotopically
isolated if there are no possible homotopies in or out.

Example
The complex associated to is

.

Only the first object is isolated. If f : → is homotopic to,
say, z times identity, it must act by z1 when restricted to the
object , since there dh + hd = 0.
We can often detect the sign associated to a movie move by
choosing an isolated summand in the complex, and observing
its image under the movie move.

Tuck maps

We have to distinguish between the braid-like and
non-braid-like R2 moves.

R2a

+ -
R2a

−1
1

11

R2a1pp

R2b

+-
R2b

−1
1

11

R2b1pp

R2a maps

+ -

Skip other moves...



R2b maps

+-

Skip R3 moves...

The cone construction, and R3

Obtaining the R3 map takes some work! We used Bar-Natan’s
‘categorified Kauffman trick’ , but for now will just state a
lemma encapsulating what we need to now.
The complexes appearing on either side of the R3 move can be
realised as the cone over the morphism resolving the central
crossing:

= C

(
→

)
= C

(
→

)

Lemma (for MM6, 8 and 10)
The chain equivalence between the two R3 complexes

//

1
�� !!CC

CC
CC

CC  0 0 0 0
0 ? ? 0
0 ? ? 0
0 0 0 0

!
��

//

I is ‘triangular’,
I the identity on the ‘source’ part of the cone,
I and on the ‘target’ part of the cone kills the objects in which both

remaining crossings have been resolved the same way.

MM10

Look at the initial frame. The associated complex has one object
in homological degree 0; the object we obtain from the ‘positive
smoothing’ of each of the four crossings, and it’s homotopically
isolated:

We just need to calculate its image under the movie.



Happily, the cone construction tells us that the ‘all positive
smoothings’ diagram on one side of a Reidemeister III move is
taken, with coefficient one, to the ‘all positive smoothings’
diagram on the other side.

� 1 // � 1 // � 1 // � 1 // � 1 // � 1 // � 1 // � 1 //

Thus the sign of MM10 is 18 = 1.
Skip other movie moves...

MM8

MM8 is the second hardest of the movie moves involving R3,
but it turns out to barely depend on the details of the R3 map.
We calculate the image of a homotopically isolated element of
the initial complex.

Following the maps around the circular movie, starting at the
left, we obtain the following composition:

◦ −ω2 ◦ 1

2

(
− ω−2

)
= −ω−2 1

2

= −ω−2

Again, the disoriented theory gets the sign right!



Theorem (M&W)
All the movie moves come out right in at least one orientation. At
ω = 1 we see pretty much the same sign problems as Jacobsson
observed, but at ω = i movie moves really are equivalences.

Question
What about all the other orientations?

Confusions

The disoriented cobordism category has some defects.
I There are no cobordisms from the empty diagram to a

circle with two clockwise disorientation marks, for
example.

I The categorified Kauffman trick for constructing the R3
map doesn’t actually work!

I If we want to extend the invariant to disoriented tangles,
there’s no nice equivalence allowing us to slide a
disorientation mark past a crossing.

I We have to deal with all the orientations of movie moves
separately.

Introducing some new morphisms called ‘confusions’ solves all
of these problems.

Definition
Confusions are points on a disorientation seam at which the
fringe changes side. They have a spin framing, recorded with a
(possibly twisted) ribbon attached to the confusion.
Thus the simplest appearance of a confusion is

This is a map between two disoriented strands, which changes
the preferred direction of the disorientation mark.

Ribbon rules
We can create and annihilate confusion pairs, according to the
following rules.

= − = −1 =

= =

We think of the relation

= =

as “creating a pair of confusions”.



Example
We can create a confusion pair, slide one around a circle, and
then annihilate them.

= = =

= = − = −

You can see here that the spinorial nature of confusions is
forced upon us, for consistency with the disorientation
relations.

There is now an isomorphism of complexes which allows us to
slide a disorientation mark through a crossing. (At the expense
of an overall grading and degree shift.)

There are various ‘new movie moves’, involving disorientations

Example

I We can create a pair of disorientations, then slide them
past a crossing, or just create them on the other side:




I The disorientation slide isomorphisms commute with
Reidemeister moves:

Now it’s easy to show all the other orientations of movie moves
are equivalent to the ones we’ve checked.

Example

//

��

//

�� ��

//

��

//

�� ��

// //



Recovering the original theory

Theorem
The complex associated to a knot diagram is isomorphic to the
complex constructed in the original theory.

Proof.
It’s always possible to put orientations on the unoriented
diagrams appearing in the old complex for a knot: orient the
circles alternately clockwise and counterclockwise, according to
their nesting depth.
At the same time, we can remove all disorientation marks on
the disoriented diagrams in the new complex, by choosing
(non-canonical) isomorphisms.
These two complexes are ‘cube complexes’, which can only
differ by a sprinkling of signs, and so must be isomorphic.

Decategorifying

I We can “decategorify” a category, (not quite the usual way )
obtaining an abelian group:

C  

〈
Obj(C)

∣∣∣∣∣A = B + C whenever
A ∼= B ⊕ C

〉

I What do we get? Just as with the unoriented cobordism
category, we have the relation

= q + q−1

due to the neck cutting relation.

I To see the relation

= −

appearing in our theory, we need to introduce an
additional Z/2Z grading on morphisms; the parity of the
number of confusions. Now the decategorification consists
of Z[q, q−1, σ] modules, with σ2 = 1.

I A confusion provides an isomorphism between the two
diagrams above, but it is in the non-zero Z/2Z grading, so
in the decategorification we have the equation

= σ

.

Conclusions

We’ve described a new model for Khovanov homology, using a
category of disoriented cobordisms.

I It is properly functorial with respect to link cobordisms.
I The complex associated to a knot diagram is isomorphic to

the usual Khovanov complex, but not canonically so.
I Disoriented cobordisms decategorify to the disoriented su2

skein theory.



Appendix: Disorientation relations are consistent

Example
We can create a disorientation seam, split it in two, then
annihilate both parts:

ω = = ω−1 = ω−1ω2

Alternatively, we could create a pair, join them, and then
annihilate:

1 = = ω−1 = ω−1ω

return to disorientation relations

Appendix: Frobenius Reciprocity

We actually prove a slightly stronger result than Bar-Natan’s
‘simplicity’ result.

Theorem
For appropriate tangles P , Q and R , there are natural isomorphisms
between the spaces of chain maps

Hom[[PQ]] ([[R]] ,∼=) Hom[[P]]

([[
RQ
]]

, .
)

Moreover, these isomorphisms are compatible with the natural
isomorphisms between the spaces of 4-dimensional cobordisms
between the tangles themselves.

return to ‘simplicity’

Why is that the correct R1 chain map?

We want to observe t+ru+r − 1 = dh + hd .
I Using neck cutting, we obtain

t+ru+r − 1 =
1

2

(
− ω2

)
− = −1

2

(
+ ω2

)
.

I The only possible homotopies are z for some z , and

so hd = z .

I Using neck cutting, then removing the resulting bounding
disorientation seams, we see that z = −ω−1 works, as long
as ω4 = 1.

Return to R1 move

Categorified Kauffman trick

We follow through Bar-Natan’s proof of R3 invariance, keeping
track of the explicit homotopy equivalence being constructed.

Lemma
The R2 untuck moves are strong deformation retracts.

Lemma
If f : A• → B• is a chain map, and r : B• → C • is a strong
deformation retract, then C (rf ) ' C (f ).

details



Lemma (‘Categorified Kauffman trick’)
Each side of the R3 move can be realised as a cone over the morphism
switching between two smoothings of the ‘central’ crossing.

We can then compose this morphism with the ‘untuck’ move, a
strong deformation retract. Doing this to either side of the R3
move, we obtain the same cone!

Putting this together, we have

= C

(
→

)
'

−−−−→
( 1 0

0 r )
C

(
→ →

)

=
same morphism!

C

(
→ →

)
'

−−−−−−→�
1 0
−hf i

� C

(
→

)

=

Return to R3 move

Appendix: Deformation retracts

Definition
A chain map r : B• → C • is a strong deformation retract if there is
a chain map i : C • → B• and a homotopy h : B• → B•−1 such
that r i = 1C , ir − 1B = dh + hd , and rh = hi = 0.

Lemma
If f : A• → B• is a chain map, and r : B• → C • is a strong
deformation retract, then the cone C (rf ) is homotopic to the cone
C (f ), via

C (f )• = A•+1 ⊕ B•
( 1 0

0 r )
..

A•+1 ⊕ C • = C (rf )•�
1 0
−hf i

�nn

Back to the Kauffman trick.
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