
8. Integration theory

Integration theory is set up for a general measure just
as for Lebesgue measure. We first define the integral on
simple functions, then on bounded measurable functions
of compact support, then on nonnegative measurable
functions and finally on all measurable functions.

We have the following definitions:
• A measure µ is complete if every subset of a mea-

sure zero set is measurable (and necessarily has
measure zero)

• A measure space (X, M, µ) is σ-finite if X can
be written as a countable union of measurable sets,
each with finite measure.

For the remainder of this section, we’ll assume our
measure spaces are complete and σ-finite wherever con-
venient.
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• Let (X, M, µ) be a measure space. A function
f : X → [−∞, ∞] is measurable if the inverse
image of every open set is measurable. (It is suffi-
cient to require that the inverse image of [−∞, a)

is measurable for each a ∈ R.)
• A function g : X → C is measurable if its real and

imaginary parts are.
• A function is simple if it a finite linear combination

of characteristic functions of measurable sets.
Then we have the properties:
• If fn are measurable functions, then sup fn, inf fn,

lim sup fn, lim inf fn are measurable;
• If f (x) = lim fn(x) then f is measurable;
• If f and g are measurable, then powers fk are mea-

surable, k ≥ 1, and if they are both finite-valued
then f + g and fg are measurable.

• if f = g a.e. with respect to µ and f is measurable
then g is measurable.

We also have approximation properties:
• If f is nonnegative and measurable, then there ex-

ists a sequence of nonnegative simple functions ϕn

such that ϕn ≤ ϕn+1 and limn ϕn(x) = f (x);
Take ϕn to the largest simple function, with ϕn ≤ f , and
values in 2−n{0, 1, 2, . . . , 22n}. Explicitly, this is

ϕn =

22n∑

k=0

k2−nχf−1[k2−n,(k+1)2−n) + 2nχf−1[(22n+1)2−n,∞).

• If f is measurable, then there exists a sequence of
simple functions ϕn such that |ϕn| ≤ |ϕn+1| and
limn ϕn(x) = f (x).

Write f = f+ + f−, and use the approximation above.

Defining the integral

As with the Lebesgue integral, we first define the inte-
gral on simple functions, then on bounded measurable
functions defined on a set of finite measure, then on
nonnegative measurable functions and finally on mea-
surable functions. In each case, we check that the inte-
gral satisfies four conditions:
• Linearity: for a, b ∈ R,

∫
(af + bg) = a

∫
f + b

∫
g.

• Additivity: if E and F are disjoint measurable sub-
sets of X then

∫

E

f +

∫

F

f =

∫

E∪F

f.

• Monotonicity: if f ≤ g, then
∫

f ≤
∫

g.

• Triangle inequality:
∣∣∣
∫

f
∣∣∣ ≤

∫
|f |.



Step 1. The integral of a simple function f =
∑

i ai1Ei

is defined to be ∫
f =

∑

i

aiµ(Ei).

It is crucial that this formula is independent of the
representation of f as a simple function (this uses the
finite additivity of µ). We also define∫

E

f =

∫
1Ef.

Then we can check that the integral for simple functions
satisfies all four conditions above.

Step 2. Bounded functions supported on a set of
finite measure E. To define the integral here we need
Egorov’s theorem. Egorov’s theorem essentially says
that a sequence of measurable functions converging point-
wise actually converges uniformly, away from a set of
arbitrarily small measure.

Theorem 8.1 (Egorov). Let fn be measurable func-
tions converging pointwise on E to f . Then for any
ϵ > 0 there is a subset Aϵ of E of measure at least
µ(E) − ϵ such that fn → f uniformly on Aϵ.

Proof: Consider sets
Cη

M = {x | |fn(x) − f (x)| < η for all n ≥ M}.

For any fixed η > 0, every x is in some Cη
M , and hence

∪MCη
M = E. Since Cη

M is an increasing family of sets,
µ(Cη

M) → µ(E), by countable additivity.
Now we each n, we choose Mn so that with Bn =

(C2−n

Mn
)c, the measure of Bn is less that 2−nϵ. Note that

we now have |fk(x) − f (x)| < 2−n for x /∈ Bn and
k ≥ Mn.

Then let B = ∪Bn and Aϵ = E \ B, and we see that
fn → f uniformly on Aϵ since for every n there exists

Mn such that |fk(x) − f (x)| < 2−n, for x ∈ Aϵ and
k ≥ Mn. Moreover, µ(B) ≤ ∑

n 2−nϵ = ϵ. □
Using this theorem, we see that if f is a bounded func-

tion on E, with |f | bounded by M say, and if ϕn are
simple functions converging pointwise to f , with each
|ϕn| ≤ M , then the integrals

∫
ϕn converge. It is not

hard to check that the limit of the integrals is indepen-
dent of the choice of sequence ϕn (if it did depend on
the choice, we could splice together two sequences with
integrals converging to different limits, and obtain a se-
quence whose integrals did not converge). The integral
of f is defined to be∫

f = lim
n

∫

E

ϕn.

One then checks that the integral so defined has the
properties of linearity, additivity, monotonicity and the
triangle inequality.

In fact, repeating the argument above using Egorov’s
theorem proves the Bounded Convergence Theorem (a
baby version of the Dominated Convergence Theorem):

Theorem 8.2. Suppose that fn is a sequence of mea-
surable functions that are all supported on a fixed set
E of finite measure, and uniformly bounded by M .
If fn → f a.e., then∫

fn →
∫

f.



Step 3. Nonnegative measurable functions. Notice
that we trivially have the property that, if f is bounded
and supported on a set of finite measure E, then we have∫

f = sup
∫

g

where the sup is over all bounded measurable g sup-
ported on E with g ≤ f . This follows from monotonic-
ity, showing that

∫
g ≤

∫
f for any such g, together

with the fact that we may take g = f .
We use this to define the integral for nonnegative mea-

surable functions. That is, if f is nonnegative and mea-
surable, we define

∫
f to be the sup of

∫
g over all

bounded functions g such that 0 ≤ g ≤ f and g is sup-
ported on a set of finite measure. Notice that the value
of the integral might be +∞ (we use the convention
that the sup of a set that is not bounded above is +∞).

Again you should check that the integral so defined
has the properties of linearity, additivity, monotonic-
ity and the triangle inequality. These properties are all
straightforward except for the linearity property.

It is straightforward to check that∫
cf = c

∫
f, c ≥ 0

for nonnegative measurable functions, so it suffices to check
that ∫

(f1 + f2) =

∫
f1 +

∫
f2

for such functions. Given gi such that 0 ≤ gi ≤ fi and gi is
bounded and supported on a set of finite measure, the function
g = g1 + g2 has the same property with respect to f1 + f2.
Then ∫

g1 +

∫
g2 =

∫
g ≤

∫
(f1 + f2),

and taking the sup over all g1, g2 shows that
∫

f1 +

∫
f2 ≤

∫
(f1 + f2).

For the reverse inequality, suppose that 0 ≤ g ≤ f1 + f2 and
g is bounded by M and supported on a set of finite measure
E. Define gi by

gi(x) =





0 if x /∈ E

fi(x) if fi(x) ≤ M

M if fi(x) > M.

Then g1 + g2 ≥ g pointwise, giving
∫

g ≤
∫

g1 +

∫
g2 ≤

∫
f1 +

∫
f2

and taking the sup over all such g gives the opposite inequality.

Now in this setting it is no longer the case that fn → f

a.e. implies that
∫

fn →
∫

f . You have already seen
examples, e.g. f = 0 and fn = n1[0,1/n] on the real line.
However, an inequality holds:

Lemma 8.3 (Fatou’s lemma). Suppose that f ≥ 0,
and that the sequence of functions fn is nonnegative
and converges to f a.e. Then

lim inf
n

∫
fn ≥

∫
f.

• Mass in the integral can ‘bubble off’ and escape in
the limit. However, since fn are nonnegative, only pos-
itive amounts of mass can be lost.

Proof: Take any 0 ≤ g ≤ f which is bounded and supported
on a set of finite measure, and define gn = min(g, fn). Then
by the bounded convergence theorem,

∫
gn →

∫
g. Since

gn ≤ fn, we have

lim
∫

gn = lim inf
∫

gn ≤ lim inf
∫

fn.

Hence
∫

g is less than lim inf
∫

fn, and taking the supremum
over g gives the result. □

A corollary is

Theorem 8.4 (Monotone convergence theorem). Let
f ≥ 0, and let fn be an increasing sequence of mea-
surable functions converging to f . Then

lim
∫

fn =

∫
f.



Step 4. General measurable functions. In this case,
we cannot integrate all such functions; we restrict to the
class of integrable functions f , for which∫

|f | < ∞.

To define the integral for real functions, we write f =

g1 − g2, where gi ≥ 0. This can be done, for example,
by taking g1 = max(f, 0) and g2 = − min(f, 0). Then
we define ∫

f =

∫
g1 −

∫
g2.

The integrals on the RHS are defined in Step 3. One
needs to check that this is independent of the represen-
tation f = g1 − g2. But if also f = h1 − h2, where
hi ≥ 0, then g1 + h2 = g2 + h1. By linearity of the
integral in Step 3, we find that∫

g1 +

∫
h2 =

∫
g2 +

∫
h1,

which shows the value of
∫

g1 −
∫

g2 is independent of
the choice of gi.

The integral of an integrable complex-valued function
f = g + ih, where g, h are real, necessarily integrable
functions, is defined to be

∫
g + i

∫
h.

We can then check that the integral on integrable fun-
tions is linear, additive, monotonic and satisfies the tri-
angle inequality.

The most important convergence theorem in integra-
tion theory is the dominated convergence theorem. To
prove it we start with a lemma:

Lemma 8.5. Let g be an integrable function.
(i) Given ϵ > 0, there exists a set E of finite mea-

sure such that ∫

Ec

|g| ≤ ϵ.

(ii) Given ϵ > 0, there exists M > 0 such that,
with A = {x | |g(x)| > M}, we have∫

A

|g| ≤ ϵ.

To prove (i), define
En = {x | |g(x)| ≥ 1/n}.

Then En has finite measure, since
∫

|g| ≥ µ(En)/n. Let gn =

|g|1En
. Then gn → |g| monotonically, so by the monotone

convergence theorem, ∫
gn →

∫
|g|.

Thus, by taking n large enough, we have∫

En

|g| =

∫
gn ≥

∫
|g| − ϵ.

To prove (ii), we define An to be the set where |g| ≥ n, and
let gn = |g|1An

. Then, since the measure of the set where

|g| = ∞ is zero, we have |g| − gn → |g| a.e. Therefore, by
the monotone convergence theorem,∫

gn → 0.

Thus taking n sufficiently large, we have
∫

gn ≤ ϵ. and thus
∫

An
|g| ≤ ϵ.



Using this it is quite straightforward to prove the dom-
inated convergence theorem:

Theorem 8.6. Suppose that the sequence fn of mea-
surable functions converges to f a.e. , and |fn| ≤ g

for some nonnegative integrable function g. Then∫
|fn − f | → 0, and hence

∫
fn →

∫
f.

Proof: Using the previous lemma, choose a set E of fi-
nite measure such that g ≤ M on E, and such that∫

Ec

g < ϵ.

Then, ∫
|fn − f | =

∫

E

|fn − f | +

∫

Ec

|fn − f |.
By the bounded convergence theorem,∫

E

|fn − f | → 0.

On Ec, we estimate |fn − f | ≤ 2g, and see that∫

Ec

|fn − f | ≤
∫

Ec

2g ≤ 2ϵ.

Thus, lim sup
∫

|fn − f | ≤ 2ϵ, and since this is true for
all ϵ > 0 we obtain the result. □

8.1. Product measures and Fubini’s theorem.

Let X = X1×X2 and suppose that (X1, M1, µ1) and
(X2, M2, µ2) are two measure spaces. Can we define a
measure µ on X with the property that µ(A × B) =

µ1(A)µ2(B) for all A ∈ M1 and B ∈ M2?
We can do this by defining a premeasure on an algebra

of subsets of X , namely the algebra A consisting of
finite unions of disjoint rectangles, which by definition
are sets of the form A × B, where A ∈ M1 and B ∈
M2. This is an algebra: the complement of A × B is
(A×Bc)∪ (Ac×B)∪ (Ac×Bc), while the union of two
rectangles is the disjoint union of at most 6 rectangles.

We define our premeasure on the disjoint union ∪jAj×
Bj by setting

µ0(∪jAj × Bj) =
∑

j

µ1(Aj)µ2(Bj).

We have to check that this is independent of the rep-
resentation as a disjoint union of rectangles and that it
satisfies countable additivity: whenever C ∈ A is the

countable disjoint union of rectangles Aj × Bj, then
µ0(C) =

∑

j

µ0(Aj × Bj).

It is enough to do this for rectangles A × B. We have
for every x1 ∈ X1

1A(x1)µ2(B) =
∑

j

1Aj
(x1)µ2(Bj)

using countable additivity of µ2. Then integrating in
x1 and using the monotone convergence theorem, we
obtain

µ0(A × B) =
∑

j

µ0(Aj × Bj).

The premeasure µ0 generates a measure µ on the σ-
algebra M generated by A. This defines the product
measure (X, M, µ).

We shall now prove a Fubini theorem for this product
measure. First, we prove a special case. For any set
E ⊂ X we define Ex2 to be

{x1 ∈ X1 | (x1, x2) ∈ E},

i.e. the slice through E with fixed second coordinate
x2.

Proposition 8.7. Assume that µ1 and µ2 are both
complete and σ-finite. Suppose that E ⊂ X is mea-
surable. Then for almost every x2 ∈ X2, Ex2 is
measurable w.r.t. µ1, and∫

X2

µ1(E
x2)dµ2 = µ(E).

Moreover, if E ∈ Aσδ, then the same is true with
‘almost every’ replaced by ‘every’.

Proof: We first prove the second statement. Thus, assume
that E ∈ Aσδ. In fact, we first suppose that E ∈ Aσ, i.e.
is a countable union of rectangles. Without loss of generality,
these rectangles Ej = Aj × Bj are disjoint. The conclusion
is obvious for a single rectangle. Noting that Ex2

j are disjoint
measurable sets in X1, countable additivity of µ1 and the
monotone convergence theorem show that the LHS is equal



to ∑

j

∫
µ1(E

x2
j )dµ2 =

∑

j

µ1(Aj)µ2(Bj),

which is equal to the RHS by countable additivity of µ.
Now for any set E ∈ Aσδ with µ(E) finite and also each

slice has µ1(E
x2) finite, we can write it as a countable in-

tersection of Aσ sets Ej, which we may are assume are de-
creasing, and then µ(Ej) → µ(E). Then the sets Ex2

j are
a decreasing family with intersection Ex2, which is therefore
measurable; moreover, if we define fj(x2) = µ1(E

x2
j ), and

f (x2) = µ1(E
x2), then fj is a nonincreasing family of finite

measurable functions with fj → f . (We needed to assume
that each x2 slice had finite measure here; Stein & Shakarchi
seems to make a mistake here.) Hence f is measurable, and
by the monotone convergence theorem,

lim
j

∫

X2

fj(x2)dµ2(x2) =

∫

X2

f (x2)dµ2(x2).

However, the LHS is limj µ(Ej) by our first result, which con-
verges to µ(E) as we saw above. This establishes the result
for E ∈ Aσδ with µ(E) finite and each x2 slice finite. To treat
the general case, we take increasing sequences Fj, Gj in X1,
X2 respectively, of sets of finite measure whose union is Xi,
and define Ej = E ∩ (Fj × Gj). We apply the result to each
Ej, and use the monotone convergence theorem on the LHS
and countable additivity on the RHS to deduce the result.

To prove the result for general E, we first show for sets E

of measure zero. Then there exists F ∈ Aσδ with E ⊂ F

and µ(F ) = 0. The result already proved then shows that
µ1(F

x2) is zero for a.e. x2, hence by completeness of µ1, Ex2

is measurable for a.e. x2 (with measure zero). This establishes
the result for E with measure zero. In general, E ⊂ G where
G ∈ Aσδ and Z = G \ E has measure zero. Combining the
results proved for Z and for G, we obtain the result for E. □

As a corollary, we see that a set E of measure zero in
X has slices Ex2 which have µ1 measure zero except on
a set of µ2 measure zero.

Now we can prove

Theorem 8.8 (Fubini-Tonelli). Let X be as above.
Suppose that f (x1, x2) is a nonnegative measurable
function on X. Then

(i) the slice function fx2 defined by fx2(x1) = f (x1, x2)

is measurable for a.e. x2;
(ii) x2 7→

∫
X1

fx2(x1)dµ1(x1) is measurable on X2;
(iii)

(8.1)
∫

X2

( ∫

X1

fx2(x1)dµ1

)
dµ2 =

∫

X1×X2

fdµ.

Moreover, if f is integrable, rather than nonnega-
tive, on X, then the conclusions are

(i) the slice function fx2 defined by fx2(x1) = f (x1, x2)

is integrable (in particular, measurable) for a.e. x2;
(ii) x2 7→

∫
X1

fx2(x1)dµ1(x1) is integrable on X2;
(iii) (??) holds.

Proof: First, suppose that f = 1E for some µ-meas-
urable set E ⊂ X . Then the result is precisely given
by the previous Proposition. Therefore the result holds
for simple functions f by linearity of the integral. Now
suppose that f is nonnegative. Take an increasing se-
quence of simple functions fn converging to f . Then
fx2

n converges monotonically to fx2, so by the MCT, we
have ∫

X1

fx2
n (x1)dµ1 →

∫

X1

fx2dµ1(x1)

for every value of x2. Applying MCT again, we find
that ∫

X2

( ∫

X1

fx2
n (x1)dµ1

)
dµ2

converges to ∫

X2

( ∫

X1

fx2(x1)dµ1

)
dµ2.

On the RHS, applying MCT once again shows that∫

X1×X2

fndµ →
∫

X1×X2

fdµ.

Since the theorem holds for each fn, this shows that it
also holds for f .

The second conclusion follows by applying the first
to the positive and negative parts of f separately (or



the positive real, negative real, positive imaginary and
negative imaginary parts separately if f is complex-
valued). □

Example. Integration in polar coordinates. Let
(Sn−1, MSn−1, dθn) denote the standard (n − 1)-sphere
with its usual σ-algebra (the Lebesgue measurable sets
in any smooth coordinate chart) and measure, and let
(R≥, MR≥, r

n−1dr) denote the half-line with the Lebesgue
measurable sets and the measure rn−1 times Lebesgue
measure dr. We can show that the product measure
space is naturally identified with Lebesgue measure on
Rn. Then Fubini-Tonelli justifies integration in polar
coordinates.

8.2. Pushforward of measures.
Suppose that (X, M, µ) is a measure space and that

(Y, C) is a measurable space (that is, a set with a σ-
algebra of sets). We say that F : X → Y is measurable
if F−1(E) ∈ M whenever E ∈ C.

In this situation, we can define an induced measure on
Y , the pushforward measure Fµ, as follows:

(Fµ)(E) = µ(F−1(E)).

It is straightforward to check that this is countably ad-
ditive on C.

Proposition 8.9. Let f : Y → R be measurable.
Then, ∫

X

(f ◦ F )dµ =

∫

Y

fd(Fµ)

in the sense that when the RHS exists, so does the
LHS and then they are equal.

Proof: This is true for f = 1E, the characteristic func-
tion of E ∈ C, by definition of Fµ. By linearity it
is true for all simple functions. We then show that it
is true for nonnegative functions using the MCT, as in
the Fubini proof above, and finally, for all integrable
functions. □

A very important case is the following: let R ⊂ Rn

be a closed rectangle, and let F : R → Rn be a C1

diffeomorphism onto its image, i.e. a C1 function with
a C1 inverse G : F (R) → R.

Theorem 8.10. The pushforward of Lebesgue mea-
sure dλ under F is equal to dλ| det DF |−1, or equiv-
alently, the pushforward of | det DF | · dλ is equal to
dλ. Consequently, we have the change of variable
formula

(8.2)
∫

R

(f ◦ F )(x)| det DF (x)|dλ(x) =

∫

F (R)

fdλ.

The proof is given in the notes for interest, but will
not be covered in class.



The model situation is when F is an invertible linear map:

Proposition 8.11. Suppose that F is an invertible linear map. Then F (dλ) =
| det F |−1dλ; that is, the image of any measurable set E under F has measure | det F |dλ(E).

Proof: Any square matrix can be written as the product of a finite number of the
following ‘elementary’ matrices: diagonal matrices; permutation matrices; and matrices
of the form

Mc =




1 0 0 . . .

c 1 0 . . .

0 0 1 . . .

· · · ·
0 0 . . . 1




To see this, note that multiplying a matrix by the one above on the left has the effect of
adding c times row 1 to row 2. By combining with permutation matrices, we can add
c times any row to any other. If we multiply on the right instead, we can do column
operations instead. Hence we can apply row and column operations to any matrix,
and eventually reduce it to a diagonal matrix.

So to prove the theorem, it suffices to show for the elementary matrices, since both
the determinant and the volume-magnification factor are multiplicative. The result is
obvious for diagonal and permutation matrices since they map rectangles to rectangles
with the correct measure ratio. So it is enough to prove for Mc above. To do this it
suffices to treat dimension 2.

So consider the effect of Mc on a rectangle R = [0, A]× [0, B], where A,B > 0. This
gets mapped by Mc to a parallelogram P with sides from (0, 0) to (A, cA) and from
(0, 0) to (0, B). But P can be covered by n rectangles

[
A

j

n
,A

j + 1

n

]
×

[
cA

j

n
, cA

j + 1

n
+ B

]
,

and contains the n rectangles
[
A

j

n
,A

j + 1

n

]
×

[
cA

j + 1

n
, cA

j

n
+ B

]
.

Thus the measure of P is estimated by

n · A

n

(
B − cA

n

)
≤ µ(P ) ≤ n · A

n

(
B +

cA

n

)
,

and hence µ(P ) = AB = µ(R). □

For the next lemma, let Q be a closed rectangle, centred at the origin, such that the
ratio between the longest and shortest side is ≤ 2.

Lemma 8.12. Let F be a C1 map from Q to Rn, satisfying F (0) = 0 and

∥DF (x) − A∥ ≤ ϵ,

for sufficiently small ϵ and fixed invertible linear map A : Rn → Rn. (Here we use the
operator norm on matrices:

∥A∥ = sup
|x|=1

|Ax|. )

Let ϵ′ = 2
√

n∥A−1∥ ϵ. Then, the image F (Q) contains (1 − ϵ′)AQ, and is contained in
(1 + ϵ′)AQ.

Proof: We first prove this with A equal to the identity. In that case, we compute for
x ∈ Q

F (x) − x =

∫ 1

0

d

dt
(F (tx) − tx) dt

=

∫ 1

0

(DFtx(x) − x) dt , so

|F (x) − x| ≤
∫ 1

0

ϵ|x| dt = ϵ|x|.

Now let c1 be half the length of the shortest side of Q and let c2 = maxx∈Q |x|. By
the condition on Q we have 2

√
nc1 > c2. Therefore, F (x) is in the ϵc2 enlargement

of Q. This is contained in (1 + 2
√

nϵ)Q since the sides of this rectangle are at least
2
√

nc1ϵ ≥ c2ϵ from the corresponding sides of Q. Hence, F (x) ∈ (1 + ϵ′)Q.
To show that F (Q) covers (1−ϵ′)Q, we observe that F (∂Q) is disjoint from (1−ϵ′)Q

by the argument above. For sufficiently small ϵ, the condition on DF ensures that this
is invertible. Then, by the inverse function theorem, F is locally a diffeomorphism,
and therefore sends small open balls to open sets. It follows that F maps the interior
of Q to interior points of F (Q), and therefore the boundary of F (Q) is contained in
F (∂Q).

Assume for a contradiction that there exists x0 ∈ (1 − ϵ′)Q not in the image of F .
Consider the line segment tx0, t ∈ [0, 1]. Then this goes from 0 = F (0) ∈ F (Q) to
x0 /∈ F (Q) without intersecting ∂F (Q), which is a contradiction.

Now we treat the case of general A. Let F ′ = A−1 ◦F . Then ∥DF ′ − Id ∥ ≤ ϵ∥A−1∥,
since ∥B1B2∥ ≤ ∥B1∥∥B2∥. From what we just proved, we get

(1 − ϵ′′)Q ⊂ F ′(Q) ⊂ (1 + ϵ′′)Q

with ϵ′′ = 2
√

nϵ∥A−1∥. Applying A on the left we find

(1 − ϵ′′)AQ ⊂ F (Q) ⊂ (1 + ϵ′′)AQ,

as required. □

Lemma 8.13. Suppose that ∥DF (x) − A∥ < ϵ for some 0 < ϵ < ∥A∥/2. Then there
exists a C depending only on dimension n such that

| det DF (x) − det A| < Cϵ∥A∥n−1.

Proof: Suppose that DF and A differed only in the first row. Then we could expand
the determinant along the first row and find that

det DF − det A =
n∑

j=1

((DF )1j − A1j)pj(A)

where pj(A) is a polynomial of degree n − 1 in the entries of A from rows 2 . . . n. This
immediately gives the estimate, since |pj(A)| ≤ C∥A∥n−1. In general, we can let Aj be
the matrix with the first j rows from DF and the remaining rows from A. Apply the
estimate above for det Aj −det Aj−1, and use the fact that ∥Aj∥ ≤ ∥A∥+ϵ ≤ 2∥A∥. □

Finally we prove the theorem. Since DF is continuous on the compact set R, it is
uniformly continuous. Therefore, there exists δ such that ∥DFx − DFy∥ < ϵ whenever
|x − y| < δ. Moreover, since both DF and D(F−1) are continuous, there are bounds

∥DFx∥ ≤ M1, ∥D(F−1)F (x)∥ ≤ M−1, x ∈ R.

Choose a decomposition of R into a finite number of disjoint rectangles Qi such that
the longest side is at most twice the shortest side, and such that the diameter of Qi is
less than δ. Let ci be the centre of Qi, and let Ai = DFci

. Then on each Qi we have,
by Proposition ?? and Lemma ??, with ϵ′ = 2

√
nM−1ϵ,

(1 − ϵ′)n| det Ai|λ(Qi) ≤ λ(F (Qi)) ≤ (1 + ϵ′)n| det Ai|λ(Qi).

Now define di = λ(F (Qi))/λ(Qi). Then

(1 − ϵ′)n| det Ai| ≤ di ≤ (1 + ϵ′)n| det Ai|.
Now let xi be any point in Qi. Using Lemma ??, we have

(8.3)
(1 − ϵ′)n

(
| det DFxi

| − CϵMn−1
1

)
≤ di

≤ (1 + ϵ′)n
(
| det DFxi

| + CϵMn−1
1

)
.

Now for ϵ = 2−n we choose a decomposition Qn
i as above. Define the function gn to be

equal to di = dn
i on each Qn

i as above. By construction, we have∫

R

gndλ = λ(F (R)),

since F (R) is equal to the disjoint union of the F (Qn
i ). On the other hand, (??) shows

that gn is uniformly bounded and converges pointwise to | det DF |. The DCT shows
that

lim
n

∫

R

gndλ =

∫

R

| det DFx|dλ.

Therefore,
dλ(F (R)) =

∫

R

| det DFx|dλ.

Thus, Lebesgue measure dλ and the pushforward F (| det DF |dλ) agree on F (R), and
therefore on F (R′) for any subrectangle R′ ⊂ R. Since any open set O in R is a
countable union of rectangles, the same is true for F (O) for all open O ⊂ R. Since F

is assumed to be a diffeomorphism, F (O) runs over all open sets in F (R). Now observe
that the family of sets for which the two measures agree forms a σ-algebra, so they
must agree on the σ-algebra generated by open sets, i.e. the Borel sets. Moreover, it
is not hard to see that the pushforward of a set of measure zero has measure zero (this
is true for all Lipschitz F ), so the two measures agree on all sets which differ from a
Borel set by a measure zero set, i.e. all Lebesgue measurable sets.

It follows that the pushforward of the measure | det DFx|dλ is dλ, as claimed.



8.3. The Lebesgue-Stieltjes integral.
The Lebesgue-Stieltjes integral gives a meaning to the

expression ∫ b

a

g(x)dF (x)

where F is an non-decreasing function. Roughly, this is
supposed to be the limit of expressions of the form

n∑

i=1

g(ti)(F (ti)−F (ti−1)), a = t0 < t1 < · · · < tn = b.

Let us say that an non-decreasing function F (x) is nor-
malized if it is right-continuous: that is, that F (x) =

limy↓x F (y) for all x. Any non-decreasing function can
be normalized by changing its values on a countable set
of points.

Theorem 8.14. Let F be a non-decreasing, normal-
ized function on R. Then there is a unique Borel
measure µ, often denoted dF , such that µ((a, b]) =

F (b) − F (a) for all a < b.

• If F is C1 then the measure µ is given by F ′(x)dx

by the Fundamental Theorem of Calculus.
Before embarking on the proof, consider a simple ex-

ample: suppose F (x) = 2x. Then dF = 2dλ. On the

other hand, the pushforward F (dλ) is equal to λ/2. It
seems that what we are looking at here is a sort of ‘in-
verse’ to the pushforward operation. And indeed, we
can construct µ as a pushforward to a sort of inverse
function to F . Of course, in general F will not have an
inverse! (since it need be neither one-to-one nor onto).
However, we can use the order on R to define a sort of
generalized inverse.

Proof: Let

G(y) = inf{x | F (x) > y}.

Since F is nondecreasing, G is well defined at least on
the interval between limx→−∞ F (x) and limx→+∞ F (x),
and it is nondecreasing there. It is not hard to see that
if F is continuous then G is indeed the inverse to F .

Now consider the measure ν = Gλ. Let a < b be
real numbers. What is ν((a, b])? By definition, it is the
Lebesgue measure of the set

S = {y | G(y) ∈ (a, b]}.

This set is
{
y | inf{x | F (x) > y} ∈ (a, b]

}
.

The set is an interval by the nondecreasing property of
F , so we just have to find its endpoints.

First suppose that F (b) = F (a). Then
• if y > F (b) then the inf is > b (using right cty);
• if y = F (b) then the inf is ≥ b;
• if y < F (b) then the inf is ≤ a.

It follows that S is either ∅ or the singleton set {F (b)}.
In either case, dλ(S) = 0 = F (b) − F (a).

Now suppose that F (a) < F (b). Then
• if y > F (b) then the inf is > b (using right cty);
• if y = F (b) then the inf is ≥ b;
• if F (a) < y < F (b) then the inf is ≤ b and > a

using right continuity to get “>”;
• if y < F (a) then the inf is ≤ a.

Therefore, (F (a), F (b)) ⊂ S ⊂ [F (a), F (b)]. In any
case, we have verified λ(S) = F (b)−F (a). Thus ν has
the required property. The proof of uniqueness follows
standard lines. □

These sorts of measures turn up in the spectral the-
orem for bounded (non-compact) self-adjoint operators
on Hilbert space. This is phrased in terms of a spectral
resolution on H , i.e. a family of orthogonal projection
operators E(x), for x ∈ R, such that

(i) E(x) is nondecreasing in the sense that the range
of E(x) is contained in the range of E(y) if x ≤ y;

(ii) E(x) is right continuous in the sense that
limy↓x E(y)f = E(x)f for all f ∈ H ;

(iii) There exists an interval [a, b] such that E(x) = 0

if x < a and E(x) = Id if x > b.
Then, for all f, g ∈ H , the function (E(x)f, g) is

nondecreasing and right continuous.
The spectral theorem for a bounded self-adjoint oper-

ator T says there is a spectral resolution E(x) s.t.

T =

∫

R
x dE(x)

in the sense that
(Tf, g) =

∫

R
x d(E(x)f, g)

as a Lebesgue-Stieltjes integral.


