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Quantum knot invariants

Reshetikhin-Turaev define a polynomial knot invariant for every

quantum group Uq(g), with g a complex simple Lie algebra,

and irreducible representation V of Uq(g):

JUq(g),V (K )(q).

Example

JUq(sl4),
∧2 C4

( )
(q) = q16+q12+q10+q−10+q−12+q−16.

These invariants generalise the Jones polynomial (SU(2), C2), the
coloured Jones polynomials (Symn C2), HOMFLYPT (SU(n), Cn)
and the 2-variable Kauffman polynomial (SO(n) or Sp(2n), V \).
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We can compute these invariants!

A computer can calculate the universal R-matrix acting on any
irreducible representation. A braid presentation of the knot tells us
a sequence of matrices with entries in Z[q, q−1] to multiply, and
then take trace.

Really!

See my QuantumGroups‘ package, available as part of the
KnotTheory‘ package from http://katlas.org/.

Example

<<KnotTheory‘

QuantumKnotInvariant[A3][Irrep[A3][0,1,0]][Knot[4,1]]

== q16 + q12 + q10 + q−10 + q−12 + q−16
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Some mysterious identities

Let’s search for identities between these polynomials, specialising q
to roots of unity.

We find lots of examples!

JSU(2),(2)(K )(exp(2πi12 )) = 2

JSU(2),(4)(K )(exp(2πi20 )) = 2JSU(2),(1)(K )(exp(−2πi10 ))

JSU(2),(6)(K )(exp(2πi28 )) = 2JSU(4),(1,0,0)(K )(exp(−2πi14 ))

JSU(2),(8)(K )(exp(2πi36 )) = 2JSO(8),(1,0,0,0)(K )(− exp(−2πi18 ))

JSU(2),(12)(K )(exp(2πi52 )) = 2JG2,V(1,0)
(K )(exp(2πi ·2326 ))

Question

What’s going on? Is there some algebraic structure underlying
these strange identities between knot polynomials?
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Algebraic structure: modular tensor categories

At a root of unity, the representation theory of a quantum group
truncates to a modular ⊗-category with finitely many objects.

Example (SU(3) at ‘level 3’, q = exp(2πi12 ))
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Braided tensor categories are like finite groups

automorphisms sub-categories quotients

Not all automorphisms come from ‘group-like’ sub-categories.

Not all quotients are ‘modular’, or even ⊗.

These algebraic operations explain identities between the
corresponding knot invariants.
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We’d like to prove

JSU(2),(6)(K )(exp(2πi28 )) = 2JSU(4),(1,0,0)(K )(exp(−2πi14 )).

On right hand side, we look at the modular tensor category SU(2)
at q = exp(2πi28 ). This has 12 objects, so we call it SU(2)11
(‘SU(2) at level 11’).

which has subcategories

Z/2Z

⊂ SO(3)6

⊂ SU(2)11

Here’s the subcategory SO(3)6.

SO(3)6 =
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Take the quotient SO(3)6/2; it’s a new modular tensor category.

SO(3)6/2 =

Quotients of braided ⊗-categories are usually called
‘de-equivariantisations’.

To match conventions between SU and SO, replace q with q2.
The object (6) splits into two pieces, P and Q, with the same knot
invariants.

Corollary

JSU(2)11,(6)(K )(exp(2πi28 )) = 2JSO(3)6/2,P(K )(exp(2πi14 )).

Scott Morrison Coincidences of tensor categories



q-invariants identities MTCs Conclusion De-equivariantisation Level-rank duality Kirby-Melvin symmetry

Level-rank duality: “SO(n)m
∼= SO(m)n”

Level-rank duality is tricky! The correct statement is

Theorem

With n odd, q a 4(n + m − 2)-th root of unity,

SO(n)|q/2 ∼= SO(m)|−q−1/2.

Translating to levels, this is SO(n)m/2 ∼= SO(m)n/2, but not at
the obvious root of unity!

The quotients are by Vme1 and Vne1 , the highest multiples of the
standard representation.
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Example ((SO(3)6)/2 ∼= (SO(6)3)/2)

∼=−−−−−−−−→

Here we show SO(6)3 as the ‘vector’ subset of Spin(6)4 ∼= SU(4)3.

Corollary

JSO(3)/2,P(K )(exp(2πi14 )) = JSO(6)/2,(200)(K )(− exp(−2πi14 ))
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Kirby-Melvin symmetry

‘Include up’ to all of SU(4). There’s
a “Kirby-Melvin symmetry” given by
−⊗ (300), interchanging (200) and
(100).

Kirby-Melvin symmetries aren’t quite ‘quotients’ unless we change
the pivotal structure. Knot invariants may change by a sign.

Corollary

JSU(4),(200)(K )(− exp(−2πi14 ) = −JSU(4),(100)(K )(− exp(−2πi14 ).
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Putting it all together

Theorem

JSU(2),(6)(K )|q=exp( 2πi
28

) = 2JSU(4),(1,0,0)(K )|q=exp(− 2πi
14

)

Proof.

JSU(2),(6)(K )(e
2πi
28 ) = JSO(3)6,(6)(K )(e

2πi
14 ) (sub-category)

= 2JSO(3)6/2,P(K )(e
2πi
14 ) (quotient)

= 2JSO(6)3/2,2e3(K )(−e−
2πi
14 ) (level-rank)

= 2JSU(4),2e1(K )(−e−
2πi
14 ) (D3 = A3)

= −2JSU(4),e1(K )(−e−
2πi
14 ) (Kirby-Melvin)

= 2JSU(4),e1(K )(e−
2πi
14 ) (parity)
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Conclusion

It’s fun to explain strange identities between knot polynomials by
understanding algebraic relationships between the underlying
modular tensor categories.

Read our paper http://tqft.net/identities for

all the coincidences and automorphisms related to SO(3)m/2,

a nice summary of level-rank duality, especially for SO(3),

the best description of Kirby-Melvin symmetry in the
literature,

many more pretty pictures!

Thank you!
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