The Cappell-Shaneson spheres and the s-invariant

Scott Morrison
scott@tqft.net

joint work with Michael Freedman, Robert Gompf and Kevin Walker

Microsoft Station Q / UC Santa Barbara
San Diego, December 42008
http://tqft.net/counterexample-SD

Outline

The smooth 4-dimensional Poincaré conjecture
Cappell-Shaneson spheres are potential counterexamples

Construction

Known results
Localisation
Khovanov homology may provide obstructions
What is Khovanov homology?
The s-invariant gives genus bounds
The future: global obstructions
Some calculations!
Band moves, and smaller knots
Improving JavaKh
Results so far

Evidence for SPC4

- Gromov showed that if $\Sigma \backslash$ pt is symplectic and standard near the point, then it is symplectomorphic to $T^{*} \mathbb{R}^{2}$. Eliashberg used this to show that the Gluck construction on certain knotted 2-spheres $S^{2} \hookrightarrow S^{4}$ doesn't change the smooth structure.
- Gabai's property R, "Only surgery on the unknot in S^{3} can yield $S^{1} \times S^{2 "}$ has generalisations which are equivalent to SPC4.

Evidence against SPC4

The old news:

- Donaldson and Seiberg-Witten theory produce multiple smooth structures on closed simply connected 4-manifolds (although these have $H_{2} \neq 0$).
- The h-cobordism theorem is broken in dimension 4.
- There are many proposed counterexamples, few of which have been 'killed'.

The new news: certain combinatorial invariants of particular knots provide obstructions to SPC4.

Theorem (Freedman-Gompf-Morrison-Walker)
For example, if s) $=0$, then SPC4 is false.

Known results

- W_{0} and W_{4} naturally cover an exotic $\mathbb{R P}^{4}$ (C-S 1976).
- Kirby-Akbulut conjectured that W_{0} was exotic (1985),
- ... but Gompf later showed it was actually standard!
- Moreover, Gompf gave a handle presentation for each W_{n} :

(Unknotted dotted circles indicate 1-handles, knotted circles indicate (framed) attaching curves for 2-handles.)

The Cappell-Shaneson spheres

- Consider the 3-torus bundle over S^{1} with monodromy $A \in S L(3, \mathbb{Z})$.
- If $\operatorname{det}(I-A)= \pm 1$, surgery on the "zero section" produces a homotopy 4-sphere, denoted W_{A}.
- (There's a choice here of a $\pi_{1}(S O(3))=\mathbb{Z}_{2}$ framing for the zero section. One choice is always standard.)
- Conjugation of A in $G L(3, \mathbb{Z})$ doesn't change W_{A}. In fact there are finitely many conjugacy classes for each possible trace, and only one when $-4 \leq \operatorname{tr} A \leq 9$.
- We'll consider a family realising every trace:

$$
A_{m}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & m+1
\end{array}\right)
$$

Localisation

- Sadly, there are no known 4-manifold invariants which can distinguish the Cappell-Shaneson spheres from the standard sphere. (Gauge theory is not good at homotopy spheres.)
- Notice that Gompf's handle presentation has no 3-handles. The 0 -, 1- and 2- handles give a homotopy 4 -ball, with S^{3} boundary. (Since there are no exotic diffeomorphisms of S^{3}, there's only one way to glue on the 4-handle.)
- The meridians of the 2-handles form a two component link in S^{3}, which must be slice in the Cappell-Shaneson ball.

What is Khovanov homology?

Theorem (Freedman-Gompf-Morrison-Walker)
If the two component link L_{m}

is not slice in B^{4}, the Cappell-Shaneson ball \dot{W}_{m} must be exotic.
(Here, the blue component is not 'real'; it represents a 2π twist.)

Khovanov homology is functorial

Theorem (Jacobsson/Bar-Natan)
Khovanov homology is projectively functorial. It associates to a cobordism $\Sigma: L_{1} \rightarrow L_{2}$ a linear map $K h^{\bullet \bullet}\left(L_{1}\right) \rightarrow K h^{\bullet \bullet}\left(L_{2}\right)$. Isotopy of the cobordism changes the linear map by at worst a sign.

Theorem (Clark-Morrison-Walker)
For a suitable variation of Khovanov homology, this linear map is well-defined on the nose.

- Khovanov homology is an invariant of links. It is a doubly-graded vector space, $K h^{\bullet \bullet}(L)$.
- The Khovanov polynomial counts the graded dimensions:

$$
K h(L)(q, t)=\sum_{r, j} q^{j} t^{r} \operatorname{dim} K h^{j, r}(L) \in \mathbb{N}\left[q^{ \pm}, t^{ \pm}\right]
$$

- The 'euler characteristic' of Khovanov homology is the Jones polynomial:

$$
K h(L)(q,-1)=J(L)(q)
$$

The s-invariant gives genus bounds
Other variations of Khovanov homology give more information.
Theorem (Rasmussen)
There is an integer invariant of knots $s(K)$, and

$$
|s(K)| \leq g_{\text {slice }}(K)
$$

Theorem (Morrison-Walker)

There is a family of polynomial invariants $f_{k}(K) \in \mathbb{N}\left[q^{ \pm}, t^{ \pm}\right]$and

$$
K h(K)(q, t)=q^{s(K)}\left(q+q^{-1}\right)+\sum_{k \geq 2}\left(1+q^{2 k} t\right) f_{k}(K)(q, t) .
$$

A chain of programs (Green/Bar-Natan/Morrison-Shumakovitch) can compute these invariants directly. They are combinatorial.

Extracting the s-invariant.

Conjecture (Morrison-Walker/Shumakovitch/Khovanov)

Only f_{2} is nonzero, and the s-invariant is determined by the
Khovanov polynomial, via

$$
q^{s(K)}\left(q+q^{-1}\right)=K h(K)\left(q,-q^{-4}\right)
$$

- Even without this conjecture, often we can extract $s(K)$ directly from the Khovanov polynomial, by analysing possible decompositions into the polynomials f_{k}.
- When this works, it is much faster than calculating the actual decomposition.
- It is now possible to compute $s(K)$ for knots K with 50 or more crossings; previously $10-15$ was the limit.

The future: global obstructions

We can also define 4-manifold invariants.

- Khovanov homology has the structure of a 4-category with duals (modulo a conjecture about the S^{3} movie move).
- Standard topological quantum field theory constructions give the skein module invariant

$$
Z\left(W^{4}, L \subset \partial W\right) \in \mathcal{V e c t}^{\bullet \bullet}
$$

- Perhaps this can distinguish the Cappell-Shaneson spheres directly?

A plausible theorem dooms this approach

- Recently, connections have been found between Khovanov homology and knot Floer homology.
- Experience suggests gauge theoretic approaches can't detect smooth structure near a point.
- Thus the following plausible result would kill this approach:

Conjecture
If a knot K is slice in any homotopy 4-ball, then $s(K)=0$.

- On the other hand, Khovanov homology relies on picking coordinates, and using projections of links and cobordisms. This is both an obstacle to 'geometric' interpretations, and some cause for hope that it is sensitive to smooth structure.

Exact triangles and blob homology

- Unfortunately computing the skein module invariant $Z(W)$ for Khovanov homology is very hard.
- The main tool for computing $K h(L)$ is the exact triangle

$$
\cdots \rightarrow K h()() \rightarrow K h(/ /)) \rightarrow K h\binom{\lambda}{\boxed{K}} \rightarrow \cdots
$$

which fails for the skein module (essentially because taking quotients is not an exact functor).

- With Kevin Walker, I'm working on 'blob homology', a simultaneous generalisation of TQFT skein modules and Hochschild homology, which may be more computable for Khovanov homology.

L_{1} is huge

Unfortunately the two component link L_{m} is huge; even L_{1} has ~ 222 crossings; even worse, its girth is ~ 24.

Simplifying K_{b}, I

Band moves

- Let's take a risk, and look for band connect sums that become simpler. If the resulting knot is not slice, the original link can't be either.
- We'll consider the following three bands on L_{1}, and call the resulting knots K_{a}, K_{b} and K_{c} :

Simplifying K_{b}, II

Simplifying K_{b}, IV

Improving JavaKh

We started with Jeremy Green's program JavaKh, and made many improvements:
New interface Progress reports, saving to disk.
Memory optimisations Caching, 'bit flipping', paging to disk.
Minimising girth Better algorithms to find small girth presentations.
A better algorithm Cancelling blocks of isomorphisms, not just one at a time.
At the end, we had something that can compute $K h\left(K_{b}\right)$; it takes almost a week on a fast machine with 32 gb of RAM!

Results for $K h\left(K_{b}\right)$

$K h\left(K_{b}\right)(q, t)=$
$q^{-45} t^{-32}+q^{-41} t^{-31}+q^{-39} t^{-29}+q^{-35} t^{-28}+q^{-37} t^{-27}+q^{-37} t^{-26}+q^{-33} t^{-26}+$ $q^{-35} t^{-25}+q^{-33} t^{-25}+q^{-35} t^{-24}+2 q^{-31} t^{-24}+q^{-33} t^{-23}+2 q^{-31} t^{-23}+q^{-27} t^{-23}+$ $q^{-33} t^{-22}+2 q^{-29} t^{-22}+q^{-27} t^{-22}+q^{-31} t^{-21}+3 q^{-29} t^{-21}+q^{-25} t^{-21}+q^{-31} t^{-20}+$ $3 q^{-27} t^{-20}+2 q^{-25} t^{-20}+4 q^{-27} t^{-19}+2 q^{-23} t^{-19}+q^{-27} t^{-18}+2 q^{-25} t^{-18}+4 q^{-23} t^{-18}+$ $4 q^{-25} t^{-17}+q^{-23} t^{-17}+3 q^{-21} t^{-17}+q^{-19} t^{-17}+4 q^{-25} t^{-16}+2 q^{-23} t^{-16}+6 q^{-21} t^{-16}+$ $q^{-17} t^{-16}+4 q^{-23} t^{-15}+5 q^{-21} t^{-15}+3 q^{-19} t^{-15}+2 q^{-17} t^{-15}+q^{-23} t^{-14}+q^{-21} t^{-14}+$ $8 q^{-19} t^{-14}+q^{-17} t^{-14}+q^{-15} t^{-14}+3 q^{-21} t^{-13}+6 q^{-19} t^{-13}+3 q^{-17} t^{-13}+4 q^{-15} t^{-13}+$ $q^{-21} t^{-12}+2 q^{-19} t^{-12}+9 q^{-17} t^{-12}+5 q^{-15} t^{-12}+2 q^{-13} t^{-12}+7 q^{-17} t^{-11}+4 q^{-15} t^{-11}+$ $7 q^{-13} t^{-11}+3 q^{-17} t^{-10}+7 q^{-15} t^{-10}+7 q^{-13} t^{-10}+2 q^{-11} t^{-10}+q^{-9} t^{-10}+8 q^{-15} t^{-9}+$ $6 q^{-13} t^{-9}+9 q^{-11} t^{-9}+q^{-9} t^{-9}+3 q^{-15} t^{-8}+5 q^{-13} t^{-8}+13 q^{-11} t^{-8}+4 q^{-9} t^{-8}+$ $2 q^{-7} t^{-8}+5 q^{-13} t^{-7}+8 q^{-11} t^{-7}+9 q^{-9} t^{-7}+5 q^{-7} t^{-7}+q^{-5} t^{-7}+5 q^{-11} t^{-6}+13 q^{-9} t^{-6}+$ $6 q^{-7} t^{-6}+4 q^{-5} t^{-6}+q^{-11} t^{-5}+8 q^{-9} t^{-5}+11 q^{-7} t^{-5}+8 q^{-5} t^{-5}+q^{-3} t^{-5}+2 q^{-9} t^{-4}+$ $12 q^{-7} t^{-4}+10 q^{-5} t^{-4}+6 q^{-3} t^{-4}+7 q^{-7} t^{-3}+9 q^{-5} t^{-3}+12 q^{-3} t^{-3}+2 q^{-1} t^{-3}+$ $9 q^{-5} t^{-2}+12 q^{-3} t^{-2}+8 q^{-1} t^{-2}+q^{1} t^{-2}+3 q^{-5} t^{-1}+7 q^{-3} t^{-1}+15 q^{-1} t^{-1}+5 q^{1} t^{-1}+$ $q^{3} t^{-1}+3 q^{-3} t^{0}+14 q^{-1} t^{0}+10 q^{1} t^{0}+6 q^{3} t^{0}+q^{-3} t^{1}+5 q^{-1} t^{1}+11 q^{1} t^{1}+10 q^{3} t^{1}+2 q^{5} t^{1}+$ $q^{-1} t^{2}+8 q^{1} t^{2}+10 q^{3} t^{2}+8 q^{5} t^{2}+2 q^{1} t^{3}+7 q^{3} t^{3}+10 q^{5} t^{3}+5 q^{7} t^{3}+4 q^{3} t^{4}+7 q^{5} t^{4}+6 q^{7} t^{4}+$ $3 q^{9} t^{4}+q^{3} t^{5}+5 q^{9} t^{5}+2 q^{5} t^{6}+5 q^{7} t^{6}+7 q^{9} t^{6}+4 q^{11} t^{6}+4 q^{5} t^{5}+8 q^{7} t^{5}+q^{7} t^{7}+5 q^{9} t^{7}+$ $4 q^{11} t^{7}+3 q^{13} t^{7}+2 q^{9} t^{8}+4 q^{11} t^{8}+3 q^{13} t^{8}+3 q^{11} t^{9}+4 q^{13} t^{9}+3 q^{15} t^{9}+q^{11} t^{10}+q^{13} t^{10}+$ $3 q^{15} t^{10}+2 q^{17} t^{10}+q^{13} t^{11}+2 q^{15} t^{11}+q^{17} t^{11}+q^{13} t^{12}+2 q^{17} t^{12}+q^{19} t^{12}+2 q^{17} t^{13}+$ $q^{21} t^{13}+q^{17} t^{14}+q^{19} t^{14}+q^{21} t^{14}+q^{19} t^{15}+q^{21} t^{15}+q^{23} t^{15}+q^{23} t^{16}+q^{23} t^{17}+q^{27} t^{18}$

What next?

Obviously this is disappointing. On the other hand, we've only turned over the first stone.

- Computations for K_{c} are running right now!
- It looks like L_{-1} might be simpler than L_{1}, but we've only just started searching for nice bands.
- With present technology (algorithm, implementation, hardware), there are probably several more accessible cases.
(But only several.)

Extracting $s\left(K_{b}\right)$

- There are thousands of possible decompositions of $K h\left(K_{b}\right)$ of the form

$$
K h\left(K_{b}\right)(q, t)=q^{s\left(K_{b}\right)}\left(q+q^{-1}\right)+\sum_{k \geq 2} f_{k}\left(K_{b}\right)(q, t)\left(1+q^{2 k} t\right)
$$

- Exactly one has $f_{k}=0$ for $k>2$, in agreement with our conjecture, and this is presumably the actual decomposition.
- Nevertheless, every decomposition gives $s=0$, so for this knot we find no obstruction.

Conclusions

- Certain 'local’ slice problems for links imply that SPC4 is false.
- Khovanov homology may provide obstructions. Even with recent advances, the calculations are hard, so we use bands to turn the links into smaller knots.
- The first s-invariant we could calculate didn't produce an obstruction. Other bands, and other Cappell-Shaneson spheres, are running as we speak!
- We can define 'global' 4-manifold invariants using Khovanov homology, and using 'blob homology' these may be computable.

