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The smooth 4-dimensional Poincaré conjecture

The smooth 4-dimensional Poincaré conjecture is the ‘last man
standing’ in classical geometric topology. It says

Conjecture (SPC4)

A smooth 4-manifold Σ homeomorphic to the 4-sphere, Σ ∼= S4, is
actually diffeomorphic to it, Σ = S4.

There’s some ‘evidence’ either way, but I think by now most people
think that it’s false:

Conjecture (∼SPC4)

Somewhere out there, perhaps not far away, there’s is a 4-manifold
homeomorphic but not diffeomorphic to the 4-sphere.

Evidence for SPC4

I Gromov showed that if Σ \ pt is symplectic and standard near
the point, then it is symplectomorphic to T ∗R2. Eliashberg
used this to show that the Gluck construction on certain
knotted 2-spheres S2 ↪→ S4 doesn’t change the smooth
structure.

I Gabai’s property R, “Only surgery on the unknot in S3 can
yield S1 × S2” has generalisations which are equivalent to
SPC4.

http://tqft.net/counterexample-SD


Evidence against SPC4

The old news:

I Donaldson and Seiberg-Witten theory produce multiple
smooth structures on closed simply connected 4-manifolds
(although these have H2 6= 0).

I The h-cobordism theorem is broken in dimension 4.

I There are many proposed counterexamples, few of which have
been ‘killed’.

The new news: certain combinatorial invariants of particular knots
provide obstructions to SPC4.

Theorem (Freedman-Gompf-Morrison-Walker)

For example, if s

( )
6= 0, then SPC4 is false.

The Cappell-Shaneson spheres

I Consider the 3-torus bundle over S1 with monodromy
A ∈ SL(3,Z).

I If det(I − A) = ±1, surgery on the “zero section” produces a
homotopy 4-sphere, denoted WA.

I (There’s a choice here of a π1(SO(3)) = Z2 framing for the
zero section. One choice is always standard.)

I Conjugation of A in GL(3,Z) doesn’t change WA. In fact
there are finitely many conjugacy classes for each possible
trace, and only one when −4 ≤ trA ≤ 9.

I We’ll consider a family realising every trace:

Am =

0 1 0
0 1 1
1 0 m + 1



Known results

I W0 and W4 naturally cover an exotic RP4 (C-S 1976).

I Kirby-Akbulut conjectured that W0 was exotic (1985),

I ... but Gompf later showed it was actually standard!

I Moreover, Gompf gave a handle presentation for each Wn:
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and see that it is isotopic to a O-framed unknot, so that it indeed cancels a 3-handle. 
We will also keep track of O-framed meridians of the two 2-handles xz and (Y. When 
we identify St X S’ # S* x S’ as the boundary of a I-handlebody, these framed 
meridians will give the attaching maps for 2-handles, yielding the desired hand- 
lebody. Note that we may freely pass my through the meridians (since the two 
problems are independent), and we may slide the framed meridians over each other 
as if they were 2-handles (since, in the final interpretation, they 

In Fig. 9, draw the O-framed meridians to xz (Y. Since we are now working 
with a we may blow up a -1 at the right twist represented by the dashed 
curve. The twist disappears (replaced by a circle with framing -1). The framing on 
xz remains 0, but the framings on xy and a! become -1 (cf. Fig. 8). There are six 
arcs in Fig. 9 which dive through the center of the spiral between the two arrows. 
Exactly one of these is part of the circle XZ. Slide the other five arcs over xz here 
to unlink them from the spiral. This will cause the five arcs to link the meridian to 
XZ. An isotopy yields Fig. 10. The two meridians are drawn as dotted curves. The 
curve a! may now be unlinked from the meridian to XZ, by sliding this meridian 
over the meridian to cy. We may also unlink xy from the meridian to XZ, since these 
curves may freely pass through each other. This leaves the meridian linking only 
xz and the new -1. 

Next, we blow down the curve (Y. Note that in Fig. 10, a! is rectangular, except 
for a long ribbon which runs through the spiral and then clasps the new -1. Pull 
the clasp back around the spiral so that cy becomes rectangular and the new -1 
becomes wrapped around the spiral. It is now routine to blow down cy, and isotope 
(passing xy though the meridians) to Fig. 11. Observe that the meridian to a has 
become a +l-framed circle, and all other framings have become zero. 

Close inspection of the spiral in Fig. 11 shows that it may be replaced by standard 
twist notation. If m = 1, we eliminate the spiral by erasing the right half, and using 
the left half to connect the four relevant strands‘ Each additional turn of the spiral 
will add a full left twist, as indictated by Figi 12. A bit of thought rage& +hat Figs. 
11 and 12 are equivalent, even for rt3 G 0. flow $ve may sirnlM)r @ **~tuye b;? & - . . 

(Unknotted dotted circles indicate 1-handles, knotted circles

indicate (framed) attaching curves for 2-handles.)

Localisation

I Sadly, there are no known 4-manifold invariants which can
distinguish the Cappell-Shaneson spheres from the standard
sphere. (Gauge theory is not good at homotopy spheres.)

I Notice that Gompf’s handle presentation has no 3-handles.
The 0-, 1- and 2- handles give a homotopy 4-ball, with S3

boundary. (Since there are no exotic diffeomorphisms of S3,
there’s only one way to glue on the 4-handle.)

I The meridians of the 2-handles form a two component link in
S3, which must be slice in the Cappell-Shaneson ball.



Theorem (Freedman-Gompf-Morrison-Walker)

If the two component link Lm

is not slice in B4, the Cappell-Shaneson ball Ẇm must be exotic.

(Here, the blue component is not ‘real’; it represents a 2π twist.)

What is Khovanov homology?

I Khovanov homology is an invariant of links. It is a
doubly-graded vector space, Kh•,•(L).

I The Khovanov polynomial counts the graded dimensions:

Kh(L)(q, t) =
∑
r ,j

qj tr dim Khj ,r (L) ∈ N[q±, t±].

I The ‘euler characteristic’ of Khovanov homology is the Jones
polynomial:

Kh(L)(q,−1) = J(L)(q).

Khovanov homology is functorial

Theorem (Jacobsson/Bar-Natan)

Khovanov homology is projectively functorial. It associates to a
cobordism Σ : L1 → L2 a linear map Kh•,•(L1)→ Kh•,•(L2).
Isotopy of the cobordism changes the linear map by at worst a sign.

Theorem (Clark-Morrison-Walker)

For a suitable variation of Khovanov homology, this linear map is
well-defined on the nose.

The s-invariant gives genus bounds

Other variations of Khovanov homology give more information.

Theorem (Rasmussen)

There is an integer invariant of knots s(K ), and

|s(K )| ≤ gslice(K ).

Theorem (Morrison-Walker)

There is a family of polynomial invariants fk(K ) ∈ N[q±, t±] and

Kh(K )(q, t) = qs(K)(q + q−1) +
∑
k≥2

(1 + q2kt)fk(K )(q, t).

A chain of programs (Green/Bar-Natan/Morrison-Shumakovitch)
can compute these invariants directly. They are combinatorial.



Extracting the s-invariant.

Conjecture (Morrison-Walker/Shumakovitch/Khovanov)

Only f2 is nonzero, and the s-invariant is determined by the
Khovanov polynomial, via

qs(K)(q + q−1) = Kh(K )(q,−q−4).

I Even without this conjecture, often we can extract s(K )
directly from the Khovanov polynomial, by analysing possible
decompositions into the polynomials fk .

I When this works, it is much faster than calculating the actual
decomposition.

I It is now possible to compute s(K ) for knots K with 50 or
more crossings; previously 10-15 was the limit.

A plausible theorem dooms this approach

I Recently, connections have been found between Khovanov
homology and knot Floer homology.

I Experience suggests gauge theoretic approaches can’t detect
smooth structure near a point.

I Thus the following plausible result would kill this approach:

Conjecture

If a knot K is slice in any homotopy 4-ball, then s(K ) = 0.

I On the other hand, Khovanov homology relies on picking
coordinates, and using projections of links and cobordisms.
This is both an obstacle to ‘geometric’ interpretations, and
some cause for hope that it is sensitive to smooth structure.

The future: global obstructions

We can also define 4-manifold invariants.

I Khovanov homology has the structure of a 4-category with
duals (modulo a conjecture about the S3 movie move).

I Standard topological quantum field theory constructions give
the skein module invariant

Z (W 4, L ⊂ ∂W ) ∈ Vect•,•.

I Perhaps this can distinguish the Cappell-Shaneson spheres
directly?

Exact triangles and blob homology

I Unfortunately computing the skein module invariant Z (W ) for
Khovanov homology is very hard.

I The main tool for computing Kh(L) is the exact triangle

· · · → Kh

( )
→ Kh

 → Kh

( )
→ · · ·

which fails for the skein module (essentially because taking
quotients is not an exact functor).

I With Kevin Walker, I’m working on ‘blob homology’, a
simultaneous generalisation of TQFT skein modules and
Hochschild homology, which may be more computable for
Khovanov homology.



L1 is huge

Unfortunately the two component link Lm is huge; even L1 has
∼ 222 crossings; even worse, its girth is ∼ 24.

Band moves

I Let’s take a risk, and look for band connect sums that become
simpler. If the resulting knot is not slice, the original link
can’t be either.

I We’ll consider the following three bands on L1, and call the
resulting knots Ka, Kb and Kc :

 = Ka  = Kb

 = Kc

Simplifying Kb, I

 

Simplifying Kb, II

  



Simplifying Kb, III

  

Simplifying Kb, IV

  .

The knots Ka, Kb and Kc

I A little work by hand shows Ka is ribbon, and hence slice.

I The Alexander polynomials are all 1; by a theorem of
Freedman this means they’re all topologically slice.

I But how big are they?
apparent crossings apparent girth

Ka 67 14
Kb 78 14
Kc 86 16

I This is still scarily large, but perhaps plausible! The biggest
computation of the Khovanov polynomial so far is in
Bar-Natan’s “I’ve computed Kh(T (8, 7)) and I’m happy”;
that has girth 14 but only 48 crossings. Computations seem
to scale at least exponentially in the number of crossings, and
really badly in the girth.

Improving JavaKh

We started with Jeremy Green’s program JavaKh, and made many
improvements:

New interface Progress reports, saving to disk.

Memory optimisations Caching, ‘bit flipping’, paging to disk.

Minimising girth Better algorithms to find small girth
presentations.

A better algorithm Cancelling blocks of isomorphisms, not just one
at a time.

At the end, we had something that can compute Kh(Kb); it takes
almost a week on a fast machine with 32gb of RAM!



Results for Kh(Kb)
Kh(Kb)(q, t) =

q−45t−32 + q−41t−31 + q−39t−29 + q−35t−28 + q−37t−27 + q−37t−26 + q−33t−26 +
q−35t−25 + q−33t−25 + q−35t−24 + 2q−31t−24 + q−33t−23 + 2q−31t−23 + q−27t−23 +
q−33t−22 + 2q−29t−22 + q−27t−22 + q−31t−21 + 3q−29t−21 + q−25t−21 + q−31t−20 +
3q−27t−20+2q−25t−20+4q−27t−19+2q−23t−19+q−27t−18+2q−25t−18+4q−23t−18+
4q−25t−17 +q−23t−17 +3q−21t−17 +q−19t−17 +4q−25t−16 +2q−23t−16 +6q−21t−16 +
q−17t−16 + 4q−23t−15 + 5q−21t−15 + 3q−19t−15 + 2q−17t−15 + q−23t−14 + q−21t−14 +
8q−19t−14 +q−17t−14 +q−15t−14 +3q−21t−13 +6q−19t−13 +3q−17t−13 +4q−15t−13 +
q−21t−12+2q−19t−12+9q−17t−12+5q−15t−12+2q−13t−12+7q−17t−11+4q−15t−11+
7q−13t−11 +3q−17t−10 +7q−15t−10 +7q−13t−10 +2q−11t−10 +q−9t−10 +8q−15t−9 +
6q−13t−9 + 9q−11t−9 + q−9t−9 + 3q−15t−8 + 5q−13t−8 + 13q−11t−8 + 4q−9t−8 +
2q−7t−8+5q−13t−7+8q−11t−7+9q−9t−7+5q−7t−7+q−5t−7+5q−11t−6+13q−9t−6+
6q−7t−6 +4q−5t−6 +q−11t−5 +8q−9t−5 +11q−7t−5 +8q−5t−5 +q−3t−5 +2q−9t−4 +
12q−7t−4 + 10q−5t−4 + 6q−3t−4 + 7q−7t−3 + 9q−5t−3 + 12q−3t−3 + 2q−1t−3 +
9q−5t−2 + 12q−3t−2 + 8q−1t−2 + q1t−2 + 3q−5t−1 + 7q−3t−1 + 15q−1t−1 + 5q1t−1 +
q3t−1+3q−3t0+14q−1t0+10q1t0+6q3t0+q−3t1+5q−1t1+11q1t1+10q3t1+2q5t1+
q−1t2+8q1t2+10q3t2+8q5t2+2q1t3+7q3t3+10q5t3+5q7t3+4q3t4+7q5t4+6q7t4+
3q9t4 +q3t5 +5q9t5 +2q5t6 +5q7t6 +7q9t6 +4q11t6 +4q5t5 +8q7t5 +q7t7 +5q9t7 +
4q11t7+3q13t7+2q9t8+4q11t8+3q13t8+3q11t9+4q13t9+3q15t9+q11t10+q13t10+
3q15t10 + 2q17t10 + q13t11 + 2q15t11 + q17t11 + q13t12 + 2q17t12 + q19t12 + 2q17t13 +
q21t13 + q17t14 + q19t14 + q21t14 + q19t15 + q21t15 + q23t15 + q23t16 + q23t17 + q27t18

Extracting s(Kb)

I There are thousands of possible decompositions of Kh(Kb) of
the form

Kh(Kb)(q, t) = qs(Kb)(q + q−1) +
∑
k≥2

fk(Kb)(q, t)(1 + q2kt).

I Exactly one has fk = 0 for k > 2, in agreement with our
conjecture, and this is presumably the actual decomposition.

I Nevertheless, every decomposition gives s = 0, so for this
knot we find no obstruction.

What next?

Obviously this is disappointing. On the other hand, we’ve only
turned over the first stone.

I Computations for Kc are running right now!

I It looks like L−1 might be simpler than L1, but we’ve only just
started searching for nice bands.

I With present technology (algorithm, implementation,
hardware), there are probably several more accessible cases.
(But only several.)

Conclusions

I Certain ‘local’ slice problems for links imply that SPC4 is false.

I Khovanov homology may provide obstructions. Even with
recent advances, the calculations are hard, so we use bands to
turn the links into smaller knots.

I The first s-invariant we could calculate didn’t produce an
obstruction. Other bands, and other Cappell-Shaneson
spheres, are running as we speak!

I We can define ‘global’ 4-manifold invariants using Khovanov
homology, and using ‘blob homology’ these may be
computable.
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