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“One goal [of this conference] is to establish the study of
modular category theory as a subject in parallel to that of
group theory.”

Along those lines someday we’d like to have a classification of
modular categories. What would such a classification look like?

Families of examples (for example, coming from quantum
groups).

Sporadic examples (for examples, see Scott’s talk).

A description of when the same category appears twice on the
above lists (for example, see this talk!).
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Examples of coincidences in finite group theory:

PSL2(F5) ∼= A5

S6 has an outer automorphism

Goal of this talk

Find coincidences of modular categories that involve the even part
of the subfactor planar algebra D2n. (This is a modular category
related to so3.)

Methods

Hands-on technique for recognizing some important families
of tensor categories by looking at X ⊗ X .

Theoretical explanation of coincidences using Level-Rank
duality, Kirby-Melvin symmetry, and coincidences of Dynkin
diagrams.
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Why should you care?

Classifying modular categories is a long way off, so why should you
care about coincidences? Because they have applications!

These coincidences give strange identities between knot
polynomials.

One coincidence is 1
2D14

∼= (G2) 1
3
. Since the former is known

to be unitary, this coincidence answers a question of Rowell.
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What is D2n?

Start with the braided category TLq+q−1 for q = e
πi

4n−2 .

“Modularize,” by setting f (4n−3) ∼= 1

This quotient isn’t braided, instead it’s a spin-modular
category.

But the even part 1
2D2n is modular.

1
2D2n is the modularization of Uq(so3) = 1

2TLq+q−1 .

D2n is related to the Dynkin diagram D2n, but it is not related
to SO4n.
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Skein theory description of D2n

Fix q = exp( πi
4n−2). Let PA(S) be the planar algebra generated by

a single “box” S with 4n − 4 strands, modulo the following
relations.

A closed circle is equal to [2]q = (q + q−1) = 2 cos( π
4n−2)

times the empty diagram.

Rotation relation:

...

S = i ·

...

S

Capping relation: S
···

= 0
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Two S relation:

S

S

. . .

. . .

= [2n − 1]q · f (4n−4)

· · ·

· · ·
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D2n is not braided. However it has a “braiding up to sign.”

Theorem

You can isotope a strand above an S box, but isotoping a strand
below an S box introduces a factor of −1.

1
?S

...

= ?S

...

2
?S

...

= − ?S

...

Since diagrams in 1
2D2n have an even number of strands, 1

2D2n is
braided.
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Theorem

The planar algebra D2n is semi-simple, with minimal projections
f (k) for k = 0, . . . , 2n − 3 along with P and Q defined by

P =
1

2

(
f (2n−2) + S

)
and

Q =
1

2

(
f (2n−2) − S

)
.

The principal graph is the Dynkin diagram D2n.

Noah Snyder Coincidences of tensor categories



Motivation and overview
Recognizing braided categories via X ⊗ X

Sources of coincidences
Examples and applications

Goal and motivation
The quantum subgroup D2n and its structure
Coincidences involving D2n

Coincidences involving D2n

1
2D4
∼= Z/3 (but an unusual braiding!) with P 7→ χ

e
2πi
3

.

1
2D6
∼= U

e−
2πi
10

(sl2 × sl2)unimodularize with P 7→ V(1) � V(0).

1
2D8
∼= U

e−
2πi
14

(sl4)unimodularize with P 7→ V(100).

1
2D10 has an automorphism: P

, ))
QY

��

f (2)
}

QQ .

1
2D14

∼= U
e2πi

23
26

(g2) with P 7→ V(10).

(Technical point: on the righthand side we’ve changed the pivotal
structure and modularized, furthermore we’ve been very careful
about choosing the right root of q in the definition of the braiding.)
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In D2n we have the following decomposition for P ⊗ P (Izumi).

If n is even: P ⊗ P ∼= Q ⊕
⊕ n−4

2
l=0 f (4l+2)

If n is odd: P ⊗ P ∼= P ⊕
⊕ n−3

2
l=0 f (4l)

In particular,

In D4, P ⊗ P ∼= Q

In D6, P ⊗ P ∼= 1⊕ P

In D8, P ⊗ P ∼= f (2) ⊕ Q

In D10, P ⊗ P ∼= 1⊕ f (4) ⊕ P

In D14, P ⊗ P ∼= 1⊕ f (4) ⊕ f (8) ⊕ P
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Suppose that X is an object in a unimodal braided semisimple
tensor category C.

if X ⊗ X ∼= then C takes a braided functor from

A cyclic group category
1⊕ A Temperley-Lieb category
A⊕ B HOMFLY skein category

1⊕ A⊕ B Kauffman or Dubrovnik skein categories
1⊕ X ⊕ A⊕ B Uq(G2) (if you’re lucky...)

Furthermore, the eigenvalues of the braiding determine the
parameters in the right column.
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Proof.

These results follow from standard skein theory arguments. For
example suppose X ⊗ X ∼= 1⊕ A. Since End (X ⊗ X ) is
2-dimensional there must be a linear dependence of the form

= A + B .

Following Kauffman, rotate this equation, glue them together and
apply Reidemeister 2 to see that B = A−1 and A2 + A−2 = dim V .
Hence there’s a braided functor from Temperley-Lieb.
The other cases are only a little more complicated.

Technical comments: Notice that TL is related to Uq(sl2) by
changing the pivotal structure. Furthermore note that in the above
argument A could be either square root of A2. Finally the functor
need not be full (=surjective on morphisms).
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More on the G2 case.

Definition

A trivalent vertex is a rotationally symmetric map X ⊗ X → X . A
tree is a trivalent graph without cycles (but allowing disjoint
components).

Theorem (Kuperberg)

Suppose we have a trivalent vertex in a semisimple pivotal tensor
category C, such that the graphs

are each equal to linear combinations of trees. Then there is a
faithful pivotal functor Rep(Uq(G2))→ C for some q ∈ C.
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Simplifying Kuperberg’s conditions

Generically having a braiding implies a pentagon-bursting relation.

= ,

Expand the crossings and there will be exactly one pentagon. This
gives an easier way to find a pentagon-bursting relation.
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Level-rank duality

Relates (so3)k to (sok)3.

Kirby-Melvin symmetry

Generalized Kirby-Melvin symmetry relates A 7→ A⊗ B when
dim B = 1.

Coincidences of small Dynkin diagrams

D2 = A1 × A1, D3 = A3, and D4 has a ‘triality’ automorphism.
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Level-Rank duality a la Beliakova-Blanchet

The BMW (or “Kauffman skein”) category depends on
parameters q and m.

− = i(q − q−1)

(
−

)

= −iqm−1 = iq1−m .

It has a manifest symmetry. If

qn,k =

exp
(

2πi
n+k−2

)
when k is odd, or

exp
(

2πi
2(n+k−2)

)
when k is even.

then switching between m = n, q = qn,k and m = k ,
q = −q−1n,k doesn’t change the relations.
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You should think of this symmetry as relating “Uqn,k (On)”
and “U−q−1

n,k
(Ok),”

except that the usual quantum group is really Uq(Spin).

To get from O to SO you de-equivariantize, and to get from
Spin to SO you restrict to the vector representations.

Level-rank duality relates de-equivariantizations of the vector
reps of the usual so quantum groups.
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BMWn,qn,k = BMWk,−q−1
n,k

detn∼=1

yy

detk∼=1

&&

Uvect
qn,k

(son)

detk∼=1

%%

Uvect
−q−1

n,k

(sok)

detn∼=1

yy

Uvect
qn,k

(son)mod ∼= Uvect
−q−1

n,k

(sok)mod
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Kirby-Melvin symmetry

Generalized Kirby-Melvin symmetry relates A and A⊗ B (for
all A) when dim B = 1.

Replacing A with A⊗ B modifies the braiding in an
understandable way (because the overcrossing and
undercrossing labelled by B differ by a scalar).

In many cases generalized Kirby-Melvin symmetry says that A
and A⊗ B have the same image in the “unimodularized”
category (where we first change the pivotal structure and then
modularize). This is only true if you’re very careful about the
choice of root of q used in defining the braiding.
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Coincidences of Dynkin diagrams

D2 = A1 × A1, hence Uq(so4) ∼= Uq(sl2) � Uq(sl2).

D3 = A3, hence Uq(so6) ∼= Uq(sl4).

D4 has a triality automorphism, hence Uq(so8) has a triality
automorphism.
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Unitary of (G2) 1
3

Rowell showed that (G2) 1
3

and (G2) 2
3

are pseudo-unitary, and asked

if they were unitary.

But D14
∼= (G2) 1

3
, and the former is unitary.

We expect that similar techniques would show that (G2) 2
3

agrees

with a subcategory of (Sp6)3, and thus is unitary.
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Figure: The positive Weyl chamber for G2, showing the surviving
irreducible representations in the semisimple quotient at q = e2πi 2326 , and
the correspondence with the even vertices of D14.
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Knot polynomial identities

Knot invariants from P

The usual Reshetikhin-Turaev technique gives knot invariants
coming from P.

Any closed diagram involving a single S is zero.

If K is a knot (but not a link!) then

1

2
JSU(2),(2n−2)(K )(e

2πi
8n−4 ) = JD2n,P(K ).

So coincidences involving D2n give identities relating colored
Jones polynomials to other knot polynomials.
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Theorem

JSU(2),(2)(K )
|q=e

2πi
12

= 2JD4,P(K )

= 2

JSU(2),(4)(K )
|q=e

2πi
20

= 2JD6,P(K )

= 2JSU(2),(1)(K )|q=exp(− 2πi
10

)

JSU(2),(6)(K )
|q=e

2πi
28

= 2JD8,P(K )

= 2 HOMFLYPT(K )(q4, q − q−1)
|q=e

−2πi
14

JSU(2),(8)(K )
|q=e

2πi
36

= 2JD10,P(K )

= 2 Kauffman(K )(−iq7, i(q − q−1))
|q=−e

−2πi
18
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The D8-SL4 coincidence
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Theorem

JSU(2),(6)(K )|q=exp( 2πi
28

) = 2JSU(4),(1,0,0)(K )|q=exp(− 2πi
14

)

Proof.

JSU(2),(6)(K )(e
2πi
28 ) = 2JD8,P(K )

= 2JSO(6),2e3(K )(−e−
2πi
14 ) (LR)

= 2JSU(4),2e1(K )(−e−
2πi
14 ) (D3 = A3)

= −2JSU(4),e1(K )(−e−
2πi
14 ) (KM)

= 2JSU(4),e1(K )(e−
2πi
14 ) (parity)
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