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The smooth 4-dimensional Poincaré conjecture

The smooth 4-dimensional Poincaré conjecture

The smooth 4-dimensional Poincaré conjecture is the ‘last man
standing’ in classical geometric topology. It says

Conjecture (SPC4)

A smooth 4-manifold ¥ homeomorphic to the 4-sphere, ¥ = S*, is
actually diffeomorphic to it, ¥ = S*.

There's some ‘evidence’ either way, but | think by now most people
think that it's false:

Conjecture (~SPC4)

Somewhere out there, perhaps not far away, there’s is a 4-manifold
homeomorphic but not diffeomorphic to the 4-sphere.
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Construction

Cappell-Shaneson spheres are potential counterexamples ailks

The Cappell-Shaneson spheres

o Consider the 3-torus bundle over S! with monodromy
A€ SL(3,Z).

o If det(/ — A) = %1, surgery on the “zero section” produces a
homotopy 4-sphere, denoted Wj,.

e Conjugation of A in GL(3,Z) doesn't change Wj. In fact
there are finitely many conjugacy classes for each possible
trace, and only one when —4 < trA < 9.

o We'll consider a family realising every trace:
01 0

An=10 1 1

10 +

m+1
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Construction
Known results
Localisation

Cappell-Shaneson spheres are potential counterexamples

Known results

e Kirby-Akbulut conjectured that W, was exotic (1985),
@ ... but Gompf later showed it was actually standard!
@ Gompf also gave a handle presentation for each W,,:

(Unknotted dotted circles indicate 1-handles, knotted circles
indicate (framed) attaching curves for 2-handles.)

Scott Morrison SPC4



Construction
Known results
Localisation

Cappell-Shaneson spheres are potential counterexamples

Localisation

@ Sadly, there are no known 4-manifold invariants which can
distinguish the Cappell-Shaneson spheres from the standard
sphere. (Gauge theory is not good at homotopy spheres.)

@ Notice that Gompf's handle presentation has no 3-handles.
The 0-, 1- and 2- handles give a homotopy 4-ball, with S3
boundary.

@ The meridians of the 2-handles form a two component link in
53, which must be slice in the Cappell-Shaneson ball.
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Cappell-Shaneson spheres are potential counterexamples

Theorem (Freedman-Gompf-Morrison-Walker)

If the two component link L,

( N\

MiEn)

V' —=
I
J

=)

N &

is not slice in B*, the Cappell-Shaneson ball W,, must be exotic.

v

(Here, the blue component is not ‘real’; it represents a 27 twist.)
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is Khovanov homology?

@ Khovanov homology is an invariant of links. It is a
doubly-graded vector space, Kh**(L).

@ The Khovanov polynomial counts the graded dimensions:
Kh(L)(g,t) = _ ¢/t"dim KK'"(L) € N[g*, t7].
rj

@ The ‘euler characteristic’ of Khovanov homology is the Jones
polynomial:

Kh(L)(q, 1) = J(L)(q)-
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The s-invariant gives genus bounds

Other variations of Khovanov homology give more information.

Theorem (Rasmussen)

There is an integer invariant of knots s(K), and

|5(K)| < gs/ice(K)-

There is a family of polynomial invariants f,(K) € N[g™T, t*] and

Kh(K)(q,t) = Mg+ q 1)+ D _(1+ 1) fi(K)(q, t).
k>2

A chain of programs (Green/Bar-Natan/Morrison-Shumakovitch)
can compute these invariants directly.
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Extracting the s-invariant.

Only fy is nonzero, and the s-invariant is determined by the
Khovanov polynomial, via

Mg+ q7') = Kh(K)(q,—q7*).

e Even without this conjecture, often we can extract s(K)
directly from the Khovanov polynomial, by analysing possible
decompositions into the polynomials f,.

@ When this works, it is much faster than calculating the actual
decomposition.

@ It is now possible to compute s(K) for knots K with 50 or
more crossings; previously 10-15 was the limit.
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Band moves, and smaller knots
Im

. Re
Some calculations!

Ly is huge

Unfortunately the two component link L, is huge; even L; has
~ 222 crossings; even worse, its girth is ~ 24.
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Band moves, and smaller knots

Some calculations!

Band moves

@ Let's take a risk, and look for band connect sums that become
simpler. If the resulting knot is not slice, the original link
can't be either.

o We'll consider the following three bands on L1, and call the
resulting knots K;, Kp and K.:

$
|
S

) s
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Band moves, and smaller knots

Some calculations!

If any of s(K,), s(Kp) or s(K.) is non-zero, then the smooth
4-dimensional Poincaré conjecture is false.

Are these s-invariants computable? In principle “yes”:

@ We have a combinatorial implementation of the decomposition
of Khovanov homology, which gives the s-invariant directly.

@ We have a much faster program that just calculates
Kh(K,)(g,t), and it may be possible to extract the s-invariant
from this.
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Band moves, and smaller knots
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Scott Morrison SPC4



Some calculations!

Simplifying Kp, Il

Scott Morrison SPC4



Band moves, and smaller knots
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Some calculations!

Simplifying Kp, IV
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Band moves, and smaller knots

Imp Kh
. Resu
Some calculations!

Simplifying Kj, V

)
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nd smaller knots
Kh

Some calculations!

The knots K,, K, and K.

o A little work by hand shows K is ribbon, and hence slice.
@ The Alexander polynomials are all 1; by a theorem of
Freedman this means they're all topologically slice.

@ But how big are they?
apparent crossings apparent girth

K, 67 14
Kp 78 14
K. 86 16

@ This is still scarily large, but perhaps plausible! The biggest
computation of the Khovanov polynomial so far is in
Bar-Natan's “I've computed Kh(T(8,7)) and I'm happy”;
that has girth 14 but only 48 crossings. Computations seem
to scale at least exponentially in the number of crossings, and
really badly in the girth.
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Band moves, and smaller knots

. Results so far
Some calculations!

Improving JavaKh

We started with Jeremy Green’s program JavaKh, and made many
improvements:

New interface Progress reports, saving to disk.

Memory optimisations Caching, ‘bit flipping’, paging to disk.

Minimising girth Better algorithms to find small girth
presentations.

A better algorithm Cancelling blocks of isomorphisms, not just one
at a time.

At the end, we had something that can compute Kh(Kp); it takes
almost a week on a fast machine with 32gb of RAM!
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Band mc and smaller knots
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. Results so far
Some calculations!

Results for Kh(Kj)

Kh(Ks)(q. t) =
q 532 g3l | 39420 4 35408 | =372 | o =37426 | 4334726
gt g5 g2 | g 32y 3823 4 031423 | 027423
q B2 2022 | g2 q31p21 g 34720421 | 0=254-21 | o—314-20 |
3q 2 t20 4 0q 25420 4 4q=27419 1 0234719 1 q=274-18 | 025418 4 4423418 4
4q 51T 23417 1 3q=21 417 | g194-17 4 4425416 | =234-16 | 621416 ¢
q Y16 1 4g 28415 4 5g 2415 1 319415 | 01715 4 2314 21414 4
8q 10t 14 4 g 1714 4 g 15414 1 32113 | 19413 4 3417413 4 415413 4
q A2 0g 19412 L 9g 1712 1 5g- 15412 4 013412 L 717411y 415411
7q B3t 1 3g717410 4 74154710 4 7413410 | 911410 4 (—9,-10 | g =159 4
6 13t70 +9q 110 + g% + 3¢ 5t 8 4 57 13t78 4 13¢ 118 + 4%t 8 +
2q_7t_8+5q_13t_7+8q_11t_7+9q_9t_7+5q_7t_7+q_5t_7+5q_11t_6+13q_9t_6+
6 7t 6+4g 5t 0+ gt 51 8g 9t 5111 Tt 5 4+8q 5t O+ q 3t 5 +2qg 9t 4+
127 7t™* 4+ 1075t * + 6¢ 3t * + 7 "t3 + 9¢ 7t 3 + 127 3t3 + 2¢7 1t 3 +
9q3t72+12¢7 3t 24+8q 1t 2+ q t 2 +3¢ Pt 1+ 73t +15¢ 1t +5¢ 7 +
Pt 43¢ 304149 1t9+109 0 +6¢%t0+ g 3t +5g 1 tt + 11 1 +10¢3t +2¢° 1 +
g 1t?48q t°+10¢3t2+8¢° 1>+ 2¢ 3+ 7q3t3+10¢° 13 +5q " 3 +4¢3t4 + 75 t* +647 t* +
3¢°t* + P2 +5¢° 2+ 26710+ 5710+ 7q%t0 + 4™ 104+ 4¢°t° +-8¢" 1+ ¢t +5¢°t" +
4q11t7+3q13t7+2q9t8+4q11t8+3q13t8+3q11t9+4q13t9+3q15t9+q11t10+q13tlo+
3q15t1°+2q17t1°+q13t11+2q15t11+q17t11+q13t12+2q17t12+q19t12+2q17t13+
q21 t13+ q17t14+q19t14+q21t14+q19t15+q21 t15 + q23t15 +q23t16+q23t17 +q27t18
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Band maller knots
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Some calculations!

Extracting s(Kp)

@ There are thousands of possible decompositions of Kh(K}) of
the form

Kh(Ks)(a,t) = (g + g7 1) + > flKb)(q, £)(1 + g°*1).
k>2

@ Every decomposition gives s = 0, so for this knot we find no
obstruction.
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Band mo nd smaller knots
Improving

. Results so far
Some calculations!

What next?

Obviously this is disappointing. On the other hand, we've only
turned over the first stone.
e Computations for K. are running right now!
o It looks like L_; might be simpler than L;, but we've only just
started searching for nice bands.

e With present technology (algorithm, implementation,
hardware), there are probably several more accessible cases.

(But only several.)
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nd smaller knots

. Results so far
Some calculations!

Conclusions

@ Certain ‘local’ slice problems for links imply that SPC4 is false.

@ Khovanov homology may provide obstructions. Even with
recent advances, the calculations are hard, so we use bands to
turn the links into smaller knots.

@ The first s-invariant we could calculate didn’t produce an
obstruction. Other bands are running as we speak, and we're
about to try other Cappell-Shaneson spheres.
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