Subfactors as quantum symmetries.

- A factor is a von Neumann algebra with trivial centre.
  (Commutative vN algebras are measure spaces; this is the opposite extreme. Every vN algebra is a direct integral of factors.)

- There is a classification:
  
  \begin{align*}
  \text{type } I_n & : \text{ the } n \times n \text{ matrix algebras } M_n(\mathbb{C}) \\
  \text{type } I_\infty & : B(H) \\
  \text{type } II_1 & : \text{ there is a trace, with traces of projections taking all values in } [0,1] \\
  & \quad \text{(no minimal projections, projections are finite)} \\
  \text{type } II_\infty & : \ldots \\
  \text{type } III & : \ldots 
  \end{align*}

We'll be interested in the II_1 world, and in particular in the (unique) hyperfinite II_1 factor \( R \): 

\[ R = \lim_{n \to \infty} M_2(\mathbb{C}) \otimes_n \]  

(also: vN of \( G \) countable, amenable group or group measure space construction for free ergodic actions of countable amenable groups)

A subfactor is merely an inclusion of factors \( A \subset B \).
What are subfactors for?

Subfactors describe ‘quantum symmetries’.

First, how do they describe classical symmetries?

Jones (1980) showed that a finite group $G$ has a unique (up to conjugacy) action by outer automorphisms on $R$.

Consider $R \subset R \rtimes G$. (Exercise: the semidirect product is a II$_1$ factor.)

Can we recover $G$?

Our strategy will be to analyze the bimodules on which these factors act.

1. What does $R \rtimes G$ look like as an $R$-$R$ bimodule?
   
   It is easy to see that it breaks up into $|G|$ simple bimodules. Each looks just like $R^G$, but with one of the $R$ actions twisted by the group element.

   We can compute the tensor product
   
   \[ R^g \otimes R^h \cong \underset{r \in R}{\oplus} R^r \]

2. What about $(R \rtimes G) \otimes (R \rtimes G)$, as an $R \rtimes G$-$R \rtimes G$ bimodule?

   Essentially, $R$ gets out of the way, and we analyze $\mathcal{C}(G \rtimes G)_a$, and find a simple bimodule for each irrep of $G$:

   \[ (R \rtimes G) \otimes (R \rtimes G) \cong \underset{\pi \text{ irrep of } G}{\oplus} \dim\pi \cdot S^\pi \]
Given a subgroup $H \triangleleft G$, we can look at

\[ A = RH \]
\[ B = RG. \]

The $B \triangleright B$ bimodules give $\text{Rep} G$ (with its $\otimes$-structure).

The $A \triangleright B$ bimodules give $\text{Rep} H$.

We can draw the "principal graph" with these vertices, and an edge between $\mathbf{A}_X \mathbf{B}_Y$ and $\mathbf{B}_Y \mathbf{A}_X$ for each copy of $Y$ inside $B_A$.

For the subgroup case, we get the induction restriction graph.

**Example** $S_4 \triangleright C_5$

\[ A \triangleright B: \]
\[ B \triangleright B: \]

You can think of these subfactors as encoding a transitive group action $G \triangleright \mathfrak{X}$

(with $H = \text{stab}_X$).
Planar algebras (paragroups, \( \lambda \)-lattices)

Let's formalize this process of 'extracting the symmetries'.

Given a subfactor \( A \subset B \), define vector spaces

\[
P_{n,+} = \text{Hom}_{A \rightarrow A} (A \rightarrow B \otimes ... \otimes B)
\]

\( \text{Hom} \) \( \subset A \) \( \text{tensor factors} \)

and

\[
P_{n,-} = \text{Hom}_{B \rightarrow B} (B \rightarrow B \otimes ... \otimes B)
\]

\( \text{Hom} \) \( \subset B \) \( \text{tensor factors} \)

(Jones) Theorem: These vector spaces form a planar algebra, i.e. there is an action of shaded planar tangles.

\[ P_{2,+} \otimes P_{3,-} \otimes P_{1,+} \rightarrow P_{3,+} \]

Proof: This just encodes all the natural operations on intertwiners between bimodules.

e.g. \( P_{2n,+} \simeq \text{End}_{A \rightarrow A} (B \otimes n) \) and \( \text{is multiplication} \)

\( \text{is trace} \)
Theorem (Popa)

From a spherical, unitary shaded planar algebra, we can reconstruct a subfactor.

The planar algebra is a complete invariant of amenable subfactors of $R$.

The Temperley-Lieb planar algebra

$TL_{n+} = \sum$ crossingless matchings on $2n$ parts

e.g. $TL_{3+} = \{\text{\textcircled{1}}, \text{\textcircled{2}}, \text{\textcircled{1}, \textcircled{2}, \textcircled{3}}\}$

sits inside every planar algebra.

The index $[B:A]$ is (equivalently)

1. if $\{\text{\textcircled{1}}\} = \text{\textcircled{1}} \in \text{Pos.}$, $\leq 2$

2. $||\Gamma||^2$ (the square of the largest eigenvalue of the principal graph's adjacency matrix)

3. the Murray-von Neumann dimension of

$B$ as an $A$-module.

Clearly $[R\rtimes G:R\rtimes H] = [G:H]$. 
Theorem (Jones)
\[ [B:A] \leq 8 \cos^2 \frac{\pi}{n} \cup [4, \infty) \]

Sketch proof: Otherwise, the TL subalgebra can't be unitary.

There's a beautiful ADE classification ( Ocneanu, Izumi, Kawahigushi) for \([B:A] < 4\).

For the A series, there's nothing but TL, and in fact it's a quotient.

E.g., \(A_1 = TL/\nu = \mathbb{C}\) (every vector space in the planar algebra is 1-d).

\[ A_2 = TL/\left\{ \sum_{n=1}^{2} \left( \frac{\nu}{n} + \frac{\nu}{n} \right) \right\} \]

For D and E, we have to add new generators.

There's an "affine ADE" classification at index 4. (Popa)
We've been trying to understand what else is out there.

* Examples from finite group data, all of integer index, not super exciting
* Examples coming from quantum groups at roots of unity (well understood, includes A series below index 4)
* "quantum subgroups" of the above (e.g. DE cases below 4)
* There are also sporadic examples, which have only been discovered through classification projects.
There are 10 subfactors (of $R$) with index between 4 and 5, besides $TL$ (at every index), coming in 5 pairs:

- "Haagerup"
- "Extended Haagerup"
- "Asaeda-Haagerup"
- "3311"
- "2221"
How do we prove such a theorem?

1) Graph combinatorics and geometric number theory, to constrain the principal graphs

2) Representation theory and “skem theory” (=2d topology) to constrain the possible planar algebras

3) “Applied algebraic geometry” to produce candidate planar algebras as subalgebras of ‘standard’ ones

4) More skem theory to prove the candidate is what you’d hoped.