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Any exception must be a ‘translated extension’ of

with rank ≥ 45 or of

with rank ≥ 20.
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Theorem. There are 10 subfactors with
index in (4 5], and probably no more!,

Forthcoming papers

Towards the classification of subfactors with index at most 5, Morrison-
Snyder.

Applications of quadratic tangles to subfactors with magic numbers 10,
Morrison-Penneys-Peters-Snyder.

Quadratic tangles for quadruple points, Jones.

... and probably two or three more!

The main theorem relies on recent contributions from many people:
Frank Calegari/Noah Snyder (bounds from cyclotomicity), Dave Pen-
neys/James Tener (computing these bounds algorithmically), Vaughan Jones
(obstructions from quadratic tangles, graph planar algebra techniques), Dave
Penneys/Emily Peters/Noah Snyder (applying this obstructions to weeds),
Dave Penneys/Kevin Walker (graph planar algebra embedding theorem),
Noah Snyder (the odometer, applications of intermediate subfactors), Feng
Xu/Victor Ostrik (identifying 2221), Stephen Bigelow/Emily Peters/Noah
Snyder (skein theory for the Haagerup family), Anton Geraschenko (solv-
ing large systems of quadratics), mathoverflow (putting the right people in
contact).

The odometer takes a graph pair, and finds all (finitely many)
ways to extend the depth by 1, such that:

The index stays below 5.

Certain combinatorial tests are satisfied.

Why finitely many?

If there are many vertices at the next depth, some vertex at the previous
depth has high valence.

No edge multiplicity can be higher than
√

5.

Efficient enumeration
Index is an increasing function on graphs. We treat the
new piece of the adjacency matrix as an ‘odometer’.

Depths can only differ by one, so there’s
another finite problem:
find all the ways to extend one
graph but not the other.

No

Yes

No

Yes

Look at the top
left entry.

Record the new graph,
and return to top-left.

Set to zero, and move
to next entry.

Have we
fallen off?

Can we increase
this entry?

Terminate

Vines

Weeds

A vine represents all the
graphs obtained by increasing
the supertransitivity.

A weed represents all the
graphs obtained by increasing
the supertransitivity, or by
extending the graph arbitrarily
to greater depths.

Example
Theorem (Haagerup, 1994, MR1317352).
All possible principal graphs up to index 3 +

√
3

are represented by the vines:

Definition. A classification statement consists of

a set of vines, V

a set of weeds, W

such that every principal graph up to index 5 is
represented by one of the vines or one of the weeds.

Classification statements
Move a graph Γ from W to V,

run the odometer on Γ,
and add the results to W.

W = , , ,

V =

This approach only enumerates
graph pairs where both graphs
have the same depth!

The index of a graph is the square
of the largest eigenvalue of the

adjacency matrix.
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How does the odometer work?

Families of principal graphs

Running the odometer

The odometer (appears to) run forever on the weeds.
We could learn more about the weeds, by running the
odometer further. We’d know the graphs to higher
depths, but there’d also be many more of them!

What are we going to do about all these vines and weeds!?
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Haagerup’s triple point obstruction.
Theorem (Haagerup, MR1317352).
Given two dual triple points, for each dimension preserving
bijection between the sets of neighbours, there must be a
pair of vertices which are not in bijection which have an
‘unexpected’ path of length two between them.

In practice:
Corollary. Often, the principal graph and dual principal
graph must be different!

Example. If the principal graph starts as

then the dual principal graph must start as

We don’t just use the index limit while running the odometer.

There are certain combinatorial obstructions, even without fix-
ing the supertransitivity or the end of the graph.

The multiplicities of lowest weight vectors can be read off
from either the principal graph or the dual principal graph,
and they stabilise as we extend the graph.

Magic numbers
Every planar algebra is a representation of the annular
Temperley-Lieb category.

Irreducible representations are cyclic, generated by a ‘low-
est weight vector’.

These sequences of numbers must coincide.

vines: weeds:

Theorem (Morrison-Snyder).
Running the odometer out to index 5, we obtain the following

What are the ∗s?

=⇒

=⇒

The tension between these obstructions (“same
same, but different”) is extremely effective! Very
few graphs survive.

(For graphs with quadruple points, life is harder,
but there aren’t many below index 5.)

.

Ocneanu’s square test.
Lemma (Ocneanu). The multiplicity of Z inside (X ⊗ Y ) ⊗ X is the same as
its multiplicity inside X ⊗ (Y ⊗ X). Both can be computed using the principal
graphs and dual data.

(X ⊗ Y ) ⊗ X = (Y ∗ ⊗ X∗)∗ ⊗ X

X ⊗ (Y ⊗ X) = ((Y ⊗ X)∗ ⊗ X∗)∗

This relates the two principal graphs. The only ‘easy’ way to satisfy this con-
dition is for the graphs to be the same.

These multiplicities stabilise as we extend the graphs.
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Putting it all together:

We ran the odometer, and found 38 vines and 6 weeds.

All the vines can be eliminated, using cyclotomicity.

– Except for finitely many cases: 8 in fact.

Some of the weeds we can deal with, using quadratic
tangles.

Two survive.

– Using the graph planar algebra, we can increase
the minimum supertransitivity.

– We can run the odometer overnight, and get a
lower bound on the number of vertices.

What’s left to do? Rule out the exceptions.

(with rank ≥ 45) (with rank ≥ 20)

The Big Picture

Subfactors Fusion 
categories

MTCs

Fractional quantum
Hall effect

Quantum computing?!

Subfactors
We can think of a subfactor as
a categorical Morita equivalence
between two fusion categories.

Alternatively...

rings : invertible bimodules :: fusion categories : subfactors

Studying subfactors is studying symmetries of fusion categories.

An

D2n

E6 E8

Take the ‘even parts’
(a.k.a source and target).

(X∗ ⊗ X)⊗k and (X ⊗ X∗)⊗k

are Morita equivalent.

Subfactors are closely related to fusion categories.
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Pan, et al., PRL 83 (1999)

There’s strong evidence that
5

2
∼= SU(2)2

and some evidence that

12

5
∼= SU(2)3

Asaeda-Yasuda on cyclotomicity.

Asaeda noticed that the n-supertransitive
Haagerup graph has cyclotomic index only for
n = 3, n = 7, and possibly for n > 55.

Theorem (Asaeda-Yasuda, arXiv:0711.4144).
For all n > 7, the index of the n-supertransitive
Haagerup graph is not cyclotomic.

Corollary. Thus there are no subfactors with
this principal graph.

n edges

Extended Haagerup has
not been constructed yet!
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Pruning vines.

Pulling up weeds.
Quadratic tangles

n edges

Q

P

Corollary (Morrison-Penneys-Peters-Snyder). For two of the weeds,

we can compute r as a function of n and the index, and prove an inequality that
contradicts this identity.

Theorem (Jones, recent proofs Jones-Penneys & Morrison-Walker). Given a
subfactor P with principal graph Γ, there is an inclusion

P → GPA(Γ)

of P into the graph planar algebra of Γ.

Theorem (Morrison). Given a subfactor P with principal graph starting as

and dim(P ) = dim(Q), either

1. n ≥ 1, or

2. the vertices P and Q connect at the next depth, or

3. P is Haagerup.

Corollary. The ‘bad seed’ is at least 5-supertransitive.

2n + 3 edges

Q
Q

P
P

Graph planar algebras

Sketch.
If n = 0, there is an low weight vector S ∈ P4 satisfying

S2 = f (4)

If P and Q are not connected by a path of length two, there are
no such elements of the ‘supported at depths ≤ 5’ subalgebra of
GPA(Γ)4, unless the index is the index of Haagerup.

Sketch.
Let Γn be the translate of Γ with n vertices.
We first compute a constant K(Γ), so

λ

λ2 − 2 = 2n + K(Γ)↪

where λ ranges over the eigenvalues of Γn.
With a bounded number of exceptions, λ2 − 2 is a real cyclotomic
integer. With finitely many exceptions, which occur boundedly
often,

M(λ2 − 2) =
1

Gal(Γ)
σ

σ(λ2 − 2) >
9

4
�

Let R be the bound on the exceptional cases above.

9

4
(n − R) < 2n + K(Γ)

Cyclotomicity bounds supertransitivity

For any given vine Γ, we compute a constant N(Γ). Increasing the supertran-
sitivity above N(Γ) ensures that the index is not cyclotomic.
Often this constant is in the range 50 to 200. Checking cyclotomicity separately
for every value below this is possible with a modern computer, but sometimes
takes a few minutes.

Vines are just not a problem anymore!

Bisch on fusion rules.

The principal graph encodes multiplicities for −⊗ M .
This does not necessarily determine the full tensor product multiplicities.
Indeed there might not be any!

Theorem (Bisch, 1998, MR1625762).
There are no associative fusion rules extending those encoded by:

Y

?

Was there anything
special about

Probably not!
Let’s try to generalize
this to arbitrary graphs...

1

S4 ⊂ S5

For today:

A subfactor is a finite depth, finite index, irreducible,
II1 subfactor N ⊂ M .

It’s better to think about the representation theory
(standard invariant): the 2-category of bimodules
between N and M .

unitary,

pivotal,

two 0-morphisms (N and M),

semisimple (finitely many simple 1-morphisms),

generated by a fixed simple N
X−→ M .

An important invariant is the principal graph.

A vertex for each simple bimodule, and

an edge from XN to YM for each copy of Y inside X ⊗N M .

In fact,

Theorem ).late.regüM,reklaW/oknethkaylhS/senoJ,apoP( .

Such a 2-category is always the representation theory of a sub-
factor!

From this point of view, the category is central, but some-
times it’s convenient to realise it as the representation theory
of something.


