
KEVIN WALKER ON TQFTS

1. Introduction

Today we’ll talk about stuff related to skein modules. Eventually we’ll
need something more general, but these will do for now. Next, if we want to
think about TQFTs as a physicist would we’ll see that this leads us back to
the notion of skein modules. Furthermore, in some sense these two notions
will be equivalent. With these ideas in mind we’ll reach a certain axiomatic
framework. TQFTs are all about locality, so the key ideas will be gluing along
codimension 1. A little more exotic will be notions of gluing along codimension
2, which will lead to so-called Drinfeld doubles and Drinfeld centers. Up to
this point, everything will be in some sense combinatorial topology; however
the quantities we define will be manifestly invariant.

However, at the “top level” there are things to check (e.g., invariants under
Kirby moves). This leads to the Path Integral Theorem, which is related to
certain combinatorial constructions such as state sums. The history of this
subject is therefore backwards to the approach we’ll be taking. Historically,
state sums are the starting point.

We’ll try to make this an example-driven sequence of talks: Turaev-Viro
theories are in some sense generic 2 + 1 dimensional theories; Dijgraaf-Witten
theories; generic s.s. (semi-simple?) 1 + 1 theories; Crane-Yetter-Kauffman
theories (which lead to Witten-Reshethkin-Turaev invariants). If there is time,
we’ll get to more exotic examples like contact structures and Khovanov ho-
mology.

In essence, we’ll be constructing a machine that takes an n-category (of a
certain type) and spits out a (n + 1)-dimensional TQFT. Again, the history
of this is backwards: people originally discovered various examples indepen-
dently, and only recently has the general framework been understood.

2. Initial Examples

We’ll probably spend the entire day describing the Z/2-homology of a
surface, but from a different point of view. Perhaps had math developed in
an alternate universe—had topologists turned right rather than left in the
1930s—we’d all understand homology in terms of TQFTs rather than the
usual.

Let Y 2 be some compact 2-manifold with ∂Y = ∅, and let

F(Y ) := {1− submanifolds of Y }.
We’ll be thinking of this as just a set (not a space), and we’ll define an equiv-
alence relation ∼ on this set, and let

A(Y ) := C[F(Y )]/∼.
[[[PICTURES.]]]
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So if we look locally in Y and see an arc going through a little 2-ball, first
we allow for isotopies rel boundary. The next equivalence allows us to replace
a circle inside the 2-ball by δ multiplied by the empty picture. The last picture
allows us to swap pairs of arcs in the same 2-ball.

If we set δ = 1, as a set it’s a nice exercise to see that

F(Y )/∼ ∼= H1(Y ; Z/2).

Probably the easiest comparison is via singular homology. So we have that

A(Y ) ∼= C[H1(Y ; Z/2)].

Pretending that we don’t know homology theory, our goal will be to under-
stand A(Y ) as we glue 2-manifolds together.

[[[PICTURE]]]
So if we start with Ycut which has ∂Ycut ∼= S1

⊔
S1 and glue the two circles

we get a 2-manifold we call Yglue. So how is A(Ycut) related to A(Yglue)? Define

F(M) ∼= {codim 1 submanifolds}
and then we have a natural restriction,

F(Y 2)
∂→ F(∂Y ),

but it will turn out that these restriction aren’t quite what we want; really we
want restriction with respect to some natural boundary condition. So let

F(Y ; c) := ∂−1(c)

for c ∈ F(∂Y ) some fixed boundary condition. Then

A(Y ; c) := C[F(Y ; c)]/∼.
So let’s restate our goal: we will have our cut surface with a specified boundary
condition c and c′ on the two copies of S1. Then we want to relate A(Ycut; c, c

′)
to A(Yglue).

Now for all c ∈ F(S), we want to understand

A(Ycut; c, c)
glc→ A(Yglue)

and then let c vary, giving a surjective map⊕
c∈F(S)

A(Ycut; c, c)
glc→ A(Yglue).

We’d like to determine the kernel of the map. We note that the sum is not
over objects up to isotopy; in generally we’ll see that isotopy only happens in
the “top dimension.” In higher codimension, we’ll never want to do things up
to isotopy. So in our example the sum is actually over some uncountable set
of points on circles.

[[[PICTURES WITH COLLARS.]]]
Gluing our surface up along two circles will be the same as gluing in a

little cylinder. But then there are two ways to glue in the cylinder. To denote
this, let e ∈ A(S × I; c, c′) and x ∈ A(Ycut; c, c

′). Then

x · e ∈ A(Ycut; c
′, c′), e · x ∈ A(Ycut; c, c)
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and we want to impose glc′(x · e) ∼ glc(e · x), so x · e− e · x ∈ Ker(gl).

Theorem 2.1 (Codimension 1 Gluing, Version 1).

Ker(gl) = 〈xė− e · x〉

We’ll prove this later.
Let M1 be a closed 1-manifold.

Definition 2.2. The cylinder category, denote A(M), has object F(M) and
morphisms a → B given by A(M × I; a, b. Composition is given by gluing
cylinders.

This gives us a 1-category, and in fact a linear 1-category.
Notice that for Y a 2-manifold, (∂Y ) acts on {A(Y ; c)} where c ∈ F(∂Y )

where c runs through all boundary condition. So what does it mean for a
category to act? First, we have a vector space for every object, and then for
every morphism in the category we have a linear map. Said quickly, we have
a functor from the linear category to the category of vector spaces.

[[[PICTURE.]]]]
The picture is that we can glue cylinders on to the boundary of Y (provided

the boundary conditions match up), and stacking the cylinders is composition.
Note that so far what we have is a 1-category for every 1-manifold, and a

vector space for every 2-manifold.

3. Abstracting the Example

Recall for S, Ycut, Yglue we have

(1) ∀a ∈ F(S), gla : A(Ycut; a, a
′)→ A(Yglue)

(2) ∀e : a→ b e∗ : b→ a, e ∈ Mor(A(S)) we have

A(Ycut; a, b)
1×e∗→ A(Ycut; a, a)

↓ e× 1 ↓ gla

A(Ycut; b, b)
glb→ A(Yglue)

Theorem 3.1 (Codimension 1 Gluing Theorem, Version 2). A(Ygl) is univer-
sal with respect to (1) and (2) above. A(Ygl) is the coend of the A(S)×A(S)op-
module A(Ycut).

The third version of the gluing theorem will use certain semisimplicity fea-
tures of the categories, which will make more abstract examples computable.

Let’s consider the category A(S1) in more detail. Notice that any object in
A(S1) is isomorphic to either a circle with no points or a circle with 1 point:
given a circle with two points, we can pair them on the cylinder, and this
morphism is an isomorphism. We’ll call these two objects 0 and 1. Now,

Hom(0, 1) ∼= 0 ∼= Hom(1, 0).

and

Hom(0, 0) ∼= C(∅, R)
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[[[PICTURE]]] where ∅ denotes the map 0→ 0 with not arcs on the cylinder,
and R is the map 0 → 0 with a single circle in the interior (R for “ring” on
the cylinder). Lastly,

Hom(1, 1) ∼= C(1, Y )

[[[PICTURE]]] where the morphism 1 connects the points in a “straight line”
and T is a twist of this line.

We can now find some idempotents by looking at these morphisms:

e±0 :=
1

2
(∅ ±R), e±1 :=

1

2
(1± T ).

Let L = {e+0 , e−0 , e+1 , e−0 }. We claim that A(S1) is semisimple and that L is a
complete set of minimal idempotents.

Before we considered A(Y ; c) for an arbitrary boundary condition c, and
now we’ll consider A(Y ;α) where α is an idempotent.

Theorem 3.2 (Codimension 1 Gluing Theorem, Version 3).

A(Yglue) ∼=
⊕
α∈L

A(Ycut, α, α)

The above is what we we’re really after: the direct sum is over a finite (or
at worst, discrete) set. Historically this was the first thing people wrote down,
so why would you every bother with something more complicated? Well, there
are other examples that we want to consider coming from semisimple linear
categories, and then the above will prove useful.

4. Recap and Generalizations

The first two skein relations we have are more-or-less fixed; namely we
require isotopy invariance and that circles can be replaced by the empty picture
multiplied by some δ. After that, however, there is a lot of freedom.

For example, we we do one of the saddle moves we could multiply by -1.
For this to be consistent, we need δ = −1. As an (easy) exercise, one can
show that

dim(Aδ=−1(Y )) ∼= |H1(Y ; Z/2)| = dim(Aδ=1(Y )).

Thus, these guys are isomorphic as vector spaces. However, we claim that
there is no natural isomorphism (e.g. with respect to homeomorphisms or
gluing. What is the δ = −1 example isomorphic to? The hint is to think
about spin structures.

Next, note that there is an exact sequence

0→ U(D2; c) ↪→ C[F(D2; c)]→ A(D2; c)→ 0,

so classifying the possible gluing maps is the same as classifying U(D2; c). But
these are just the local (skein) relations! So one might try to classify these.
Let b ∈ F(∂D2) be minimal in U(D2; b) 6= 0.

[[[PICTURES.]]]
For example, say b is six points; one can write down six equations for

the coefficients of the various generating pictures, and it turns out there is a
unique solution, up to scale.
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The point is that we can think of these local relation pictures as providing
generalizations of Z/2-homology that only make sense on surfaces.
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