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Abstract Let V be the 7-dimensional irreducible representation of the quan-
tum group Uq(g2) . For each n , there is a map from the braid group Bn to the
endomorphism algebra of the n-th tensor power of V , given by R matrices.
Extending linearly to the braid group algebra, we get a map

ABn → EndUq(g2)

(

V ⊗n
)

.

Lehrer and Zhang [6] prove this map is surjective, as a special case of a more
general result.

Using Kuperberg’s spider for G2 from [5], we give an elementary diagrammatic
proof of this result.
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1 Kuperberg’s spider for G2

We recall just enough from [4, 5] for our purposes.

We fix the ground ring A = C(q). Kuperberg’s q is q2 here, bringing our conven-
tions into agreement with those for quantum groups as presented in [1, 2, 8].

First consider the braided tensor category Rep′(G2), with objects tensor powers
of the 7-dimensional representation of Uq(g2), and morphisms linear maps com-
muting with the actions of Uq(g2). (The prime in the notation indicates this is just
a full subcategory of the actual representation category; we don’t allow arbitrary
representations, although every representation does appears as a subobject of some
tensor power.)

Second consider the category T (G2), with objects natural numbers, and morphisms
planar trivalent graphs embedded in a rectangle, modulo certain relations. A mor-
phism from n to m should be a graph with n boundary points along the bottom
edge of the rectangle, and m boundary points along the top edge. Note that we
allow embedded circles in the interior of the rectangle, called ‘loops’. The edges of
the graph break the rectangle into faces; those which do not meet the boundary of
the rectangle are called ‘internal’ faces. Composition of morphisms is vertical stack-
ing. The category becomes a tensor category by adding natural numbers at the
level of objects, and juxtaposing graphs side by side at the level of morphisms. The
relations from [5] are shown in Figure 1. The category T (G2) becomes a braided
tensor category with the formulas for a crossing from [5],
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= q10 + q8 + q2 + 1 + q−2 + q−8 + q−10

= 0

= −
(
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(
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)
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Figure 1: The relations for the G2 spider, from [4, 5] omitting relations involving
double edges which we don’t use. Note also that there is a sign error in [5] but not
in [4].

We now need two theorems from [5], one easy, one hard.

Theorem 1.1 (Web bases for T (G2)) Each Hom space in T (G2) has a basis given
by diagrams with no loops, in which each internal face has at least 6 edges.

Theorem 1.2 (Isomorphism) The categories Rep′(G2) and T (G2) are equivalent
as braided tensor categories.

2 Diagrammatic proof

Our goal is now to prove that an arbitrary trivalent graph in the rectangle (with
equal numbers of boundary points along the top and bottom edges) can be written,
modulo the relations above, as a A-linear combination of diagrams coming from
braids via Equation (1.1). Using Kuperberg’s Theorems 1.1 and 1.2, this would then
give a combinatorial proof of Lehrer and Zhang’s

Theorem 2.1 (Surjectivity) The map from the braid group algebra to endomor-
phisms of tensor powers of the 7-dimensional irreducible representation of Uq(g2)

ABn → EndUq(g2)

(

V ⊗n
)

is surjective.

Remark. In fact, their result holds for any “strong multiplicity free” representation
of a quantum group.
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Beginning over-optimistically, we might guess that any such diagram can in fact be
written as a composition of factors

, and

and then make use of the (presumably easy) special case of the Theorem for n = 2.
Even though this is false, it’s the right direction and contains the essential idea.
Small counterexamples to this guess are provided by

and in EndUq(g2)

(

V ⊗3
)

The correct argument will involve three steps. First, we’ll prove a little lemma al-
lowing us to rearrange connected components of a graph. Second, we’ll prove that
the image of the braid group does hit a certain finite list of small graphs (includ-
ing the examples above). Third, we’ll use Euler measure to inductively rewrite a
graph in terms of linear combinations of braids and a graph with fewer vertices,
eventually getting down to graphs in our list.

Lemma 2.2 Suppose a graph D1 ⊗ D2 is a tensor product of two diagrams. Then
D1 ⊗ D2 is in the image of the braid group if and only if D2 ⊗ D1 is.

Proof If

is in the image of the braid group, so is

.

Since the G2 spider is a braided tensor category, this is exactly the same as

.

Lemma 2.3 The graphs

and

are in the image of AB2 .
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Proof Since all four diagrams have no loops or internal faces, they are basis dia-
grams. Thus by Theorem 1.1 they are linearly independent. Moreover, it is easy to
see that they are the only basis diagrams with 4 boundary points, and so they span
EndUq(g2)

(

V ⊗2
)

. Moreover, the braiding (hereafter written as σ in formulas) lives
in the same space, and has four distinct eigenvalues (c.f. [7]), and so its powers also
span EndUq(g2)

(

V ⊗2
)

.

Purely for reference, we’ll give the characteristic equation for the braiding:

σ4 = −q−16σ0 + (q−18 − q−16 − q−10 + q−4)σ1+

+ (q−18 + q−12 − q−10 − q−6 + q−4 + q2)σ2 + (q−12 − q−6 − 1 + q2)σ3.

Explicit formulas for these four diagrams as polynomials in σ appear in the ap-
pendix, along with instructions for using the short computer program that pro-
duces them. (Note, however, that these formulas are not actually needed anywhere
here.)

Remark. Note that corresponds to q10 +q8+q2+1+q−2+q−8+q−10 (this is the

value of a loop, from Figure 1) times the idempotent projecting V ⊗ V onto its triv-

ial submodule. Similiarly, corresponds to −
(

q6 + q4 + q2 + q−2 + q−4 + q−6
)

times the idempotent projecting onto V .

Lemma 2.4 The graphs

and

are in the image of AB3 .

Proof We just do the computations directly, with the help of a computer, obtaining
the formulas which appear in the appendix. In particular, we find 35 braids that
provide a basis for EndUq(g2)

(

V ⊗3
)

.

Remark. See also §5.2.2(2) and §5.2.2(4) of [6].

Corollary 2.5 The graphs

, , , and

are in the image of the appropriate braid groups.

Proof We’ll show that each of these graphs is actually in the braided tensor sub-
category generated by the graphs appearing in the two previous lemmas. (In fact,
without even needing to take linear combinations.)

= =

= =
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Proposition 2.6 (Base case for the induction) Any T (G2) basis diagram in which
every connected component contains at most one vertex is in the image of the braid
group.

Proof Any such diagram is just a tensor product of factors, each of which is one
of the graphs

, , , , or .

By Lemma 2.2, we can take this tensor product in any order we like. We claim that
any such tensor product is actually a tensor product of the graphs in Lemmas 2.3
and 2.4 and Corollary 2.5, and so the entire diagram is in the image of the braid
group. The argument is a tedious but straightforward case-bash. Suppose we have
the diagram

⊗a ⊗b ⊗c ⊗d ⊗e ⊗f
.

Note that 2a + 3c + e = 2b + 3d + f , by counting boundary points at top and

bottom. By splitting off factors of , we can assume that at most one of a and

b is nonzero. Similarly, splitting off or , at most one of c and d and

at most one of e and f are nonzero. Let’s assume without loss of generality that
b = 0.

If a > 0, then either we can split off copies of , or f < 2. If f = 1, e must
be zero, and we have 2a + 3c = 3d + 1, and so a ∼= 2 (mod 3). Thus d ≥ 1, and we

can split off a copy of . Otherwise, if f = 0, we have 2a + 3c + e = 3d, so
d ≥ 1 and c = 0. Now, since 2a + e = 3d ≥ 3, either a ≥ 3, e ≥ 3, or a, e ≥ 1. In

each of these cases, we can split something off; either , or

respectively.

On the other hand, if a = 0, let’s further assume without loss of generality that c =
0. We thus have e = 3d + f ; since e = 0 would imply we have the empty diagram,
f = 0 instead, and the entire diagram is just a tensor power of .

Proof of Theorem 2.1 Suppose now we have an arbitrary basis diagram. We will

show that a connected component with at least two vertices has either a or

a attached along its top or bottom edge. Since these two diagrams are Lau-

rent polynomials in the positive crossing, we can rewrite the basis diagram as the
product of something in the image of the braid group, and another basis diagram
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with fewer vertices. Repeating this, we reduce to the case that no connected com-
ponent contains more than one vertex, at which point we’re done by the previous
Proposition.

The Euler measure argument is straightforward. Consider a connected component
of the basis diagram with at least two vertices. Assign formal angles of 2π

3 around
trivalent vertices, and of π

2 on either side of an edge meeting the boundary. (We
don’t assign angles to the corners of the rectangle, so the total Euler measure will be
the Euler measure of the disc, +1.) Since internal faces of the component have at
least 6 edges, by Theorem 1.1, they have non-positive Euler measure. Let bk be the
number of faces adjacent to the boundary, and meeting k edges of the graph. These
faces meet the boundary of the disc surrounding the component exactly once, since
the component is connected. Thus the Euler measure of a face counted by bk is

1

4
+

1

4
+

1

3
(k − 1) −

1

2
(k + 1) + 1 =

2

3
−

k

6
.

The number b1 is zero (this could only occur if the component were a single strand,
but it must have at least two vertices), and so we obtain

∑

k≥2

bk

(

2

3
−

k

6

)

≥ 1,

and so
b2

3
+

b3

6
≥ 1,

which we soften to b2 + b3 ≥ 3. There are thus at least three faces touching either
2 or 3 edges of the component. At least one of these must be attached to the top or
bottom of the rectangle, avoiding the sides. If that face touches 3 edges, we’re done,

as there must be a adjacent to the boundary. If it only touches 2 edges, the

hypothesis that the component is connected and has at least two vertices ensures

that there’s a adjacent to the boundary.

3 Questions

We end with two questions relating Kuperberg’s spider and the category of tilting
modules at a root of unity.

Question 1 We can specialize Kuperberg’s spider for G2 to any root of unity q .
The braiding is still defined as long as q+q−1 6= 0, and the braiding is still surjective
as long as

(

q8 − 1
) (

q4 − q2 + 1
) (

q6 + q4 + q2 + 1
)

6= 0.

(See the explicit formulas in the appendix.) We can idempotent complete, and quo-
tient by negligibles to produce a semisimple category. Is this category equivalent
to the semisimple quotient of the category of tilting modules for the integral form
of Uq(G2)?

More optimistically, we might hope for an affirmative answer to:
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Question 2 Are these categories equivalent even before we quotient by negligible
morphisms on either side?

Results in [4] and [7] ensure that there is a functor from the specialization of the
spider to the category of tilting modules. I’d hoped to be able to leverage the sur-
jectivity of the braiding map into a proof that this functor was an equivalence, but
I still don’t see how to do this.

A Explicit formulas

By downloading the sources for this article from the arXiv, you’ll find a Mathematica
notebook at code/formulas.nb. This notebook relies on the QuantumGroups‘ pack-
age, which you can download as part of the KnotTheory‘ package from [3]. After
setting the path in the first line to point at your copy of the QuantumGroups‘ pack-
age, you can run the remaining lines to produce the formulas appearing below.

Formulas for Lemma 2.3

=
(

(q2 − 1)(q4 − q2 + 1)(q6 + q4 + q2 + 1)
)−1

×

(

(

q22
)

σ0 +
(

−q20 + q22 + q28
)

σ1 +
(

−q20 − q26 − q28
)

σ2 +
(

−q26
)

σ3
)

=
(

(q2 − 1)(q4 − q2 + 1)(q6 + q4 + q2 + 1)
)−1

×

( (

−q8 − q12
)

σ0 +
(

q6 − q8 + q10 − q12 + q20 + q24
)

σ1+

+
(

q6 + q10 − q18 + q20 − q22 + q24
)

σ2 +
(

−q18 − q22
)

σ3
)

=
(

(q2 − 1)(q4 − q2 + 1)(q6 + q4 + q2 + 1)
)−1

×

( (

q2 − q4 + 2q6 + q12 − q14 − q18
)

σ0+

+
(

−q−2 − 2q4 + 2q6 − q8 + q10 + q12 + q16 − 2q18 − q22 − q24
)

σ1+

+
(

−q4 − q8 + 2q16 − q18 + q20 − q24
)

σ2 +
(

q16 + q20 + q22
)

σ3
)

Formulas for Lemma 2.4

=
(

(

q2 − 1
)2 (

q2 + 1
) (

q4 − q2 + 1
)2
)−1

×

(

−q2
(

q2 − 1
) (

q26 − q24 + q22 + q20 − 2q18 + 4q16 − 3q14 + 2q10 − 4q8 + q6 − q4 − 1
)

1

+q8
(

−q22 + 3q20 − 5q18 + 4q16 − 3q12 + 7q10 − 6q8 + 2q6 + q4 − 4q2 + 2
)

σ1

−q4
(

q2 − 1
) (

q18 − q16 + 2q14 + 2q8 − q6 + q4 + 1
)

σ−1
1

+q2
(

q2 − 1
) (

q22 − q20 + q18 + 3q12 − 2q10 + 3q8 + q6 − 2q4 + 2q2 − 1
)

σ2

−q4
(

q2 − 1
) (

2q14 + q10 + 3q8 − q6 + q4 + 1
)

σ−1
2
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+q10
(

q2 − 1
)2 (

q2 + 1
) (

q12 − q10 + 3q8 − q6 + 3q4 + 1
)

σ1σ1

+
(

−q24 + 3q22 − 3q20 + q18 + q16 − 5q14 + 5q12 − 4q10 + q8 + 2q6 − 2q4 + q2
)

σ1σ2

−q10
(

q10 − 2q8 + q6 − q4 − q2 + 1
)

σ1σ
−1
2 +q4

(

q4 − q2 + 1
) (

q8 + q2 − 1
)

σ−1
1 σ2

−q6
(

q8 − q6 + q4 − q2 + 1
)

σ−1
1 σ−1

2

+
(

−q24 + 3q22 − 3q20 + q18 + q16 − 5q14 + 5q12 − 4q10 + q8 + 2q6 − 2q4 + q2
)

σ2σ1

+q4
(

q4 − q2 + 1
) (

q8 + q2 − 1
)

σ2σ
−1
1 +

(

q22 − q24
)

σ2σ2

−q10
(

q10 − 2q8 + q6 − q4 − q2 + 1
)

σ−1
2 σ1−q6

(

q8 − q6 + q4 − q2 + 1
)

σ−1
2 σ−1

1

+0σ1σ1σ2+q16
(

q2 − 1
)

σ1σ1σ
−1
2

+
(

3q22 − 6q20 + 4q18 − q16 − 2q14 + 5q12 − 3q10 + 3q8 − q4 + q2
)

σ1σ2σ1

+q4
(

q12 − 2q10 + q8 − q6 − q4 + q2 − 1
)

σ1σ2σ
−1
1 +q20

(

q2 − 1
)

σ1σ2σ2−q12σ1σ
−1
2 σ1

+0σ1σ
−1
2 σ−1

1 +q4
(

q12 − 2q10 + q8 − q6 − q4 + q2 − 1
)

σ−1
1 σ2σ1

+
(

q10 − q8 + q6
)

σ−1
1 σ2σ

−1
1 +0σ−1

1 σ2σ2+0σ−1
1 σ−1

2 σ1

+q8
(

q4 − q2 + 1
)

σ−1
1 σ−1

2 σ−1
1 +0σ2σ1σ1+q20

(

q2 − 1
)

σ2σ2σ1

+0σ2σ2σ
−1
1 +q16

(

q2 − 1
)

σ−1
2 σ1σ1+

(

q18 − q20
)

σ1σ1σ2σ1

+
(

q18 − q20
)

σ1σ2σ1σ1+
(

q18 − q20
)

σ1σ2σ2σ1+0σ2σ1σ1σ2
)

=
(

(

q2 − 1
)2 (

q2 + 1
) (

q4 + 1
) (

q4 − q2 + 1
)2
)−1

×

(

−q2
(

q2 − 1
) (

q4 + 1
) (

q24 − q22 + 2q18 − 2q16 + q12 − 2q10 − q4 + q2 − 1
)

1

−q2
(

q30 − 3q28 + 5q26 − 4q24 + 2q20 − 3q18 + q16 + 2q14 − q12 + 2q10 − 2q6 + 2q4 − 2q2 + 1
)

σ1

+
(

−q26 + 2q24 − 2q22 + q20 + q18 − q16 + q14 − q10 + q8 − q6 + q4
)

σ−1
1

+q2
(

q26 − 2q24 + 2q22 − 4q18 + 8q16 − 9q14 + 5q12 − 5q8 + 6q6 − 5q4 + 3q2 − 1
)

σ2

−q4
(

q18 − q16 + q12 − 2q10 + q6 − q4 + q2 − 1
)

σ−1
2

+
(

q30 − 2q28 + 3q26 − 2q24 − q18 + q12
)

σ1σ1

−q2
(

q24 − 3q22 + 3q20 + q18 − 5q16 + 9q14 − 7q12 + 3q10 − 3q6 + 3q4 − 2q2 + 1
)

σ1σ2

+
(

q18 − q10 + q8 − q6 + q4
)

σ1σ
−1
2

+q4
(

q4 − q2 + 1
) (

q14 − q12 + q10 − q6 + q4 − q2 + 1
)

σ−1
1 σ2−q6σ−1

1 σ−1
2

−q6
(

q20 − 2q18 + 2q16 − q12 + 3q10 − 2q8 + q4 − 2q2 + 1
)

σ2σ1

+q6
(

q4 − q2 + 1
) (

q8 + q2 − 1
)

σ2σ
−1
1 −q14

(

q2 − 1
) (

q4 + 1
) (

q6 − q2 + 1
)

σ2σ2

−q12
(

q10 − 2q8 + q6 − q4 − q2 + 1
)

σ−1
2 σ1

−q2
(

q14 − q10 + q8 + q6 − 2q4 + 2q2 − 1
)

σ−1
2 σ−1

1 +q14
(

q4 − q2 + 1
)

σ1σ1σ2

−q16σ1σ1σ
−1
2 +q6

(

2q18 − 4q16 + 2q14 + q12 − 3q10 + 5q8 − 2q6 + q4 − 1
)

σ1σ2σ1

+q6
(

q4 + 1
) (

q8 − 2q6 + q2 − 1
)

σ1σ2σ
−1
1 +q14

(

q10 − q8 + q4 − q2 + 1
)

σ1σ2σ2

−q14σ1σ
−1
2 σ1+

(

q2 + 1
) (

q5 − q3 + q
)2σ1σ

−1
2 σ−1

1 −q8
(

q2 − 1
) (

q4 + 1
)

σ−1
1 σ2σ1

+q8
(

q4 − q2 + 1
)

σ−1
1 σ2σ

−1
1 −q16

(

q4 − q2 + 1
)

σ−1
1 σ2σ2+0σ−1

1 σ−1
2 σ1

+
(

−q8 + q6 − q4
)

σ−1
1 σ−1

2 σ−1
1 +0σ2σ1σ1+q22

(

q2 − 1
)

σ2σ2σ1
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+0σ2σ2σ
−1
1 +q18

(

q2 − 1
)

σ−1
2 σ1σ1+q12

(

q2 − 1
) (

q4 + 1
)

σ1σ1σ2σ1

+
(

q20 − q22
)

σ1σ2σ1σ1+
(

q20 − q22
)

σ1σ2σ2σ1+0σ2σ1σ1σ2
)
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