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Abstract. We compute the modular data (that is, the S and T matrices) for the
centre of the extended Haagerup subfactor [BMPS12]. �e full structure (i.e. the
associativity data, also known as 6-j symbols or F matrices) still appears to be
inaccessible. Nevertheless, starting with just the number of simple objects and
their dimensions (obtained by a combinatorial argument in [MW14]) we �nd
that it is surprisingly easy to leverage knowledge of the representation theory of
SL(2,Z) into a complete description of the modular data. We also investigate
the possible character vectors associated with this modular data.

1. Introduction

�e extended Haagerup subfactor provides perhaps the strangest currently
known example of a quantum symmetry.
Fusion categories provide a suitable axiomatization for the notion of quantum

symmetry: they are the �nitely semisimple rigid tensor categories. �e fundamental
examples are the representation categories of �nite groups (over C), but there are
many others. �e semisimpli�ed representation category of a quantum enveloping
algebra Uqg at a suitable root of unity gives another source of examples.

�e remarkable discovery of an interesting classi�cation of �nite depth subfactors
above index 4, initiated by Haagerup [Haa94], began to provide examples beyond
these ‘classical’ ones. In particular, each �nite depth subfactor N ⊂ M gives a
pair of Morita equivalent unitary fusion categories, as the categories of N − N
andM −M bimodules. Haagerup and Asaeda constructed ‘exotic’ subfactors in
[AH99], and the last missing case in Haagerup’s classi�cation between index 4 and
3 +
√

3 was provided by the construction by Bigelow-Morrison-Peters-Snyder of
the extended Haagerup subfactor [BMPS12]. Some of these fusion categories are
distinctly di�erent from those arising from �nite groups or quantum groups: in
particular the fusion categories coming from the Haagerup and extended Haagerup
subfactors cannot be de�ned over any cyclotomic �eld [MS12].
Since the discovery of these examples, there has been some progress towards

organising them. In particular, the theory of quadratic categories has been de-
veloped, particularly by Izumi [Izu01, Izu15] and Evans-Gannon [EG11, EG14].
�ese are categories with a group of invertible objects, and under the action of this
group by le� and right tensor product, just one other double coset. �e category of
N − N bimodules of the Haagerup subfactor is a quadratic category. While the
fusion categories coming from the Asaeda-Haagerup subfactor are not quadratic,
work of Grossman-Izumi-Snyder [GIS15] shows that they are Morita equivalent to
quadratic categories.

�is leaves us with the following remarkable observation: the extended Haagerup
fusion categories are the only known fusion categories not known to be related
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to �nite groups, quantum groups, and quadratic categories. While this almost
surely only re�ects our feeble ability to discover and construct fusion categories,
nevertheless these categories remain uniquely interesting objects.

Every fusion category has a braided centre, which is a modular tensor category.
�is paper tackles the problem of describing the braided centre of the extended
Haagerup categories. While we do not give a full description (in particular the
associators), we produce the modular data, that is, the S and T matrices.
Recently, Morrison-Walker discovered [MW14] that a purely combinatorial ar-

gument determines the number of simple objects, and their dimensions, in the
centre of extended Haagerup. �is paper uses that just that information, and by
representation theoretic arguments determines the modular data.
More generally, fusion categories are notoriously di�cult to classify, and we

hope that the methods described here can be developed into part of a machine for
analysing potential new examples. As a precedent, the classi�cations of rank 2 and
of rank 3 fusion categories [Ost03, Ost13] have relied heavily on understanding
the possible modular centres. In fact, the arguments Sections 6, 7, and 8 have been
automated as part of a developing Mathematica package, which for example
can also perform the analogous arguments for the Haagerup and Asaede-Haagerup
categories.
It seems likely that every unitary modular tensor category can be realised as

the representation category for some strongly rational vertex operator algebra,
and as such a CFT would o�er at least some ‘explanation’ for the existence of the
extended Haagerup subfactor. We explore what can be said about such an object.
In particular, we are able to describe the possible character vectors associated to
such a CFT. For c = 8 or c = 16, we can completely enumerate them; for c = 24
we at least show that there are plausible candidates.

Both the Haagerup and extended Haagerup subfactors see the prime 13. Is this
a coincidence? �e 13 enters their modular data in apparently di�erent ways:
through the inequivalent irreps we call ρ(13)

5 and ρ(13)
14 for the Haagerup and the

extended Haagerup respectively. However ρ(13)
14 lies in the symmetric square of

ρ
(13)
5 , and we will see in Section 10.2 that the possible character vectors for both (at
the smallest possible value of central charge, namely c = 8) are built from theta
functions of the la�ice L = A352[1, 1

4
], using notation of [CS99]. In particular,

our work suggests that there may be a natural relation between the (still hypo-
thetical) extended Haagerup VOA VEH and the square VHaag ⊗ VHaag of the (still
hypothetical) Haagerup VOA.

2. Background

�roughout we write ξm = e2πi/m, ZN = Z/NZ.

2.1. From subfactors to modular tensor categories. A fusion category C is a
C-linear semi-simple rigid monoidal category with �nitely many isomorphism
classes of simple objects and �nite-dimensional spaces of morphisms, such that
the endomorphism algebra of the unit object 1 is C. A ∗-operation on C is a
conjugate-linear involution Hom(x, y)→ Hom(y, x) satisfying (fg)∗ = g∗f ∗ and
(f ⊗ h)∗ = f ∗ ⊗ h∗ for all f ∈ Hom(x, y), g ∈ Hom(z, y) and h ∈ Hom(z, w). A
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∗-operation is called positive if f ∗f = 0 implies f = 0. A category equipped with
a positive ∗-operation is called unitary or C∗.
Given a �nite index and depth subfactor N ⊂M of Type II1 factors, we obtain

two unitary fusion categories: the principal even part consisting of the N -N bi-
modules which occur as summands of tensor powers of NMN , and the dual even
part, consisting of theM -M bimodules occurring as summands of tensor powers
of MM ⊗N MM .
Let C be any fusion category. Write Φ(C) for its set of isomorphism classes of

simple objects. So rank C = ‖Φ(C)‖. �e Grothendieck ring K(C) of C is also
called its fusion ring. Given [x], [y] ∈ Φ(C), the structure constants N [z]

[x],[y] ∈ Z≥0

of the fusion ring de�ned by [x][y] =
∑

[z] N
[z]
[x],[y][z] are called the fusion coe�cients.

A dimension on C is a ring homomorphism from the fusion ring K(C) to C; the
Perron-Frobenius dimension PFdim of C is the unique dimension taking positive real
values on all non-zero objects.

A modular tensor category is a spherical braided fusion category C satisfying
a certain nondegeneracy condition. De�ne a matrix S̃, with rows and columns
indexed by Φ(C), by S̃[x],[y] = trx⊗y(cy,x ◦ cx,y), where cx,y is the braiding. �en S̃
is well-de�ned; the non-degeneracy condition is that S̃ be invertible. In a modular
tensor category, S̃ is symmetric, and the values S̃[1],[x] de�ne a dimension dim(x)
on C. If in addition C is unitary, dim= PFdim.

Given a fusion category C, the (braided) centre or (quantum) double construction
associates to it a modular tensor category Z(C). �e forgetful functor Z(C)→ C
de�nes a ring homomorphism on the fusion rings and (hence) preserves dimensions.
�e forgetful functor has an adjoint called the induction functor. Given a �nite
index and depth subfactor N ⊂M , we obtain a (unitary) modular tensor category
by applying the centre construction to its principal even part. �e modular tensor
category associated to the dual even part will be equivalent, but the two induction
functors can carry independent information, as we’ll see.
Given a fusion category C, or for that ma�er a subfactor N ⊂ M , it is very

di�cult to determine the centre Z(C). A surprising discovery of Morrison–Walker
is that it is o�en possible to determine a unique possibility for the induction functor
at the level of the fusion rings.

De�ne a diagonal matrix T̃ , with rows and columns indexed by Φ(C), by T̃[x],[y] =

δ[x],[y](trx ⊗ idx)(cx,x). �en T̃ is well-de�ned and unitary. �e assignment s 7→ S̃,
t 7→ T̃ de�nes a projective representation of the modular group SL(2,Z) = 〈s, t〉,
where we put s = ( 0 1

−1 0 ) , t = ( 1 1
0 1 ). �e permutation matrix de�ned by C[x],[y] =

δ[y],[x∨] (where x∨ is the right or le� dual of x) satis�es C2 = I and commutes with
both S̃ and T̃ — it is o�en called charge-conjugation. Verlinde’s formula computes
the fusion coe�cients of a modular tensor category C in terms of S̃:

(1) N
[z]
[x],[y] = D−2

∑
[w]∈Φ(C)

dim([w])−1S̃[x],[w]S̃[y],[w]S̃[z∨],[w]

where D2 =
∑

[x]∈Φ(C) dim([x])2.
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2.2. Modular data and congruence representations. A modular tensor cate-
gory is a fairly complicated beast. Remarkably, a highly constrained combinatorial
invariant of a modular tensor category seems close in practise to being a complete
invariant.

De�nition 2.1. Let Φ be a �nite set of labels, one of which (call it 1) is distinguished.
By modular data we mean matrices S = (Sxy)x,y∈Φ, T = (Txy)x,y∈Φ of complex
numbers such that
(a) S is unitary and symmetric; T is unitary and diagonal;
(b) S1,x ∈ R× for all x ∈ Φ; there is some o ∈ Φ such that So,x > 0 for all x ∈ Φ;
(c) S2 = (ST )3;
(d) the numbers de�ned by

(2) N z
xy =

∑
w∈Φ

SxwSywSzw
S1w

are nonnegative integers, where the bar denotes complex conjugation.

�ematrices S̃, T̃ coming from a modular tensor category can always be rescaled
so as to give modular data (with 1 being [1]) — in particular, S = D−1S̃ (D is de�ned
only up to a sign, but the sign should be chosen so thatD−1S̃ has a strictly positive
row). When the modular tensor category is unitary, o in (b) is also [1]. When the
modular tensor category is the centre of a fusion category, then T = T̃ .

�e surprising lesson of this paper is that, although it is very di�cult in general
to obtain the modular tensor category from a fusion category or subfactor, it can
be surprisingly easy to obtain the corresponding modular data.
�ere are several easy consequences of the de�nition of modular data. One is

that it de�nes a (unitary) SL(2,Z)-representation ρ through s 7→ S, t 7→ T . We will
o�en call this ρ modular data. Also, C = S2 is a permutation matrix Cx,y = δy,x∨
commuting with S and T , and satis�es C2 = I and
(3) Sx,y = Sx∨,y ∀x, y ∈ Φ .

Hence 1∨ = 1 and o∨ = o; moreover, C = I i� S is real. �e Perron–Frobenius
dimensions are PFdim(x) = Sxo

S0o
. When PFdim(x) = 1, then x x∨ = 1 in the fusion

ring, and this has signi�cant consequences for S and T (but as we won’t use these,
we won’t write them down).

�e numbers Sxy lie in some cyclotomic �eld Q[ξN ]. �en for each Galois
automorphism σ ∈ Gal(Q[ξN ]/Q), there is a permutation x 7→ xσ of Φ and signs
εσ : Φ→ {±1} such that
(4) σ(Sxy) = εσ(x)Sxσ ,y = εσ(y)Sx,yσ .

For example, complex conjugation corresponds to (3), i.e. to the permutation
x 7→ x∨ and signs ε(x) = +1.
Verlinde’s formula (2) tells us the ratios Sxy/S1y, being eigenvalues of the in-

teger matrix Nx = (N b
xa)a,b∈Φ, must be algebraic integers. Hence for any Galois

automorphism σ, both S1σ ,1/S11 and
εσ(1σ

−1
)

εσ(1)
σ

(
S1σ−11

S11

)
=

(
S1σ1

S11

)−1
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are algebraic integers. But recall that dimx = Sx1/S11 for any x ∈ Φ. �us we
know that dim(1σ) is an algebraic unit for all σ. �is observation will help us
identify later the Galois orbit of the unit 1.
Of course, Gal(Q[ξN ]/Q) ∼= Z×N , where the correspondence σ ↔ l is given by

σ(ξN) = ξlN . We’ll write σl for the automorphism corresponding to l ∈ ZN . For
example, complex conjugation is σ−1. We can say much more for the modular data
associated to a modular tensor category.

We let Γ(N) denote the principal congruence subgroup
{A ∈ SL(2,Z) |A ≡ I (mod N)} .

We callN the conductor of an SL(2,Z)-representation ρ ifN is the smallest positive
integer such that Γ(N) is in the kernel of ρ (and N = ∞ if no Γ(M) is in the
kernel). We call N the conductor of a �eld K ⊇ Q if N is the smallest positive
integer such that K ⊆ Q[ξN ] (and N =∞ if no cyclotomic �eld contains K).

Proposition 2.2 (c.f. [NS10, �eorem 6.8] [CG99, Ban03]). Let S, T, ρ be the mod-
ular data of a modular tensor category. Let N be the order of T . �en N < ∞, N
equals the conductor of ρ, and N is a multiple of the conductor of the �eld Q[S]
generated by all entries Sxy. Moreover,

(5) Txσ ,xσ = T l
2

xx for σ = σl

for any σ ∈ Gal(Q[ξN ]/Q). If we de�ne a signed permutation matrix Gσ by
(Gσ)x,y = εσ(x)δy,xσ , then

(6) Gσ = CST 1/lST lST 1/l for σ = σl ,

where ‘1/l’ denotes the inverse mod N of l.

Now, Γ(N) is normal in SL(2,Z), with quotient SL(2,Z)/Γ(N) ∼= SL(2,ZN).
�us this fact tells us that ρ factors through to a representation of the �nite group
SL(2,ZN), which we will also denote by ρ. It also tells us that Gσ = ρ(γ), where γ
is any element in SL(2,Z) congruent mod N to

(
` 0
0 1/`

)
, where σ = σl.

We write χ(N)
i for the SL(2,ZN)-character denoted X.i by GAP, and denote

by ρ(N)
i the corresponding representation. �is labelling is generally not unique,

and depends on how the conjugacy classes are identi�ed with the columns of
GAP’s character table, but for the SL(2,ZN) we need, we will make this explicit.
For example, for SL(2,Z2) we assign the generators S, T to class 2a, while for
SL(2,Z3) we assign S, T to class 4a and 3b, respectively. An SL(2,ZN)-irrep ρ
obeys ρ(−I) = ±I . If it is +I we call ρ even, in which case it factors through to an
irrep of PSL(2,ZN); if ρ(−I) = −I , we call ρ odd.
Given a d-dimensional SL(2,Z)-representation ρ, write T (ρ) for the multiset
{t1, . . . , td} where {e2πitj} is the list of eigenvalues of ρ(t). For us, ρ(t) will al-
ways have �nite order, so the tj ∈ Q/Z. One easy consequence of an SL(2,Z)-
representation ρ having �nite conductor N is that the multiset of T l2-eigenvalues
is independent of l ∈ Z×N :
(7) {t1, . . . , td} = {l2t1, . . . , l2td} for all l ∈ Z×N .

To see this, note that in SL(2,ZN), tl2 equals t conjugated by
(
` 0
0 1/`

)
, and so T l2

must have the same multiset of eigenvalues as T .
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Let
∏

p p
νp be the prime decomposition ofN . By the Chinese Remainder�eorem,

the group SL(2,ZN) is isomorphic to the direct product of the SL(2,Zpνp ). �is
implies that the irreps of SL(2,ZN) are the tensor products ⊗pρp, where each ρp is
an irrep of SL(2,Zpνp ).

For example, the even 1-dimensional SL(2,Z)-representations are ρ(1)
1 , ρ

(3)
2 , ρ

(3)
3 ,

while the odd ones are ρ(2)
2 , ρ

(2)
2 ⊗ ρ

(3)
2 , ρ

(2)
2 ⊗ ρ

(3)
3 . �ese have

T (ρ) = {0},
{

2

3

}
,

{
1

3

}
,

{
1

2

}
,

{
1

6

}
,

{
5

6

}
,

respectively.
Finally we have Cauchy’s theorem for modular tensor categories, recently proved

in [BNRW13]:

Proposition 2.3. �e primes dividing the conductor of a modular tensor category
are the same primes that divide the norm of its global dimension.

(�is result is not actually essential to what follows. Our �rst derivation of the
modular data did not use this, but it considerably simpli�es the analysis.)

3. Galois actions

Lemma 3.1. Suppose a simple object x has Txx a root of unity with order Nx =∏
p p

µp . �en the number of distinct eigenvalues of T in the full Galois orbit of x is

k(Nx) = max{1, 2µ2−3}
∏

2<p|Nx

pµp−1(p− 1)/2

= Nx2
−min{µ2,3}

∏
2<p|Nx

1

2

(
1− 1

p

)
.

�e size of the full Galois orbit is thus a multiple of k(Nx).

Proof. Suppose the order of T is N , some multiple of Nx. For any ` ∈ Z×Nx , there is
an `′ ∈ Z×N with `′ ≡ ` (mod Nx). Now

Tσ`′xσ`′x = T `
′2

xx = T `
2

xx.

�us there are as many distinct eigenvalues of T in the orbit of x as there are
images of the squaring map in Z×Nx .
Now, Z×mn ∼= Z×m × Z×n if gcd(m,n) = 1. Moreover, Z×pn ∼= Zpn−1(p−1) for prime

p 6= 2 and any n, and Z×2n ∼= Z2 × Z2n−2 for n ≥ 2. �ose well-known facts give
us the structure of any Z×N , and hence the cardinality of the image of the squaring
map, as given above. �

Corollary 3.2. Let S, T be the modular data of some modular tensor category. Sup-
pose a prime p divides the conductor of Q[dx] for some x ∈ Φ, and ‖Φ‖< p(p− 1)/2.
�en the order N of T is pM , whereM is coprime to p.

Proof. Since dx = Sx1/S11, Q[dx] ⊆ Q[S]. Certainly p divides N , by Lemma 1.2.
If p2 divides N , then there would be some y ∈ Φ with root of unity Tyy having
order Ny a multiple of p2. �en Lemma 3.1 would imply ‖Φ‖≥ k(Ny) ≥ k(p2) =
p(p− 1)/2, a contradiction. �
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4. Basic lemmas

Let S, T be the modular data coming from a modular tensor category, and let
ρ be the corresponding SL(2,Z) representation. Write N for the order of T and
Φ for the set of simple objects. Recall the multiset T (ρ) = {tx}x∈Φ de�ned last
section, so Txx = exp(2πitx). As always, 1 ∈ Φ denotes the unit and x∨ the dual.

In the following, we will assume for convenience that T11 = 1, and that Sx1 > 0.
Both are true for instance for the double of any subfactor (as categorical dimensions
coincide with Frobenius-Perron dimensions, which are positive). All of our results
can be easily generalised when those assumptions are dropped.

Because ρ is a representation of the �nite group SL(2,ZN), it decomposes into a
direct sum ρ ∼= ⊕i∈I ρi of irreps. Our strategy will be to control the possibilities
for this decomposition. Write Si = ρi(s) and Ti = ρi(t). Like ρ, each ρi is a matrix
representation; bases Φi are chosen so that each Ti is diagonal. �en there will
exist an invertible matrix Q, with entries Qiz,x for i ∈ I, z ∈ Φi, x ∈ Φ, such
that S = Q−1(⊕iSi)Q and T = Q−1(⊕iTi)Q. Write N =

∏
p p

νp as before; then
ρi ∼= ⊗pρi,p where ρi,p is some irrep of SL(2,Zpνp).
Call i ∈ I even resp. odd if the subrepresentation ρi is even resp. odd. Call a

simple object x unique if tx occurs with multiplicity one in T (ρ).
Let’s collect some simple observations. (See [BNRW15, §3] for some related

statements.)

Lemma 4.1.
(a) If Qiz,x 6= 0 or (Q−1)x,iz 6= 0, then Ti; zz = Txx.
(b) Suppose Sxy 6= 0. �en both tx, ty ∈ T (ρi) for some index i ∈ I .
(c) For each x ∈ Φ, write tx =

∑
p
mp
pνp

for mp ∈ Z; then there is a (not necessarily
unique) index ix ∈ I such that both 0,mp/p

νp ∈ T (ρix,p) for all p.
(d) Suppose x ∈ Φ is unique. �en ix de�ned in (c) is unique. Let x̂ denote the

unique index in Φix with Tix; x̂x̂ = Txx. �en for all i ∈ I, z ∈ Φi, y ∈ Φ,
Qiz,x = Qxδiixδzx̂ and Qixx̂,y = Qxδxy, for some nonzero Qx.

(e) Suppose x, y ∈ Φ are both unique and that ix = iy. �en Six; x̂ŷQ2
y = Six; ŷx̂Q2

x

and Sxy = Six; x̂ŷQy/Qx.
(f) Suppose x ∈ Φ is unique and 0 ∈ T (ρix) has multiplicity one. Write zx for

the unique index in Φix with Tix;zxzx = 1. �en for any y ∈ Φ with Tyy = 1,
Sxy = Six; x̂zxQzx,y/Qx = (Q−1)y,ixzxQxSix; zxx̂.

(g) For each r ∈ T (ρ), let

n+(r) =
∑

even i∈I

multT (ρi)(r)

and
n−(r) =

∑
odd i∈I

multT (ρi)(r).

�en n+(r) + n−(r) = multT (ρ)(r) and n+(r) − n−(r) is the number of x =
x∨ ∈ Φ with tx = r. In particular, n+(r) ≥ n−(r).

Proof. Because both T and ⊕iTi are diagonal, the (iz, x)-entries of QT = (⊕iTi)Q
and TQ−1 = Q−1(⊕iTi) give (a). To see (b), suppose Sxy 6= 0. Since Sxy =∑

i,a,b(Q
−1)x,iaSi; abQib,y , this means there is some indices i ∈ I and a, b ∈ Φi such
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that both (Q−1)x,ia, Qib,y 6= 0. From (a), this gives (b). Part (c) now follows from
(b) and Sx1 6= 0: T (ρi;p) ⊂ p−νpZ/Z and any r ∈ T (ρ) will have a unique (mod 1)
expression as a sum

∑
pmp/p

νp . Part (d) is immediate from (a). Parts (e) and (f)
now follow from Syx = Sxy = (Q−1 (⊕iSi)Q)xy.
To see part (g), restrict charge-conjugation S2 = Q−1 (⊕iS2

i )Q to the x ∈ Φ
with tx = r. �e trace of that permutation submatrix will equal the number of
self-dual x with tx = r; since S2

i = ±I depending on whether ρi is even or odd,
that trace will also equal n+(r)− n−(r). �

5. Dimensions

In [MW14], the combinatorial data A : K0(Z(C)) → K0(C) of the restriction
functor Z(C)→ C was obtained, when C is both the principal even and dual even
fusion categories of the extended Haagerup. �ese are respectively

AEH1 =


1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 2 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 2 1 1 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
0 4 1 2 4 2 3 3 3 3 4 4 4 4 3 3 3 3 1 1 1 1
0 5 1 4 2 3 3 3 3 3 5 5 5 5 4 4 4 4 1 1 1 1
0 3 1 1 2 2 1 1 1 1 3 3 3 3 2 2 2 2 1 1 1 1



AEH2 =



1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
0 2 1 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
0 4 1 1 4 3 3 3 3 3 4 4 4 4 3 3 3 3 1 1 1 1
0 4 1 3 2 2 2 2 2 2 4 4 4 4 3 3 3 3 1 1 1 1
0 4 1 3 2 2 2 2 2 2 4 4 4 4 3 3 3 3 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0


.

�e matrices corresponding to the induction functors are the transposes. �e 22
columns correspond to the 22 simple objects Φ in the centre Z(C). �e columns
have been ordered so that the �rst column corresponds to the tensor unit. For
reasons which will be clear shortly, we will name these 22 simple objects, in
order, ω0, ω1, ω2, α1, α2, α3, β1, . . . , β4, γ1, . . . , γ4, δ1, . . . , δ4, ε1, . . . , ε4. Here ω0 is
the tensor identity.

Each restriction matrix tells us two things. First, the image of the tensor identity
in C (namely the �rst row in AC) will be an eigenvector of both S and T , with
eigenvalue 1 and T11 respectively [EG11, �eorem 1]. As in any centre, we can
take T11 = 1 here; this tells us for instance that

(8) Tωiωi = 1 = Tαjαj

for all 0 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Second and far more important, we obtain the
dimensions dim x for the simple x in Z(C): these dimensions are the components of
the Perron–Frobenius eigenvector of the matrix AtCAC , normalised so that dim 1 =
1. Its eigenvalue will be the global dimension D =

√∑
x∈Φ dim(x)2. Of course,

S1x = Sx1 = dim(x)
D .
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Numerically, these dimensions are approximately 1, 177.701, 49.396, 114.049
(7 times), 176.701 (4 times), 128.304 (4 times), and 48.396 (4 times), respectively,
and the global dimension D is approximately 570.246. When they are computed
exactly, they are all found to lie in the degree-3 extension Qdim of Q in Q[ξ13].
More precisely, Qdim has a basis 1, ζ = 2 cos(2π/13) + 2 cos(10π/13) and ζ ′ =
2 cos(4π/13) + 2 cos(6π/13) over Q; then

S11 =
7− 5ζ ′

65
, S1,ω1 =

12 + 5ζ + 5ζ ′

65
, S1,ω2 =

7− 5ζ

65
,(9)

S1,αi = S1,βj =
1

5
,

S1,γj =
1 + ζ + 2ζ ′

13
, S1,δj =

1 + 2ζ + ζ ′

13
, S1,εj =

−ζ + ζ ′

13
.

6. Galois action and the conductor

�eorem 6.1. Any modular data compatible with the restriction matrices given in
the last section has

(1) conductor N = 5× 13,
(2) �rst 3 rows and columns of S determined by

Sωi,x = Sx,ωi = σi16S1,x,

where σl(ξ65) = ξl65, and
(3) (i) the objects {ωi} forming a single Galois orbit,

(ii) the objects {α1, . . . , α3, β1, . . . , β4} forming a union of Galois orbits,
and

(iii) the objects {γ1, . . . , γ4, δ1, . . . , δ4, ε1, . . . , ε4} either forming a single Ga-
lois orbit of size 12, or forming two Galois orbits of size 6, each of which
containing two each of the γi, δi, and εi.

Proof. De�ne σ̄l ∈ Gal(Q[ξ13]/Q) by σ̄l(ξ13) = ξl13. We see that Gal(Qdim/Q) =
{σ̄1, σ̄3, σ̄9}.

�enD = 295+125ζ+175ζ ′, which has normDσ̄3(D)σ̄2
3(D) = 21125 = 53132.

By Cauchy’s theorem for modular tensor categories (Fact 2.3), the order N of T
will be 5a13b for some a, b ≥ 1. By Corollary 3.2, b = 1.

Whatever the value of the conductor, we have a surjective map π : Z×N →
{σ̄1, σ̄3, σ̄9}, corresponding to the restriction of σ ∈ Gal(Q[ξN ]/Q) toQdim, which
we’ll write πσl = σ̄πl3 .

From (4) and S1x > 0, we obtain the sign εl(x) = sign(σlS1,x) for any l ∈ Z×N
and any x ∈ Φ. Since σ̄3(S1,1) = S1,ω1 and σ̄2

3(S1,1) = S1,ω2 , σ̄3(S1,α1) = S1,α1 ,
σ̄3(S1,γ1) = −S1,δ1 , σ̄3(S1,δ1) = S1,ε1 , we obtain

εl(ωi) = εl(αi) = εl(βj) = εσ̄3(δj) = +1 , εσ̄3(γj) = εσ̄3(εj) = −1 , ∀i, l, j .

Moreover, Z×N sends {α1, . . . , α3, β1, . . . , β4} to itself, and

ωσli = ωi+π(l) ∀i, l .

When π(l) = 1, σl sends {γ1, . . . , γ4} → {δ1, . . . , δ4} → {ε1, . . . , ε4} → {γ1, . . . , γ4}.
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Using this Galois action, we obtain Sωi,x = σ̄i3S1,x for i = 1, 2. �us we know
the �rst 3 rows and columns of S (as well as the �rst 6 diagonal elements of T , of
course).
Because we know N = 5a13, there will exist a unique order-3 element l in Z×N

with π(l) = 1, namely l ≡ 3 (mod 13) and l ≡ 1 (mod 5a). We will also use σ̄3

to denote this element of Gal(Q[ξN ]/Q). As the elements of the sets {γ1, . . . , γ4},
{δ1, . . . , δ4}, and {ε1, . . . , ε4} are at this point indistinguishable, we may choose
σ̄3(γi) = δi, σ̄3(δi) = εi, and σ̄3(εi) = γi.

�us we see that the objects {γ1, . . . , γ4, δ1, . . . , δ4, ε1, . . . , ε4} form between one
and four Galois orbits, with these orbits having size a multiple of 3. But (5) implies
that the length of this Galois orbit must be even if Tγi,γi has order a multiple of 5,
and the length must be a multiple of 6 if the order is a multiple of 13. �is gives us
(iii).

Suppose now that 52 divides N . �en there is a simple object x with Txx a root
of unity with order Nx divisible by 25. By Lemma 3.1, the Galois orbit containing x
has size a multiple of 10. From the above, this is impossible. �us we have proved
that N = 5× 13.
Finally we see that σ̄3 is σ16 ∈ Gal(Q[ξ65]/Q). �

7. The group of 12

�e character table of SL(2,Z13) (computed from GAP) is given in Figure 1.
�e number A = (1 −

√
13)/2, so labelled because it is a Galois associate of

A = (1 +
√

13)/2. Class 2a is the central element, s and t correspond to class 4a
and 13a respectively, while 12a generates the Galois group Z×13.

Proposition 7.1. Let ρ be the SL(2,Z)-representation ρ coming from the modular
data of the centre of the extended Haagerup. �en ρ ∼= ρ

(13)
14 ⊕ ρ(5), where ρ(5) is some

representation whose kernel contains Γ(5).

Proof. We learned in �eorem 6.1 that the full Galois group leaves invariant the
sets {ωi}, {αi} ∪ {βi}, and {γi} ∪ {δi} ∪ {εi} of simples. We also know that the
order of T is N = 5× 13.
Consider Φ13, the set of those simples x whose Txx has order a multiple of 13.

Because of Equation (5), the set Φ13 is a union of Galois orbits. By Lemma 3.1, each
such orbit has size divisible by 13−1

2
= 6. �e set Φ13 cannot contain an αi or ωi

(because their T is 1), nor βi (because those either have T = 1 or form Galois orbits
of cardinality ≤ 4). So we have Φ13 ⊆ {γi} ∪ {δi} ∪ {εi}.
From the character table we �nd that the only nontrivial irreps ρ′ of SL(2,Z13)

for which 0 ∈ T (ρ′) are ρ(13)
4 , ρ(13)

5 , and the irreps ρ(13)
12 to ρ(13)

17 .
First, suppose for contradiction that ρ contains a subrepresentation of the form

ρ13 ⊗ ρ5, where ρ13 resp. ρ5 are irreps with conductor exactly 13 resp. 5. If ρ5 has
dimension at least 3, then (ρ13⊗ρ5)(t) will have at least 6×3 = 18 diagonal entries
with order a multiple of 13, contradicting ‖Φ13‖≤ 12. Hence ρ5 has dimension
2, so by the same argument all Φ13 is accounted for by ρ13 ⊗ ρ5, and any other
subrepresentation of ρ must have conductor coprime to 13 (and hence dividing
5). But dim ρ5 = 2 implies 0 6∈ T (ρ5) thanks to Equation (5), and this contradicts
Lemma 4.1(c).
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1a 26a 26b 2a 13a 13b 14a 7a 7b 7c 14b 14c 12a 3a 4a 6a 12b
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 6 A A −6 −A −A 1 −1 −1 −1 1 1 . . . . .
χ3 6 A A −6 −A −A 1 −1 −1 −1 1 1 . . . . .
χ4 7 A A 7 A A . . . . . . −1 1 −1 1 −1
χ5 7 A A 7 A A . . . . . . −1 1 −1 1 −1
χ6 12 −1 −1 12 −1 −1 B D C B D C . . . . .
χ7 12 −1 −1 12 −1 −1 C B D C B D . . . . .
χ8 12 −1 −1 12 −1 −1 D C B D C B . . . . .
χ9 12 1 1 −12 −1 −1 −B D C B −D −C . . . . .
χ10 12 1 1 −12 −1 −1 −C B D C −B −D . . . . .
χ11 12 1 1 −12 −1 −1 −D C B D −C −B . . . . .
χ12 13 . . 13 . . −1 −1 −1 −1 −1 −1 1 1 1 1 1
χ13 14 1 1 14 1 1 . . . . . . 1 −1 −2 −1 1
χ14 14 1 1 14 1 1 . . . . . . −1 −1 2 −1 −1
χ15 14 −1 −1 −14 1 1 . . . . . . . 2 . −2 .
χ16 14 −1 −1 −14 1 1 . . . . . . E −1 . 1 −E
χ17 14 −1 −1 −14 1 1 . . . . . . −E −1 . 1 E

A = −ζ2
13 − ζ5

13 − ζ6
13 − ζ7

13 − ζ8
13 − ζ11

13

B = −ζ7 − ζ6
7

C = −ζ3
7 − ζ4

7

D = −ζ2
7 − ζ5

7

E = −ζ7
12 + ζ11

12

Figure 1. �e character table of SL(2,Z13).

Hence ρ ∼= ρ13 ⊕ ρ(5), where every subrepresentation of ρ13 has conductor
exactly 13, and every subrepresentation of ρ(5) has conductor coprime to 13 (hence
dividing 5). Moreover, we know by Lemma 4.1(c) that 0 ∈ T (ρ13). We will
constrain ρ13 by considering the Galois matrix G11 = ρ

(
11 0
0 11−1

)
, which we know

from Proposition 2.2 is a signed permutation matrix. �is permutation x 7→ xσ11

permutes Φ13 without �xed points, since σ̄3 = σ8
11 acts without �xed points.

Likewise, σ11 permutes ω0, ω1, ω2 without �xed points, since σ̄3 does. �erefore σ11

leaves invariant the sets {αi}∪{βj}, as well as that part of {γi}∪{δi}∪{εi} not in
Φ13. Of course, ρ(5)

(
11 0
0 11−1

)
= I since ρ(5) has conductor dividing 5. Together, this

means dim ρ(5) + χ13(12a) = TrG11 is the trace of a signed permutation matrix
with 22− ‖Φ13‖−3 rows, i.e.

(10) dim ρ13 − ‖Φ13‖−χ13(12a) ∈ {3, 5, 6, 7, . . .} .

Here, ‘12a’ refers to the conjugacy class of
(

11 0
0 11−1

)
; the value 4 is excluded because

the trace of a signed permutation matrix of size n× n cannot equal n− 1 (nor be
larger than n).
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Suppose next for contradiction that ‖Φ13‖< 12. �en ‖Φ13‖= 6, and ρ13 is ρ(13)
4

or ρ(13)
5 . In this case, dim ρ13 − ‖Φ13‖−χ13(12a) = 2, a forbidden value. Similarly,

if ‖Φ13‖= 12 but ρ13 is not irreducible, then ρ13
∼= ρ′⊕ρ′′, where ρ′ ∈ {ρ(13)

4 , ρ
(13)
5 }

and ρ′′ ∈ {ρ(13)
2 , ρ

(13)
3 , ρ

(13)
4 , ρ

(13)
5 }. But then dim ρ13−‖Φ13‖−χ13(12a) equals 2 (if

ρ′′ ∈ {ρ(13)
2 , ρ

(13)
3 }) or 4 (if ρ′′ ∈ {ρ(13)

4 , ρ
(13)
5 }), both of which are forbidden.

�us ρ13 is irreducible and of dimension ≥ 13 (since 0 ∈ T (ρ13)), so ρ13 is
one of ρ(13)

12 , . . . , ρ
(13)
17 . We can dismiss ρi ∼= ρ

(13)
15 , ρ

(13)
16 , ρ

(13)
17 out of hand, because

these are odd, contradicting Lemma 4.1(g). Moreover, ρ13
∼= ρ

(13)
12 resp. ρ(13)

13 have
dim ρ13 − ‖Φ13‖−χ13(12a) equal to 0 resp. 1, so also must be dismissed. �e only
remaining possibility is ρ13

∼= ρ
(13)
14 . �

We give an explicit matrix realisation of ρ(13)
14 in Appendix B.

8. The group of 4

So far, we have accounted for the 12 simples {γi} ∪ {δi} ∪ {εi}, as well as 4
simples x with Txx = 1: namely 2 appearing in the ρ(13)

14 (recall Proposition 7.1),
and 2 trivial SL(2,Z)-irreps associated with the two modular invariants
(11) (1 1 1 1 1 1 0 . . . 0)

ᵀ
, (1 1 1 2 1 0 . . . 0)

ᵀ
,

coming from the induction functors. �at leaves unaccounted 6 simples (amongst
{ωi}∪{αi}∪{βi} =: R). We also know ρ ∼= ρ

(13)
14 ⊕ρ(5), where ρ(5) has conductor

exactly 5. Our goal in this section is to identify ρ(5).
In Figure 2 we give the character table of SL(2,Z5) (computed in GAP). Class

5a contains t, class 4a contains both s and
(

2 0
0 2−1

)
, while class 2a contains −I .

�e number A = −2 cos(4π/5) is the unique nontrivial Galois associate of A =
−2 cos(2π/5).

1a 10a 10b 2a 5a 5b 3a 6a 4a
χ1 1 1 1 1 1 1 1 1 1
χ2 2 A A −2 −A −A −1 1 .
χ3 2 A A −2 −A −A −1 1 .
χ4 3 A A 3 A A . . −1
χ5 3 A A 3 A A . . −1
χ6 4 −1 −1 4 −1 −1 1 1 .
χ7 4 1 1 −4 −1 −1 1 −1 .
χ8 5 . . 5 . . −1 −1 1
χ9 6 −1 −1 −6 1 1 . . .

A = −ζ5 − ζ4
5

Figure 2. �e character table of SL(2,Z5).

Proposition 8.1. Let ρ(5) be as in Proposition 7.1. �en ρ(5)
∼= ρ

(5)
8 ⊕ 1⊕ 1⊕ 1.
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Proof. We can write ρ(5) = ρ5 ⊕ ρ1, where every subrepresentation of ρ5 has
conductor exactly 5, and ρ1 consists of exactly (8 − dim ρ5) copies of the trivial
representation 1. �e only Txx we need to constrain are the four βi, because the
other entries inR all have Txx = 1. Recall from �eorem 6.1 that N = 5× 13. Let
Φ5 consist of those x ∈ {β1, . . . , β4} with tx 6= 0. �en tx ∈ 1

5
Z for all x ∈ Φ5, and

any x 6∈ Φ5 ∪ Φ13 has tx = 0.
Suppose for contradiction that ‖Φ5‖< 4. �en ρ5

∼= ρ
(5)
4 or ρ(5)

5 , since by Lemma
4.1(c) 0 ∈ T (ρ5). Suppose ρ5

∼= ρ
(5)
4 (the argument handling its Galois associate

ρ
(5)
5 is identical). �e irrep ρ(5)

4 is generated by matrices

S
(5)
4 =

1

5

 c− c′
√

2c−
√

2c′
√

2c−
√

2c′√
2c−

√
2c′ 2c+ 3c′ −3c− 2c′√

2c−
√

2c′ −3c− 2c′ 2c+ 3c′

 , T
(5)
4 = diag(1, ξ5, ξ

4
5) ,

where c = 2 cos(2π/5), c′ = 2 cos(4π/5). �ese have Galois matrix (recall (6))

G
(5)
2;4 = ST 3ST 2ST 3 =

( −1 0 0
0 0 −1
0 −1 0

)
.

Write x, x′ for the unique simples with Txx = ξ5, Tx′x′ = ξ4
5 . �en by Lemma

4.1(e),(f) and S1x = S1x′ > 0, we would obtain Qx = Qx′ and ε2(x) = (G2)xx′ =
−Qx′/Qx = −1, contradicting that we know εσ(βi) = +1 for all Galois automor-
phisms σ.

�erefore, ‖Φ5‖= 4, so there are exactly 6 simples x ∈ Φ with Txx = 1, namely
{ωi} ∪ {αi}. From (5), the Galois automorphism σ−12 �xes each x ∈ Φ13, and
permutes Φ5 without �xed points. From�eorem 6.1(3)(i) and the values S1,ωi ∈
Q[ξ13], we know σ−12 �xes each ωi. �e modular invariant (1 1 1 2 1 0 016)ᵀ must by
de�nition be an eigenvector of all ρ(γ), and hence ρ

( −12 0
0 −12−1

)
, with eigenvalue

1, which implies σ−12 �xes each αi. We already knew all ε−12(x) = +1. �erefore,
exactly as in the derivation of (10), we obtain TrG−12 = 22 − 4 = χ13(1a) +
χ5(4a) + χ1(1a), i.e.

(12) dim ρ5 − χ5(4a) = 4 .

Consider now that ρ5 is not irreducible; then ρ5
∼= ρ′⊕ρ′′ where ρ′ ∈ {ρ(5)

4 , ρ
(5)
5 }

and ρ′′ ∈ {ρ(5)
2 , ρ

(5)
3 , ρ

(5)
4 , ρ

(5)
5 } and dim ρ5 − χ5(4a) = 6 or 8, contradicting (12).

�us ρ5 must be irreducible, with 0 ∈ T (ρ5), of dimension ≥ 5, and even. �e
only possibility is ρ5

∼= ρ
(5)
8 . �

A matrix realisation of ρ(5)
8 is given in Appendix B.

9. End game

We have obtained in Propositions 7.1 and 8.1 that the modular data ρ of the
centre of the extended Haagerup satis�es ρ ∼= ρ

(13)
14 ⊕ ρ

(5)
8 ⊕ 1 ⊕ 1 ⊕ 1. Explicit

matrix realisations of ρ(13)
14 and of ρ(5)

8 are in Appendix B. De�ne S ′ to be the
corresponding block diagonal matrix and T ′ to be the corresponding diagonal
matrix. �e statement that ρ ∼= ρ

(13)
14 ⊕ ρ

(5)
8 ⊕ 1⊕ 1⊕ 1 is that there is an invertible

22-by-22 matrix Q so that QS = S ′Q and QT = T ′Q.
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We have established that the simples {βi} have T -eigenvalues the four primitive
5-th roots of unity; as there is nothing to distinguish the βi amongst themselves we
may assume the eigenvalues appear in any convenient order. Similarly, we know
that the simples {γi} ∪ {δi} ∪ {εi} have T -eigenvalues which are all the primitive
13-th roots of unity. �e T -eigenvalues for γi determine the T -eigenvalues for δi
and εi since

Tδiδi = Tγσ16i γ
σ16
i

= (T 162

γiγi
)

and

Tεiεi = T
γ
σ216
i γ

σ216
i

= (T 164

γiγi
).

However it remains to decide which four of the 13-th primitive roots appear as the
T -eigenvalues for the γi. We look at top le� entry of the equationSTS = CT ∗S∗T ∗.
�e right hand side is simplyD−1, while the le� hand side becomes

∑
x∈Φ

dim(x)2

D2 Txx.
We �nd that this is only true if the

1

2πi
log(Tγiγi) =

(
9

13
,

6

13
,

4

13
,

7

13

)
(up to the permutation, which is �xed as shown). �is we may take
(13)

1

2πi
log(Txx) =

(
0, 0, 0, 0, 0, 0,

1

5
,
2

5
,
3

5
,
4

5
,

9

13
,

6

13
,

4

13
,

7

13
,

3

13
,

2

13
,
10

13
,
11

13
,

1

13
,

5

13
,
12

13
,

8

13

)
.

We know the 16 simples {βi} ∪ {γi} ∪ {δi} ∪ {εi} are all unique, in the sense of
Section 4, and so most entries of Q are determined from Lemma 4.1. �e equation
QT = T ′Q tells us that Q is the product of a permutation and a block diagonal
matrix with all blocks 1-by-1 except for one, corresponding to 1-eigenvalues of T ,
which is 6-by-6. Much of that 6-by-6 block is irrelevant.

We also have learned much about S, some of which is collected in hypotheses (a)-
(g) in the following �eorem (e.g. we know S2 = I , since all simples are self-dual,
so (f) is its (x, x)-entry for x ∈ {γi, δi, εi}).

�eorem 9.1. Suppose

(a) S ′ and T ′ are the explicit matrices for ρ(13)
14 ⊕ ρ

(5)
8 ⊕ 1 ⊕ 1 ⊕ 1 appearing in

Appendix B,
(b) T is the 22-by-22 diagonal matrix with entries given by Equation (13),
(c) S is a 22-by-22 matrix whose �rst three rows and columns are given by Equation

(9) and �eorem 6.1(2),
(d) we have the modular invariants appearing in Equation (11),
(e) S is symmetric,
(f)
∑

y SxySxy = 1 for x ∈ {γi, δi, εi}, and
(g) Q is invertible and QS = S ′Q and QT = T ′Q.

�en S is given by
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S =



U
1/5 1/5 1/5 1/5 1/5 1/5 1/5

V1/5 1/5 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 4/5 -1/5 -1/5 -1/5 -1/5 -1/5 -1/5

0

1/5 1/5 1/5 -1/5 4/5 -1/5 -1/5 -1/5 -1/5 -1/5
1/5 1/5 1/5 -1/5 -1/5 4/5 -1/5 -1/5 -1/5 -1/5
1/5 1/5 1/5 -1/5 -1/5 -1/5

W1/5 1/5 1/5 -1/5 -1/5 -1/5
1/5 1/5 1/5 -1/5 -1/5 -1/5
1/5 1/5 1/5 -1/5 -1/5 -1/5

V t 0
A B C
B -C A
C A -B


with U, V,W,A,B, and C given below.

Proof. �is calculation appears incode/EndGame.nb, bundledwith thearXiv
sources of this article. We write S = (Sxy)x,y∈Φ, and Q = (Qix)1≤i≤22,x∈Φ. �e
following simple steps completely identify S.

(1) Solve the linear equations in the {Sxy} coming from the modular invariants
and symmetry.

(2) Solve the linear equations in the {Qix} coming from QT = T ′Q (this just
shows that Q is the product of a permutation and a block diagonal matrix,
as mentioned above).

(3) Look at entries of QS − S ′Q which do not involve any of the remaining
unknown Sxy; these are linear equations in the {Qix}, which we can solve.

(4) Observe that detQ has a factor of Q1,ω0 , so this must not be zero. Find all
the equations coming from QS − S ′Q of the form Q1,ω0X = 0, where X is
a linear combination of the {Sxy}, and set X = 0 for each.

(5) Now, the equations
∑

y SxySxy = 1 for x ∈ {γi, δi, εi} simplify to 6S2
α1x

= 0
for these same x, so all these entries of the S-matrix must be zero.

(6) Observe that detQ has a factor of Q15,ω0 , so this must not be zero. Find all
the equations coming from QS − S ′Q of the form Q15,ω0X = 0, where X
is a linear combination of the {Sxy}, and set X = 0 for each.

(7) Finally, treat the equations QS − S ′Q as quadratics in {Sxy} and {Qix}
jointly, and solve them; there are only 5 solutions, of which 4 make detQ =
0. �e remaining solution is the one described in the statement of the
�eorem. �

In fact, the same argument works if we disregard the modular invariant
(1 1 1 1 1 1 0 . . . 0),

although then at the �nal step the quadratics have 64 solutions, of which only
one allows detQ 6= 0. We make this observation because there is a candidate
third fusion category EH3 in the Morita equivalence class of the even parts of
extended Haagerup. One can determine the fusion rules of this category, if it
exists. �e argument of [MW14] determines the dimensions of the irreducibles in
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Z(EH3) (exactly the same as the dimensions here), and that Z(EH3) would have
the modular invariant (1 1 1 2 1 0 . . . 0), but not necessarily (1 1 1 1 1 1 0 . . . 0).
�us the fact that the argument here does not rely on this second modular invariant
shows that the centre of any fusion category with the fusion rules of EH3 would
have the same S and T matrices as the centre of extended Haagerup. Of course,
the S and T matrices are not known to be complete invariants of the centre. If they
were, however, this discussion would allow one to establish the existence of a third
category, Morita equivalent to EH1 and EH2, merely by constructing any fusion
category with the appropriate fusion ring.

In the above theorem describing S we have, with ck = cos(2πk/65),

U =

u1 u2 u3

u2 u3 u1

u3 u1 u2

 ,

the ui are the roots of 21125λ3 − 8450λ2 + 585λ− 1,

u1 =
1

65
(7− 10c20 − 10c30)

' 0.00175363

u2 =
1

65
(7 + 10c8 + 10c18 − 10c21 + 10c25 − 10c31)

' 0.311623

u3 =
1

65
(12− 10c8 − 10c18 + 10c20 + 10c21 − 10c25 + 10c30 + 10c31)

' 0.0866238,

V =

 v1 v1 v1 v1 −v2 −v2 −v2 −v2 −v3 −v3 −v3 −v3

v2 v2 v2 v2 −v3 −v3 −v3 −v3 −v1 −v1 −v1 −v1

v3 v3 v3 v3 −v1 −v1 −v1 −v1 −v2 −v2 −v2 −v2

 ,

the vi are the roots of 169λ3 − 13λ− 1,

v1 =
2

13
(c8 + c18 + c20 − c21 + c25 + c30 − c31)

' 0.30969

v2 =
1

13
(1− 4c8 − 4c18 + 2c20 + 4c21 − 4c25 + 2c30 + 4c31)

' −0.224999

v3 =
1

13
(−1 + 2c8 + 2c18 − 4c20 − 2c21 + 2c25 − 4c30 − 2c31)

' −0.0848702,

W =
1

10


3−
√

5 −2− 2
√

5 −2 + 2
√

5 3 +
√

5

−2− 2
√

5 3 +
√

5 3−
√

5 −2 + 2
√

5

−2 + 2
√

5 3−
√

5 3 +
√

5 −2− 2
√

5

3 +
√

5 −2 + 2
√

5 −2− 2
√

5 3−
√

5


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andA,B, andC are bandmatrices, soAij = ai+j−1 (mod 4), etc., and {a1, a3, b1, b3, d1, d3}
are the roots of 28561λ6 − 28561λ5 + 8788λ4 − 507λ3 − 169λ2 + 26λ− 1, while
{a2, a4, b2, b4, d2, d4} are the roots of 28561λ6−6591λ4−507λ3 +338λ2 +39λ−1:

a1 =
1

13
(2c8 − 2c10 + 2c18 − 2c20 − 2c21 + 4c25 − 4c30 − 2c31 + 1)

' 0.07470114748

a2 =
1

13
(−2c8 + 2c10 − 2c18 + 6c20 + 2c21 − 2c25 + 2c31 + 1)

' 0.2714005479

a3 =
1

13
(2c8 + 2c10 + 2c18 − 2c20 − 2c21 − 2c31 + 2)

' 0.3520512456

a4 =
1

13
(−2c10 − 2c20 + 4c30)

' −0.1865303711

b1 =
1

13
(2c10 − 2c20 − 2c25 − 2)

' −0.1595713243

b2 =
1

13
(4c8 + 4c18 + 2c20 − 4c21 − 2c25 − 4c31)

' 0.3315913069

b3 =
1

13
(−2c10 − 2c20 + 2c25 − 4c30 − 3)

' −0.4369214224

b4 =
1

13
(−2c8 − 2c18 + 2c21 + 4c25 + 2c30 + 2c31)

' −0.02172236355

d1 =
1

13
(2c8 + 2c10 + 2c18 − 2c21 + 2c30 − 2c31 − 2)

' 0.1502976190

d2 =
1

13
(−6c8 + 6c10 − 6c18 + 4c20 + 6c21 − 4c25 + 4c30 + 6c31 + 2)

' 0.2171593392

d3 =
1

13
(2c8 − 2c10 + 2c18 − 2c21 + 4c25 − 2c30 − 2c31 − 3)

' −0.12705247914

d4 =
1

13
(2c8 − 6c10 + 2c18 − 2c20 − 2c21 − 2c30 − 2c31 − 1)

' −0.4421581056.
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Finally, the matrix Q is not uniquely determined; a nice choice is

Q =



1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


As a consistency check, we o�er:

Lemma 9.2. �e Verlinde formula gives non-negative integer fusion multiplicities,
which are consistent with the restriction functor Z(EH)→ EH .

10. Character vectors

A natural question is whether there is a vertex operator algebra (see e.g. [LL04])
corresponding to the centre of the even part of the extended Haagerup. �is is
at present too di�cult to answer. However, in this section we obtain all possible
character vectors with central charge c ≤ 24 compatible with the modular data
computed in this paper. �is should be information crucial for constructing the
hypothetical vertex operator algebra, or showing it cannot exist. Because the
procedure for doing this is di�cult to extract from the literature, we will include
here a more pedagogical treatment.

10.1. �egeneral theory. By de�nition, a vertex operator algebra and its modules
carry actions of the Virasoro algebra, so the vertex operator algebra characters are
expressible as combinations of Virasoro ones. �e Virasoro characters relevant to
our discussion are given next. When c > 1 and h > 0, there is a Virasoro irrep
V (c, h) with character

chV (c,h) = qh−c/24

∞∏
n=1

(1− qn)−1 =
∞∑
m=0

p(m)qm+h−c/24 .

When c > 1 and h = 0, the Virasoro irrep V (c, h) has character

chV (c,0)(τ) = q−c/24

∞∏
n=1

(1− q)(1− qn)−1 =
∞∑
m=0

(p(m)− p(m− 1))qm−c/24 ,

where p(m) is themth partition number, and where q = e2πiτ .

De�nition 10.1. Suppose ρ is a d-dimensional representation of SL(2,Z) with T =
ρ ( 1 1

0 1 ) a diagonal matrix. By a character vector X(τ) for ρ, we mean:
(i) X : H → Cd is holomorphic throughout the upper half-plane H = {τ ∈

C | Im τ > 0};
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(ii) there is a diagonal rational matrix λ such that

(14) e−2πiτλX(τ) =
∞∑
n=0

Xne
2πinτ

converges absolutely in H, and
∑∞

n=0 Xnq
n is holomorphic at q = 0;

(iii) for all ( a bc d ) ∈ SL(2,Z) and all τ ∈ H,

(15) X
(
aτ + b

cτ + d

)
= ρ ( a bc d ) X(τ) ;

(iv) each coe�cient Xn takes values in Zd≥0, λ11 < λjj for all j 6= 1, and (X0)1 = 1.
Moreover, each component X(j)(τ) is nonzero and can be wri�en X(j)(τ) =∑∞

n=0 X′n;j chV (−24λ11,λjj−λ11+n)(τ) where each X′n;j ∈ Z≥0.

It is common to write qλ for e2πiτλ. Note that e2πiλ = T . A function X(τ)
satisfying (i)-(iii) is called a weakly holomorphic vector-valued modular function for
ρ (‘weakly holomorphic’ means holomorphic in H and meromorphic at all cusps
Q ∪ {i∞}). A consequence of the fact that the coe�cients Xn are rational, is
that T has �nite order (hence that λ is rational). �e condition X′n ∈ Zd≥0 implies
Xn ∈ Zd≥0, but in practice isn’t usually much stronger. We impose the condition
λ11 < λjj here because we seek a unitary vertex operator algebra; if ρ is modular
data with o 6= 1 (recall De�nition 2.1) then this condition would become λoo < λjj .
Most representations ρ will possess no character vectors; for example it is ele-

mentary to verify that it requires the �rst column of S to be strictly positive, and
an old conjecture of Atkin–Swinnerton-Dyer [ASD71] implies that the existence
of a character vector is only possible when ker ρ contains some Γ(N).
�e modules of a (unitary) strongly-rational vertex operator algebra V form

a (unitary) modular tensor category [Hua05], where ‘strongly-rational’ means
regular, simple, equivalent as a V-module to its contragredient V∨, V0 = C1
and Vn = 0 for n < 0. �e modules are in�nite-dimensional, but the opera-
tor L0 in V acts semi-simply on the modules, and the eigenspaces are all �nite-
dimensional. For each irreducible moduleM of V , de�ne the character χM(τ) =
q−c/24trMq

L0 = qhM−c/24
∑∞

n=0 dimMhM+n q
n, where M =

∐∞
n=0MhM+n and

Mh′ is the L0-eigenspace with eigenvalue h′. �e numbers c, hM are called the
central charge of V and the conformal weight ofM . �en Zhu [Zhu96] proved that
these χM together form a weakly holomorphic vector-valued modular function for
some representation ρ of SL(2,Z); this representation is given by the modular data
of the modular tensor category [DLN12] (up to a third root of unity to be discussed
shortly). One irreducible V-module will be V itself, which we make the �rst mod-
ule. �e characters of the irreducible modules of a unitary strongly-rational vertex
operator algebra, will form a character vector (hence the name).

�e modular data of a modular tensor category determines T up to a third root
of unity. �is ambiguity means that the central charge is only determined up to
a multiple of 8. In particular, if some vertex operator algebra realises a modular
tensor category, so will in�nitely many others; once we’ve found a character vector,
we’ve found in�nitely many others. For example, tensor arbitrary many copies of
the E8 la�ice vertex operator algebra to V ; this doesn’t change the category, but
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each copy increases the central charge by 8 and multiplies the character vector by
J(τ)1/3.
�us the �rst step to trying to recover a strongly-rational VOA V =

∐∞
n=0 Vn

from a modular tensor category is to select a possible c, and then determine the
possible character vectors χM(τ). �e second step would be to identify the space V1.
It will be a reductive Lie algebra, and all homogeneous spacesMh of all V-modules
M will be V1-modules. �e key formula for this purpose is Proposition 4.3.5 of
[Zhu96], which says that for all u, v ∈ V1 and all V-modulesM ,
(16)
∞∑
n=0

κMhM+n
(u, v) qn+hM−c/24 = tr|Mo(u[−1]v) qL0−c/24 +

〈u, v〉
24

E2(τ)χM(τ) .

Here and elsewhere, En(τ) denotes the weight n Eisenstein series for SL(2,Z),
normalised to have leading term 1. Also, κMh

(u, v) = tr|Mh
o(u)u(v) is the Killing

form of the V1-moduleMh; in particular, κV1 is the Killing form of V1 itself. Closely
related to the Killing form is the bilinear form 〈u, v〉, which is always nondegenerate
and invariant. �e �rst term on the right side is a vector-valued modular form
of weight 2, for the same multiplier ρ. By itself, V1 generates a vertex operator
subalgebra of V , of a�ne algebra type. �e coset or commutant of V by this
subalgebra should itself be a strongly-rational vertex operator algebra with small
central charge and trivial Lie algebra part and explicitly known character vector.
Constructing V then largely comes down to identifying that coset vertex operator
algebra.
For both steps 1 and 2, constructing vector-valued modular forms is crucial.

In this paper we will restrict our a�ention to determining the possible character
vectors, although the same method determines the possible weight-2 forms. �e
following treatment is developed in [BG07, Gan14].

Fix an SL(2,Z)-representation ρ with T diagonal and of �nite order. LetM!(ρ)
denote the space of all weakly holomorphic vector-valued modular functions for
ρ. Let J(τ) = q−1 + 744 + 196884q + · · · denote the Hauptmodul for SL(2,Z). In
particular,M!(1) = C[J(τ)]. Note thatM!(ρ) is a module for the ring C[J(τ)].
Note that if ρ′ = QρQ−1, then X(τ) ∈M!(ρ) i� QX(τ) ∈M!(ρ′).
A simple observation: if ρ is an odd SL(2,Z)-irrep, thenM!(ρ) = 0. �is is

because (15) applied to ( a bc d ) =
( −1 0

0 −1

)
gives X(τ) = −X(τ). For this reason, in

the following we’ll restrict (without loss of generality) to even representations ρ
by �rst projecting away any odd summands. Conveniently, the modular data we
obtain from the extended Haagerup subfactor is already even.
�e �rst fact is thatM!(ρ) is a free module of rank d over C[J(τ)]. Given

d generators, it is convenient to collect them together as columns of a d-by-d
matrix we’ll call Ξ(τ); then there is a bijection between X(τ) ∈M!(ρ) and vectors
Y(τ) ∈ Cd[J(τ)] given by X = ΞY. We can choose the generators (hence Ξ) in
such a way that there is a diagonal matrix Λ such that

(17) Ξ(τ) = qΛ

(
I +

∞∑
n=1

Ξnq
n

)
.

Identifying any such Ξ is equivalent to identifying the full spaceM!(ρ).
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A word of warning: the convention of (17) di�ers from that of [BG07, EG11]
which used Ξ = qΛ(Iq−1 + χ + ...), but is the same as in [Gan14]. �is notation
change cleans up the formulas a li�le. It is not completely trivial that generators
can be chosen so that (17) holds, but indeed it is true for all C[J ]-submodules
M ofM!(ρ) of full rank. Once one has d vector-valued modular forms X(i)(τ)
inM forming a matrix Ξ of shape (17) for some Λ, it is then elementary to �nd
algorithmically d free generators forM with shape (17) (for a larger Λ) as desired.
�e (nonconstructive) existence of such X(i)(τ) is an immediate consequence of
�eorem 3.1 of [Gan14].

�e second fact is that Ξ(τ) is the solution to a �rst-order Fuchsian di�erential
equation. �e reason is that E10(τ) d

∆(τ) dτ
is a di�erential operator onM!(ρ), and so

applied to each of the free generators (i.e. columns of Ξ) gives a vector-valued
modular form which lies in the C[J(τ)]-span of the generators. �at di�erential
equation implies the recursion

(18) [Λ,Ξn] + nΞn =
n−1∑
l=0

Ξl (fn−lΛ + gn−l(Ξ1 + [Λ,Ξ1]))

for n ≥ 2, where we write (J(τ) − 984)∆(τ)/E10(τ) =
∑∞

n=0 fnq
n = 1 + 0q +

338328q2+· · · and∆(τ)/E10(τ) =
∑∞

n=0 gnq
n = q+240q2+199044q3+· · ·. Here,

∆ = η24 where η is the Dedekind eta. We require Ξ0 = I . Note that the ij-entry on
the le�-side of (18) is (Λii − Λjj + n) Ξn ij , so (18) allows us to recursively identify
all entries of Ξn, at least when all |Λjj − Λii|6= n. Indeed, it can be shown that
Λjj − Λii can never lie in Z≥2.

�is recursion means thatM!(ρ) is completely identi�ed, i.e. Ξ(τ) is determined,
once thematricesΛ andΞ1 are given. �ematricesΞ1 andΛ are heavily constrained.
In particular, Λ is diagonal, satisfying e2πiΛ = T as well as

(19) Tr Λ = −7d

12
+

1

4
TrS +

2

3
√

3
Re
(
e
−πi
6 TrST−1

)
.

When ρ is irreducible and d < 6, then any diagonal matrix satisfying both e2πiΛ = T
and (19) will work, but in general these conditions won’t always su�ce.
Any Ξ(τ) ∈ M!(ρ) whose components are linearly independent over C gives

us all ofM!(ρ) via [Gan14, Proposition 3.2]:
M!(ρ) = C[J(τ),∇1,∇2,∇3],

where

∇1 =
E4E6

∆
q
d

dq

∇2 =
E2

4

∆

(
q
d

dq
− E2

6

)
q
d

dq

∇3 =
E6

∆

(
q
d

dq
− E2

3

)(
q
d

dq
− E2

6

)
q
d

dq

�e building blocks of all of these di�erential operators is the operator q d
dq
− k

12
E2,

which sends weight k modular forms to weight k + 2 ones.
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We may take Λρ1⊕ρ2 = Λρ1 ⊕ Λρ2 and (Ξρ1⊕ρ2)1 = (Ξρ1)1 ⊕ (Ξρ2)1. Moreover,
Λ and Ξ for the weakly-holomorphic vector-valued modular forms at weight 2 for
the contragredient representation ρ, is −I − Λ and E4(τ)2E6(τ)∆(τ)−1(Ξ(τ)ᵀ)−1.
(De�nition 10.1 can be extended to forms of arbitrary even weight in the obvious
way; Proposition 4.1 of [Gan14] tells how to convert Ξ(τ)’s for di�erent weights
but the same ρ.)

We can �nd Ξρ1⊗ρ2(τ) from Ξρ1(τ) and Ξρ1(τ) using the fact that
M!(ρ1 ⊗ ρ2) = C[J(τ),∇1,∇2,∇3](M!(ρ1)⊗M!(ρ2)).

SupposeM!(ρ1) is free of rank d1 over C[J(τ)], andM!(ρ2) is free of rank d2 over
C[J(τ)]. Starting with the matrix Ξ̃ = Ξρ1(τ)⊗ Ξρ2(τ) ∈Md1d2×d1d2(C((q))), we
form the d1d2 × 4d1d2 matrix ( Ξ̃ ∇1Ξ̃ ∇2Ξ̃ ∇3Ξ̃ ) and then �nd a C[J(τ)] basis for
the columns. Replacing Ξ̃ with these new basis vectors as columns, we repeat until
Ξ̃ stabilises. �is does not quite provide our Ξρ1⊗ρ2(τ), as we still need to perform
a change of basis so that Equation (17) holds.
In the case of any irrep ρ with kernel containing Γ(N) for some N =

∏
p p

νp ,
we write ρ ∼= ⊕iρi and ρi ∼= ⊗pρi;p as before. It then su�ces to know the Λ and
χ for each irrep ρi;p appearing in that decomposition. Each such ρi;p is an irrep
in some Weil representation associated to la�ices, and so some X(τ) ∈ M!(ρi;p)
with linearly independent components can be built up from la�ice theta functions.
For ‘small’ powers pν , Λ,Ξ1 have been computed for every irrep ρ of SL(2,Zpν ),
by Timothy Graves in his PhD thesis. �is means that the full spaceM!(ρ) can
be determined fairly quickly from his tables for any representation of SL(2,ZN),
provided the prime powers dividing N are not too large (< 32).

A minor technicality: it is possible for the tensor product ⊗pρi;p to be even, even
though some (necessarily an even number of) ρi;p may be odd. One way to handle
this is to replace any such odd factor ρi;p with the even irrep ρ(2)

2 ⊗ ρi;p, as an
even number of ρ(2)

2 ’s tensor to 1. For the modular data associated to the extended
Haagerup subfactor, all components ρi;p which arise are even.
�ese calculations can be a li�le delicate. We suggest two strong consistency

checks. First,

A2

(
A2 −

1

2
I

)
= 0 ,(20)

A3

(
A3 −

1

3
I

)(
A3 −

2

3
I

)
= 0 ,(21)

where

(22) A2 = −31

72
Λ− 1

1728
(Ξ1 + [Λ,Ξ1]) , A3 = −41

72
Λ +

1

1728
(Ξ1 + [Λ,Ξ1]) .

Given Λ and Ξ1, construct Ξ(τ) through (18); then the columns of Ξ(τ) will freely
generate the C[J ]-moduleM!(ρ) for some SL(2,Z)-representation ρ, i� the corre-
sponding A2,A3 satisfy (20),(21). Incidentally, e2πiA2 is similar to S and e2πiA3 is
similar to ρ

( −1 1
−1 0

)
= TS. �is representation ρ is, as always, uniquely determined

by its values on ( 1 1
0 1 ) (which is T = e2πiΛ) and ( 0 −1

1 0 ) (which is S). �e S-matrix
can be estimated numerically by using the recursion (18) to compute the �rst few
terms of the series expansion of Ξ(τ); then Ξ(τ) is invertible anywhere inH except
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at the countably many elliptic �xed points SL(2,Z).i∪SL(2,Z).ξ3, so as long as we
avoid those elliptic points we can estimate S = Ξ(−1/τ) Ξ(τ)−1. We have applied
both tests to all Λ,Ξ1 given below.
Since the central charge c is determined only up to mod 8 by the modular

tensor category, there always are three SL(2,Z)-representations which have to
be considered, namely ρ, ρ(3)

2 ⊗ ρ, and ρ
(3)
3 ⊗ ρ, where ρ

(3)
2 , ρ

(3)
3 are described in

Section 2.2. �ere is no straightforward relation between the matrices Ξ(τ) for
these three representations. However, Proposition 4.1(2) of [Gan14] gives a short-
cut. Suppose we know Ξ(τ) for ρ; then the columns for Ξ(τ) for ρ(3)

2 ⊗ ρ will be
linear combinations overC of the columns ofE4(τ)η(τ)−8Ξ(τ) = qΛ(Id+ · · ·) and
of

η(τ)−8

(
E4(τ)Ξ(τ)Λ

(
Λ− 1

6
Id

)
−
(
q
d

dq
− 1

6
E2(τ)

)
q
d

dq
Ξ(τ)

)
= qΛ

(
1728A3

(
A3 −

1

3
Id

)
q + · · ·

)
.

Now rank(A3(A3− 1
3
Id)) equals the multiplicity of ξ2

3 as an eigenvalue of TS, and
this is the number of vectors that should be chosen from the la�er. �is method
applied to ρ(3)

2 ⊗ ρ gives Ξ(τ) for ρ(3)
3 ⊗ ρ.

Obtaining the possible character vectors is now easy combinatorics. Suppose
X(τ) is a character vector, and write X(τ) = Ξ(τ)Y(J(τ)) for some vector-valued
polynomial Y(J) ∈ Cd[J ]. Write dj for the degree of the component Yj , and dM
for the maximum of all dj . �en dM ≤ c/24+maxjΛjj . More precisely, if d1 = dM ,
then d1 = c/24+Λ11 and Y1 is monic. If dj = dM and j 6= 1, then dj < c/24+Λjj

and the leading coe�cient of Yj must be a positive integer.
Given some X(τ) ∈ M!(ρ), write X(τ) = qλ

∑∞
n=0 Xnq

n where each entry of
X0 is nonzero. To prove a candidate X(τ) is indeed a character vector, we need to
prove each Xn ∈ Zd, and that each Xn ∈ Rd

≥0. �e �rst statement is accomplished
by:

Lemma 10.2. Suppose f(τ) = qλ
∑∞

n=0 fnq
n is a (scalar-valued) weakly holomor-

phic modular function for some subgroup Γ of SL(2,Z), possibly with multiplier
µ : Γ → C×. Suppose Γ has index m in SL(2,Z), and contains a congruence sub-
group. Choose k ∈ Z≥0 so that λ ≥ −k/24 for all j. Suppose the Fourier coe�cients
fn are integral for all n ≤ km/24. �en fn ∈ Z for all n.

�is is Lemma 3(b) of [Gan12], applied to η(τ)kf(τ). A useful fact is that the
index of Γ(N) in SL(2,Z) is N3

∏
p|N(1 − p−2). We apply the Lemma by taking

f(τ) to be any component Xj(τ) of our vector-valued modular function X, so
λ = λj and Γ is the projective kernel of the multiplier ρ.

Positivity is more delicate, and again follows themethods of [Gan12]. �e general
argument will be developed elsewhere, and here we will limit the discussion to the
following. Assume ρ is a unitary SL(2,Z)-representation, and that S1j > 0 for all j.
(�is is true for the modular data of any unitary modular tensor category.) Assume
also that λ11 < λjj for all j 6= 1 (this is true for any character vector). �en for
large n, the Rademacher expansion for X(τ) implies

(Xn)j ∼ S1j(X0)1
e4π
√
n|λ11|

√
2n3/4

.
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Hence for all su�ciently large n, all coe�cients Xn will be positive, provided
X0 ∈ Rd

>0. To prove a given X is truly a character vector, we would need to make
this estimate e�ective. �is can be quite involved, and will be treated in generality
in future work following the positivity method developed in [Gan12]. We will not
address this further in this paper.

10.2. Specialisation to the double of the even part of EH. For the modular
data of the extended Haagerup, the central charge cwill be a multiple of 8 (a positive
multiple, if we insist, as we will, that the hypothetical vertex operator algebra be
unitary). �e corresponding conductorN will beN = 5 ·13 if 24|c orN = 3 ·5 ·13
otherwise. We have the decompositions:
ρ ∼= ρ

(13)
14 ⊕ ρ

(5)
8 ⊕ ρ

(1)
1 ⊕ ρ

(1)
1 ⊕ ρ

(1)
1 if c ≡ 0 (mod 24);

ρ ∼=
(
ρ

(3)
2 ⊗ ρ

(13)
14

)
⊕
(
ρ

(3)
2 ⊗ ρ

(5)
8

)
⊕ ρ(3)

2 ⊕ ρ
(3)
2 ⊕ ρ

(3)
2 if c ≡ 8 (mod 24);

ρ ∼=
(
ρ

(3)
3 ⊗ ρ

(13)
14

)
⊕
(
ρ

(3)
3 ⊗ ρ

(5)
8

)
⊕ ρ(3)

3 ⊕ ρ
(3)
3 ⊕ ρ

(3)
3 if c ≡ 16 (mod 24).

Moreover,
Λ(ρ

(1)
1 ) = Ξ1(ρ

(1)
1 ) = (0) ;

Λ(ρ
(3)
2 ) = (−1/3) , Ξ1(ρ

(3)
2 ) = (248) ;

Λ(ρ
(3)
3 ) = (−2/3) , Ξ1(ρ

(3)
3 ) = (496) ;

Λ(ρ
(5)
8 ) = diag

(
0,−4

5
,−3

5
,−2

5
,−6

5

)
, Ξ1(ρ

(5)
8 ) =


25 −57750 −11550 −1350 −819000
−3/2 −39 −126 −7 468
−5/3 −1050 248 −9 1950

5 1650 264 282 −28600
−1/6 −7 −4 −3 −12



ρ
(3)
2 ⊗ρ

(5)
8 : Λ = diag

(
−1

3
,− 2

15
,−14

15
,−11

15
,− 8

15

)
, Ξ1 =


−52 −30 −22050 −6600 −1680
−100 0 −39200 3850 1728
−5 −4 56 11 16
−10 2 84 220 −108
−25 8 1200 −1100 32

 ;

ρ
(3)
3 ⊗ρ

(5)
8 : Λ = diag

(
−2

3
,− 7

15
,− 4

15
,−16

15
,

2

15

)
, Ξ1 =


−29 −294 −60 −2640 3
−375 56 −50 3300 −1
−2025/2 −686 82 4312 −1/2
−25/2 14 2 −104 −1/2
−6125 2401 100 −411600 3



Λ(ρ
(13)
14 ) = diag

(
0,−12

13
,−11

13
,−10

13
,− 9

13
,− 8

13
,− 7

13
,− 6

13
,− 5

13
,− 4

13
,− 3

13
,−15

13
,−14

13
, 0

)
,
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Ξ1(ρ
(13)
14 ) =



61/3 16731 −36374 20748 8281 1703 −2145 962 169 −117 39 −276822 45474 −29/3
−2/3 −4 35 −12 21 −30 0 20 −7 0 −5 −33 44 4/3

1 103 42 35 −14 45 −22 3 6 15 −10 −84 −66 −1
5 −1 168 −96 −182 −27 0 −34 21 27 −8 −512 −330 −3

13/3 203 70 −330 −18 161 78 14 −14 0 −14 −924 −286 −8/3
−1 −805 585 −308 365 231 −55 −30 21 11 10 462 66 1
5 1000 −1230 −693 168 −75 246 −60 48 54 −10 −1836 −3732 −4

−14/3 3276 721 0 637 −210 −99 200 42 0 39 9702 −3432 4/3
−4 278 522 1034 −658 324 154 114 162 −88 −2 14124 −9186 1
1 3093 4299 1260 −1729 633 468 150 −189 21 39 −1554 −5946 −1

−14/3 −11375 −8980 1617 −1078 770 0 440 −154 99 −4 25872 −5929 7/3
−2/3 −5 −10 6 8 −2 −6 5 0 −3 2 −12 −5 1/3
−1 −13 −9 0 14 −9 −13 6 −6 −5 1 −6 −18 1

29/3 62985 −26962 15288 −3094 6175 858 −494 650 117 39 −204516 172458 −7/3


Λ(ρ

(3)
2 ⊗ρ

(13)
14 ) = diag

(
−1

3
,−10

39
,− 7

39
,− 4

39
,−40

39
,−37

39
,−34

39
,−31

39
,−28

39
,−25

39
,−22

39
,−19

39
,−16

39
,−1

3

)
,

Ξ1(ρ
(3)
2 ⊗ρ

(13)
14 ) =



−18 15 −24 5 11960 2854 −5083 3212 685 −1190 924 −536 62 78
−27 20 16 −2 6320 −10695 4420 5533 150 645 −880 −258 300 101
−98 50 6 4 1810 17990 −13770 3010 842 2110 −1540 −284 −175 −34
112 −16 15 −2 −56192 −21651 −15912 −649 3038 1473 616 −1082 −420 50
4 0 1 −2 0 10 0 7 −2 −5 0 −8 −4 −1
2 −5 4 −3 40 42 −17 −12 13 10 11 −4 −2 6
−7 4 −4 −2 48 −35 68 −11 22 29 0 −13 −20 5
14 10 2 −1 195 −90 −34 118 31 30 44 36 −15 −10
−7 0 1 2 −320 189 136 77 194 −135 −56 54 −28 18
−28 5 6 3 −1040 476 442 198 −337 40 154 4 −14 20
21 −20 −11 2 −880 761 52 638 −342 375 −88 75 −12 11
−38 −14 −6 −3 −3404 514 −782 1386 733 −18 176 64 80 −10
−19 40 −8 −4 −2720 271 −3536 −1122 −1076 −255 −88 194 56 60
56 60 −18 7 −4160 10688 1768 −1166 2675 440 693 −376 274 20


Λ(ρ

(3)
3 ⊗ρ

(13)
14 ) = diag

(
−2

3
,−23

39
,−20

39
,−17

39
,−14

39
,−11

39
,− 8

39
,− 5

39
,− 2

39
,−38

39
,−35

39
,−32

39
,−29

39
,−2

3

)
,

Ξ1(ρ
(3)
3 ⊗ρ

(13)
14 ) =



−39 40 −128 72 35 5 −10 4 1 −760 749 −564 100 155
−78 80 98 −14 14 −20 7 6 0 532 −924 −351 546 260
−312 234 64 65 0 30 −16 3 0 2184 −2002 −480 −390 −104
455 −92 160 −68 −98 −28 −16 0 1 1862 980 −2240 −1160 182
975 235 16 −254 21 60 10 6 −1 −6840 −2058 −2700 −750 −715
−403 −884 523 −208 169 76 −9 −4 1 6916 3796 962 156 1443
−2119 832 −896 −351 91 −28 30 −2 1 13832 728 −3108 −5174 1547
3042 2392 460 −26 182 −44 −8 10 1 15067 16380 12960 −3770 −2197
−1170 169 280 351 −182 57 20 5 2 −55328 −20475 15560 −8385 4342
−13 2 8 5 −7 3 2 1 −1 0 21 4 −9 13
13 −24 −19 6 −7 4 1 2 −1 76 −28 30 −10 13
−39 −26 −16 −26 −13 2 −2 3 1 0 78 28 65 −13
−26 92 −28 −34 −7 0 −8 −2 −1 −133 −56 160 58 91
118 179 −88 57 −14 25 4 −1 2 304 574 −408 389 38


In all three cases (namely, c ≡ 8k (mod 24) for k = 0, 1, 2), the full 22-by-22 matri-

cesΛ andΞ1 are obtained byΛ = Q−1 (Λ(ρ13)⊕ Λ(ρ5)⊕ Λ(ρ1)⊕ Λ(ρ1)⊕ Λ(ρ1))Q
and Ξ1 = Q−1 (Ξ1(ρ13)⊕ Ξ1(ρ5)⊕ Ξ1(ρ1)⊕ Ξ1(ρ1)⊕ Ξ1(ρ1))Q, for Q explic-
itly given in Section 9, and where ρ1 = ρ

(3)⊗k
2 , ρ5 = ρ

(3)⊗k
2 ⊗ ρ

(5)
8 , and ρ13 =

ρ
(3)⊗k
2 ⊗ ρ(13)

14 .
Let us explain how we found these matrices Λ and Ξ1. Consider �rst the A4

root la�ice and its dual A∗4 (we use the standard la�ice notation and terminology
explained in e.g. [CS99]). �e group A∗4/A4 has 5 elements, and these have theta
series θ[0](τ) = 1 + 40q+ · · ·, θ[1](τ) = θ[4](τ) = q2/5(5 + 30q+ · · ·) and θ[2](τ) =

θ[3](τ) = q3/5(10 + 25q + · · ·), where θ[i] = θ[5−i] follows because a coset and its
negative always have identical theta series. �ese 3 functions form the components
of a vector-valued modular form of weight 2 for SL(2,Z), for a multiplier equivalent
to ρ(5)

5 . �e products θ[i](τ)θ[j](τ) will form a vector-valued modular form of weight
4 for SL(2,Z), for a multiplier equivalent to the symmetric square of ρ(5)

5 . �at
symmetric square is isomorphic to 1⊕ρ(5)

8 . We can make them weight 0 by dividing
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by η(τ)8, but this tensors the multiplier by ρ(3)
2 . In particular, the �rst column of the

matrixΞ(τ) for ρ(3)
2 ⊗ρ

(5)
8 has components (θ2

[0]−2θ[1]θ[2])η
−8,−θ2

[2]η
−8,−θ[0]θ[1]η

−8,
−θ[0]θ[2]η

−8, −θ2
[1]η
−8. �is generates the full moduleM!(ρ

(3)
2 ⊗ ρ

(5)
8 ), using the

di�erential operators∇i and C[J ].
A similar method works to �nd Λ,Ξ1 for ρ(13)

14 . For this let the la�ice be L =
A352[1, 1

4
], which means ∪3

i=0L0 + ([i], i
4
) for the orthogonal direct sum L0 =

A3 ⊕
√

52Z. �en L∗/L has 13 elements, with theta functions ψ[0](τ) = 1q0 + · · ·,
ψ[1](τ) = ψ[12](τ) = 1q2/13 + · · ·, ψ[2](τ) = ψ[11](τ) = 5q8/13 + · · ·, ψ[3](τ) =

ψ[10](τ) = 4q5/13 + · · ·, ψ[4](τ) = ψ[9](τ) = 4q6/13 + · · ·, ψ[5](τ) = ψ[8](τ) =

10q11/13 + · · ·, ψ[6](τ) = ψ[7](τ) = 6q7/13 + · · ·. �ese ψ[i] form a vector-valued
modular form of weight 2 for SL(2,Z) with multiplier ρ(13)

5 , so the products ψ[i]ψ[j],
i ≤ j, form one of weight 4 whose multiplier is the symmetric square of ρ(13)

5 ,
namely 1⊕ρ(13)

12 ⊕ρ
(13)
14 . �en the third column of Ξ(ρ

(3)
2 ⊗ρ

(13)
14 ) is the vector-valued

modular formwith components 2ψ1,5−ψ2,3−ψ4,6, ψ6,6−ψ2,4, ψ0,1−ψ2,6, ψ3,5−ψ2,2,
ψ1,1−ψ4,5, ψ0,3−ψ5,6, ψ2,5−ψ0,4, ψ0,6−ψ1,3, ψ0,2−ψ1,4, ψ1,6−ψ5,5, ψ1,2−ψ3,3,
ψ0,5 − ψ3,4, ψ4,4 − ψ3,6, and ψ1,5 + ψ2,3 − 2ψ4,6, where we write ψi,j := ψ[i]ψ[j]η

−8.
At c = 8, we �nd c/24 + maxjΛjj = 3

13
< 1, and so we only need to consider

Y(J(τ)) = (1, Y2, Y3, Y4, 0, 0, 0, 0, 0, 0, 0, 0, 0, Y14, Y15, Y16, 0, 0, 0, Y20, Y21, Y22)
ᵀ

for Y2, Y3, Y4, Y14, Y15, Y16, Y20, Y21, Y22 ∈ N.
Writing X(τ) = Ξ(τ)Y(J(τ)) = qλ

∑∞
n=0 Xnq

n, the conditions Xn ∈ R22
≥0

merely for n = 0, 1 give the 27 inequalities

0 ≤ 50Y1 + 50Y2 + 50Y3 − 50Y4

0 ≤ 7Y1 − 5Y2 − 2Y3 + 11Y14 + 2Y15 − 4Y16 − 35Y20 − 20Y21 + 22Y22

0 ≤ 4Y1 − Y2 − 3Y3 + 7Y14 − 2Y15 − Y16 − 10Y20 + 4Y21 + 2Y22

0 ≤ 21Y1 + 11Y2 − 32Y3 + 638Y14 + 2Y15 + 11Y16 − 761Y20 + 12Y21 + 342Y22

0 ≤ 38Y1 + 10Y2 − 48Y3 − 1386Y14 + 3Y15 − 6Y16 + 514Y20 + 80Y21 + 733Y22

0 ≤ 27Y1 − 101Y2 + 74Y3 − 5533Y14 + 2Y15 + 16Y16 − 10695Y20 + 300Y21 + 150Y22

0 ≤ 76Y1 + 20Y2 + 2Y3 + 50Y4 − 1848Y14 + 3Y15 + 4Y16 − 6174Y20 − 162Y21 − 1555Y22

0 ≤ 20Y1 + 78Y3 + 50Y4 − 682Y14 − 4Y15 − 14Y16 + 4514Y20 + 112Y21 + 1120Y22

0 ≤ 595Y1 − 425Y2 − 170Y3 − 45177Y14 − 6Y15 + 56Y16 + 184289Y20 − 644Y21 − 54530Y22

0 ≤ 320Y1 − 236Y2 − 84Y3 + 6468Y14 + 9Y15 − 48Y16 − 34736Y20 − 1120Y21 + 6998Y22

0 ≤ 112Y1 + 50Y2 − 162Y3 − 649Y14 − 2Y15 − 15Y16 + 21651Y20 + 420Y21 − 3038Y22

0 ≤ 98Y1 + 34Y2 − 132Y3 − 3010Y14 − 4Y15 + 6Y16 + 17990Y20 − 175Y21 + 842Y22

0 ≤ 532Y1 + 192Y2 − 724Y3 + 110924Y14 + 5Y15 + 88Y16 − 226308Y20 + 481Y21 + 45493Y22

0 ≤ 632Y1 + 245Y2 − 877Y3 − 200684Y14 + 16Y15 − 32Y16 + 128651Y20 + 2144Y21 + 79472Y22

0 ≤ 410Y1 − 1526Y2 + 1116Y3 − 504274Y14 + 5Y15 + 86Y16 − 1555890Y20 + 6480Y21 + 11658Y22

0 ≤ −2Y1 − 6Y2 + 8Y3 + 12Y14 + 3Y15 + 4Y16 + 42Y20 − 2Y21 + 13Y22

0 ≤ 19Y1 − 60Y2 + 41Y3 + 1122Y14 + 4Y15 − 8Y16 + 271Y20 + 56Y21 − 1076Y22

0 ≤ 7Y1 − 18Y2 + 11Y3 − 77Y14 − 2Y15 + Y16 + 189Y20 − 28Y21 + 194Y22
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along with some redundant ones. Some linear programming easily gives upper
bounds on all the variables: Y2, Y3 ≤ 1, Y4 ≤ 3, Y15, Y16 ≤ 2, andY14, Y20, Y21, Y22 =
0. We then easily enumerate all solutions, obtaining 13 possible character vectors.
Of these, 9 have components which are identically zero, which is not allowed. �e
remaining four have vacuum components as given below.

Y1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
ᵀ

q1/3X1(τ)ω0 = 1 + 12q + 73q2 + 346q3 + 1390q4 + 4956q5 + 16715q6 + 52982q7 + · · ·
Y2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

ᵀ

q1/3X2(τ)ω0 = 1 + 3q + 22q2 + 86q3 + 461q4 + 1992q5 + 8343q6 + 30997q7 + · · ·
Y3 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)

ᵀ

q1/3X3(τ)ω0 = 1 + 13q + 83q2 + 372q3 + 1460q4 + 5112q5 + 17053q6 + 53651q7 + · · ·
Y4 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)

ᵀ

q1/3X4(τ)ω0 = 1 + 4q + 32q2 + 112q3 + 531q4 + 2148q5 + 8681q6 + 31666q7 + · · ·

All four of these possible character vectors will have four components equal to
θ2

[2]η
−8, θ[0]θ[1]η

−8, θ[0]θ[2]η
−8, θ2

[1]η
−8, i.e. identical with components of the charac-

ter vector of the la�ice VOA for A4 ⊕ A4. �is is highly suggestive: the extended
Haagerup VOA (at c = 8) should contain some orbifold of the A4⊕A4 la�ice VOA.
�at subVOA would also have c = 8, which means the (hypothetical) extended
Haagerup VOA would be a �nite extension of that la�ice orbifold. Something simi-
lar happens for the (still hypothetical) c = 8 Haagerup VOA, but there the la�ice
orbifold VOA (which is V+

L for L = A352[1, 1
4
]) only has c = 4. So in this sense the

extended Haagerup VOA is more accessible than the Haagerup VOA. Curiously,
this the same la�ice A352[1, 1

4
] makes an appearance both in the Haagerup and

extended Haagerup.
We now employ Lemma 10.2 to ensure integrality of the Fourier coe�cients.

Lemma 10.3. �e vector valued modular forms Y1,Y2,Y3,Y4 are integral.

Proof. We begin by showing that the columns of Ξn(ρ13) and Ξn(ρ5) with Λjj ≥
−1/3 are themselves integral. (�ese are the only relevant columns, as all other
entries of the Yi are automatically zero.) To see this, we apply the Lemma to the
vector-valued modular form QΞ(τ)Q−1ei for i ∈ {1, 2, 3, 4, 14, 15, 16, 20, 21, 22}.
For i ∈ {1, 2, 3, 4, 14}, the projective kernel is ±Γ(13) with index 1092, while for
i ∈ {15, 16} the projective kernel ±Γ(5) has index 60, and for i ∈ {20, 21, 22} the
index is 1. �us it su�ces to check out as far as 8 · 1092/24 = 364.

Next, note thatY1−Yi is supported on ρ13: more precisely, each of the di�erences
X1(τ)−Xi(τ) lies in the Z-span of the third and fourth columns of Ξ(ρ

(3)
2 ⊗ ρ

(13)
14 ),

so this is covered by the previous paragraph.
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Finally, we need to see that X1(τ) is integral. We observe that the inverse of Q
is almost integral:

Q−1 =



2
3

0 0 0 0 0 0 0 0 0 0 0 0 − 1
3

1
6

0 0 0 0 1
6

1
6

1
6

− 1
3

0 0 0 0 0 0 0 0 0 0 0 0 2
3

1
6

0 0 0 0 1
6

1
6

1
6

− 1
3

0 0 0 0 0 0 0 0 0 0 0 0 − 1
3

1
6

0 0 0 0 1
6

1
6

1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
6

0 0 0 0 − 1
6

5
6

1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
6

0 0 0 0 5
6
− 1

6
1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
6

0 0 0 0 − 1
6
− 1

6
1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0



.

We see from the locations of denominators in Q−1 (and our earlier observation
about the integrality of the matrices Ξn(ρ)) that it is only the �rst six entries of
X1(τ) which might not be integral. Consider �rst X1(τ)α1 , the 4th component
(which also equals the ��h and sixth components). NoteQY1 = e1− e3 + e15 + e22

, and compute

(Q−1ΞnQY1)4 =
1

6
(− (Ξn)15,1 + (Ξn)15,3 − (Ξn)15,15 − (Ξn)15,22

− (Ξn)20,1 + (Ξn)20,3 − (Ξn)20,15 − (Ξn)20,22

− (Ξn)21,1 + (Ξn)21,3 − (Ξn)21,15 − (Ξn)21,22

+ (Ξn)22,1 − (Ξn)22,3 + (Ξn)22,15 + (Ξn)22,22)

and observe that most of these vanish as Ξn is block diagonal, obtaining

(X1)α1 = (Q−1ΞnQY1)4 =
1

6
(− (Ξn)15,15 + (Ξn)22,22).

�ese are the coe�cients of a (scalar) modular function for Γ = ±Γ(5), so we can
apply Lemma 10.2 withm = 60, k = 8. A�er checking explicitly that the �rst 20
values of (Q−1ΞnQY1)4 are integral, this ensures that X1(τ)α1 is integral.

Now consider X1(τ)ω0 , the 1st component. We need to show that (Q−1ΞnQY1)1

is integral. To do this, we take advantage of the fact that (Q−1)1+(Q−1)4 (mod 1) =
2
3
e1 + 2

3
e14 + 1

3
e22, and that we have already shown ΞnQY1 and (Q−1ΞnQY1)4 are

integral. We then see(
2

3
e1 +

2

3
e14 +

1

3
e22

)
ΞnQY1 =

2

3
((Ξn)1,1 − (Ξn)1,3 + (Ξn)14,1 − (Ξn)14,3) +

1

3
(Ξn)22,22

is a modular function for Γ = ±Γ(13). Again, Lemma 10.2 withm = 1092, k = 8
allows us to check the �rst 364 coe�cients to ensure that X1(τ)ω0 is integral.
Finally (Q−1)1 − (Q−1)2 and (Q−1)1 − (Q−1)3 are integral and supported in

entries 1, 14, and the corresponding columns of Ξ(τ) are integral, so X1(τ)ωi are
all integral. �
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Multiplying any character vector at c = 8 by J(τ)1/3 resp. J(τ)2/3 will give a
character vector at c = 16 resp. c = 24. But there should be many more as c grows,
and knowing other candidates could be important if all 4 candidates at c = 8 fail to
be realised by a vertex operator algebra. At c = 16we �nd c/24+maxjΛjj = 4

5
< 1,

so we consider

Y(J(τ)) = (1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, 0, 0, 0, 0, Y14, Y15, Y16, Y17, 0, Y19, Y20, Y21, Y22)
ᵀ
.

Again the conditions Xn ∈ R22
≥0 for n = 0, 1 su�ce to obtain �nitely many cases;

we obtain inequalities

0 ≤ 13Y1 − 13Y2 − Y14 − 5Y15 + 8Y16 − 21Y17 + 2Y19 + 3Y20 − 9Y21 − Y22

0 ≤ 2119Y1 − 1547Y2 − 572Y3 + 2Y14 + 351Y15 − 896Y16 − 728Y17 + 832Y19 − 28Y20 − 5174Y21 + Y22

0 ≤ 975Y1 − 715Y2 − 260Y3 + 6Y14 − 254Y15 − 16Y16 − 2058Y17 − 235Y19 − 60Y20 + 750Y21 + Y22

0 ≤ 39Y1 + 13Y2 − 52Y3 − 3Y14 + 26Y15 − 16Y16 − 78Y17 − 26Y19 + 2Y20 + 65Y21 + Y22

0 ≤ 339Y1 + 103Y2 + 25Y3 + 175Y4 + 175Y5 + 175Y6 + 98Y7 + 20Y8 + 880Y9 − 4Y14

+ 28Y15 + 32Y16 + 266Y17 − 212Y19 − 30Y20 − 452Y21 − 2Y22

0 ≤ 103Y1 + 27Y2 + 337Y3 + 175Y4 + 175Y5 + 175Y6 + 98Y7 + 20Y8 + 880Y9 − 2Y14

− 86Y15 − 144Y16 − 882Y17 + 146Y19 + 20Y20 + 326Y21 + 2Y22

0 ≤ 175Y1 + 175Y2 + 175Y3 + 817Y4 − 175Y5 − 175Y6 − 98Y7 − 20Y8 − 880Y9

0 ≤ 175Y1 + 175Y2 + 175Y3 − 175Y4 + 817Y5 − 175Y6 − 98Y7 − 20Y8 − 880Y9

0 ≤ 175Y1 + 175Y2 + 175Y3 − 175Y4 − 175Y5 + 817Y6 − 98Y7 − 20Y8 − 880Y9

0 ≤ 375Y1 + 375Y2 + 375Y3 − 375Y4 − 375Y5 − 375Y6 + 56Y7 − 50Y8 + 3300Y9

0 ≤ 2025Y1 + 2025Y2 + 2025Y3 − 2025Y4 − 2025Y5 − 2025Y6 − 1372Y7 + 164Y8 + 8624Y9

0 ≤ 227375Y1 + 227375Y2 + 227375Y3 − 227375Y4 − 227375Y5 − 227375Y6 + 46648Y7 + 850Y8 − 44107350Y9

0 ≤ 6084Y1 − 4394Y2 − 1690Y3 − 6Y14 − 374Y15 + 1702Y16 − 49168Y17 + 1564Y19 + 88Y20 − 4582Y21 − 2Y22

0 ≤ 115765Y1 − 83993Y2 − 31772Y3 + 8Y14 + 7956Y15 − 28112Y16 − 79196Y17

+ 34684Y19 − 308Y20 − 367952Y21 + Y22

0 ≤ 67704Y1 − 49114Y2 − 18590Y3 + 22Y14 − 6878Y15 − 906Y16 − 309708Y17

− 12288Y19 − 780Y20 + 70830Y21 + 2Y22

0 ≤ 3042Y1 − 2197Y2 − 845Y3 + 10Y14 − 26Y15 − 460Y16 + 16380Y17 − 2392Y19 + 44Y20 + 3770Y21 − Y22

0 ≤ 455Y1 + 182Y2 − 637Y3 − 68Y15 − 160Y16 + 980Y17 + 92Y19 + 28Y20 + 1160Y21 − Y22

0 ≤ 312Y1 + 104Y2 − 416Y3 − 3Y14 − 65Y15 + 64Y16 + 2002Y17 + 234Y19 + 30Y20 − 390Y21

0 ≤ 13Y1 + 13Y2 − 26Y3 + 2Y14 + 6Y15 + 19Y16 − 28Y17 + 24Y19 − 4Y20 + 10Y21 + Y22

0 ≤ 8450Y1 + 3211Y2 − 11661Y3 − 20Y14 + 1768Y15 − 1320Y16 − 52780Y17

− 3484Y19 + 44Y20 + 19604Y21 + 2Y22

0 ≤ 78Y1 − 260Y2 + 182Y3 − 6Y14 + 14Y15 + 98Y16 + 924Y17 + 80Y19 − 20Y20 + 546Y21

0 ≤ 403Y1 − 1443Y2 + 1040Y3 + 4Y14 + 208Y15 + 523Y16 − 3796Y17 − 884Y19 + 76Y20 + 156Y21 + Y22

0 ≤ 26Y1 − 91Y2 + 65Y3 + 2Y14 + 34Y15 − 28Y16 + 56Y17 + 92Y19 + 58Y21 − Y22

0 ≤ 1170Y1 − 4342Y2 + 3172Y3 − 5Y14 − 351Y15 + 280Y16 + 20475Y17 + 169Y19 + 57Y20 − 8385Y21 + 2Y22

with 179,459 solutions. All appear to have positive integral Fourier coe�cients for
many (and probably all) terms. �is time, Lemma 10.2 would require checking about
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twice as many coe�cients for integrality as was necessary for c = 8. Although
this is probably possible, enough e�ort is involved that we have not done this.

At c = 24 we �nd c/24 + maxjΛjj = 1, so we consider

Y(J(τ)) = (J(τ) + Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9,

Y10, Y11, Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y21, Y22)
ᵀ
,

but this time just withYi ∈ C. �e requirement that the �rst componentΞ(τ)Y(J(τ))
has the strictly lowest leading exponent forces Y10 = −1

6
, Y18 = −2

3
, and Y21 = −1.

Now, sadly, the conditions Xn ∈ R22
≥0 do not appear to cut out a bounded region,

no ma�er how high an n we consider. (In particular, Y1, . . . , Y6 are unbounded.)
However the conditions X′n;j ≥ 0 for n = 0, 1 do cut out a bounded region. We
cannot enumerate the points however (the naive upper bound we have on its
volume in the Yi coordinate system is around 1043), and the collection of solutions
may shrink further as we consider X′n;j ≥ 0 for larger n. Nevertheless, it is possible
to �nd new individual solutions, for example

Y(J(τ)) =

(
J(τ) +

519

2
,−23

6
,
83

6
,
625

6
,
625

6
,
625

6
,
1

2
,
19

3
,

12,−1

6
, 1, 16,−10

3
,
77

3
,−4, 5,

302

3
,−2

3
,
1

3
, 10,−1, 49

)ᵀ
which gives non-negative integral X′n;j at least up to n = 50.

Appendix A. Some conseqences of Lemma 3.1

We record here some additional consequences of Lemma 3.1, which although
unneeded for the present argument, may prove useful to others.

Corollary A.1. If the full Galois orbit of some x ∈ Φ has cardinality k ≤ 6, then
the root of unity Txx has order dividing some number in the set Nk, where

N1 = {23 · 3}
N2 = {23 · 3 · 5, 24 · 3}
N3 = {23 · 32, 23 · 3 · 7}
N4 = {25 · 3, 24 · 3 · 5}
N5 = {23 · 3 · 11}
N6 = {24 · 32, 24 · 3 · 7, 23 · 32 · 5, 23 · 3 · 5 · 7, 23 · 3 · 13}.

Proof. Clearly the formula for k(Nx) in Lemma 3.1 is increasing with respect to
the factorization of Nx. Moreover Nx can not be divisible by any prime p larger
than 13, as otherwise k(Nx) ≥ (p− 1)/2 > 6. �us we just need to check small
exponents in Nx = 2µ23µ35µ57µ711µ1113µ13 . �

�e Mathematica notebook ConductorsForOrbitsSize.nb available
with the arXiv sources of this article readily computes Nk for values of k up to
several hundred.
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Corollary A.2. Let kx be the size of the full Galois orbit of an object x and Nx be
the order of Txx. �en for any δ > 0 we have

Nx ≤ Cδk
1+δ
x

where

Cδ = 24
∏
p∈Pδ

p

(
2

p− 1

)1+δ

where the product is taken over the �nite set

Pδ =

{
3 < p : p is prime and p

(
2

p− 1

)1+δ

> 1

}
.

(�e setPδ is certainly �nite as all such primes are less thanmax{7, 1+2
(

11
5

)1/δ}.)

Proof. Write Nx =
∏

p p
µp as before. We have

Nx

k1+δ
x

=
∏
p|Nx

Rp

where

R2 =


2 if µ2 = 1

4 if µ2 = 2

23+δ(3−µ2) if µ2 ≥ 3

and

Rp = p1+δ(1−µp)

(
2

p− 1

)1+δ

.

�us in the worst case µ2 = 3 and µp = 1 for each other p|Nx. When µp = 1, Rp

simpli�es to p
(

2
p−1

)1+δ

. We then have

Nx

k1+δ
x

= R2R3

∏
3<p|Nx

Rp

≤ 24
∏
p∈Pδ

p

(
2

p− 1

)1+δ

= Cδ. �

�e rank of a modular tensor category is the sum of the sizes of the Galois orbits
of objects, while the exponent is the least common multiple of the orders of the
eigenvalues of T , so while we have close-to-linear bounds on the conductor on
each orbit, it is still possible to have exponential growth of ord(T ) relative to the
rank, as for RepDSn.
Incidentally, for all odd primes the smallest irrep of SL(2,Zpν ) with conductor

pν for ν ≥ 2 has dimension (p2 − 1)pν−2. �e smallest irrep with conductor 2ν for
ν ≥ 4 has dimension 3 · 2ν−4.
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Appendix B. Explicit matrices for some irreps of SL(2,Z)

�e representations we are interested in both lie in the principal series of SL(2,Zp).
In particular, writeB for the (Borel) subgroup of upper-triangular matrices

(
a b
0 a−1

)
.

Each irrep λ of Z×p ∼= Zp−1 extends to B by λ
(
a b
0 a−1

)
= λ(a). Denote by ρ(p);λ

the induced representation IndSL(2,Zp)
B λ — it will be p + 1-dimensional. �en

ρ(p);λ ∼= ρ(p);λ̄ is irreducible i� λ2 6= 1. By contrast, ρ(p);1 is the direct sum of
1 and an irrep called the Steinberg representation, while ρ(p);λ for the order-2 λ
is the direct sum of two (p + 1)/2-dimensional irreps. Coset representatives for
SL(2, p)/B are

(
1 0
j 1

)
and ( 0 −1

1 1 ), and using this it is easy to work out not merely
the characters of ρ(p);λ, but explicit matrices as well.

�emodular data of the centre of the extended Haagerup has two building blocks:
the conductor-5 irrep ρ(5)

8 and the conductor-13 irrep ρ(13)
14 . �e irrep ρ(5)

8 is the
Steinberg representation for SL(2,Z5), while the other irrep, ρ(13)

14 , is ρ(13);λ for the
(unique up to complex conjugate) order-3 λ. It is thus easy to work out explicit
matrix realisations. First, ρ(5)

8 is generated by matrices T (5)
8 = diag(1, ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5)

and

S
(5)
8 :=

1

5


−1 −6 −6 −6 −6
−1 −2c− c′ 2c′ 2c −c− 2c′

−1 2c′ −c− 2c′ −2c− c′ 2c
−1 2c −2c− c′ −c− 2c′ 2c′

−1 −c− 2c′ 2c 2c′ −2c− c′


where we write c = 2 cos(2π/5) and c′ = 2 cos(4π/5).

Likewise, ρ(13)
14 is generated by 14 × 14 matrices S(13)

14 and T (13)
14 . Label their

rows/columns by 0, 1, 2, . . . , 12, 0′ in that order. �en
(
T

(13)
14

)
00

=
(
T

(13)
14

)
0′0′

= 1

and
(
T

(13)
14

)
ll

= ξl13 for each 1 ≤ l ≤ 12. Write cj = 2 cos(2πj/13). De�ne
vectors ε = (1, 1,−1,−1, 1,−1) and ε′ = (1, 1, 1,−1, 1, 1) and quantities s(l) =
(cl − c2l − c3l + c5l)/13, s′(l) = (1 + 3cl + 3c5l)/13, t(l) = (2− cl + c2l − c4l)/13,
and t′(l) = (2c2l − c3l − c5l)/13. �en

S00 = s(1) , S00′ = s(2) , S0′0 = −s(4) , S0′0′ = −s(1) ,

Sl2,0 = εl s(l) , S0,l2 = εl s
′(l) , S2l2,0 = ε′l s(4l) , S0,2l2 = ε′l s

′(4l) ,

Sl2,0′ = εl s(2l) , S0′,l2 = −εl s′(4l) , S2l2,0′ = ε′l s(5l) , S0′,2l2 = −ε′l s′(3l) ,
Sl2,m2 = εl εm t(lm) , Sl2,2m2 = S2m2,l2 = εl ε

′
m t
′(lm) , S2l2,2m2 = ε′l ε

′
m t(2lm) ,

where subscripts in Sl2,m2 etc are taken mod 13, and l,m run over all numbers
1, 2, . . . , 6. �e parameters l,m parametrise the quadratic residues and nonresidues
mod 13, which behave slightly di�erently.
Curiously, the doubles of the even parts of both the Haagerup and Asaeda–

Haagerup subfactors are likewise built from the principal series, for p = 13 and
p = 17 respectively, speci�cally from one of the (p+ 1)/2-dimensional irreps in
ρ(p);λ for the order-2 λ.
It would be interesting to investigate the possibility of ��ing the modular data

of the extended Haagerup into an in�nite sequence. �is would be somewhat anal-
ogous to doing it for the Haagerup. �e la�er was done in [EG11], but what made
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that possible was that there was already an in�nite family to which the Haagerup
hypothetically belonged [Izu01], and the �rst several subfactors in that sequence
were already known to exist [EG11]. Doing this for the extended Haagerup would
be a much greater challenge, but a very interesting one!

In particular, we learnt above that the SL(2,Z)-representation for the extended
Haagerup is isomorphic to ρ13⊕ ρ5⊕ 1⊕ 1⊕ 1, where ρ5 is the Steinberg represen-
tation of SL(2,Z5) and ρ13 lies in the principal series of SL(2,Z13). So we may look
for modular data isomorphic to ρp ⊕ ρr ⊕ n 1 for some n ∈ Z≥0 and some primes
r, p, where again ρr is Steinberg and ρp lies in the principal series (and perhaps
corresponds to the unique λ ∈ Z×p of maximal odd order). In the expression for
S in �eorem 9.1, there are six awkward submatrices, namely U, V,W,A,B,C .
But thanks to Lemma 4.1, W resp. A,B,C can be read o� from ρr ( 0 −1

1 0 ) resp.
ρp ( 0 −1

1 0 ), and as we explained in this appendix those matrices are readily computed.
Moreover unitarity of S forces n = r − 2. So only the symmetric n-by-n matrix
U and the n-by-(p−1) matrix V need to be identi�ed. �ey are directly obtained
from ρr ( 0 −1

1 0 ) and ρp ( 0 −1
1 0 ) by the change-of-basis matrix we call Q and, as we

see in Section 9,Q takes a very simple form for the extended Haagerup. We haven’t
pursued this any further.
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