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Abstract We describe a modification of Khovanov homology [14], in the
spirit of Bar-Natan [3], which makes the theory properly functorial with
respect to link cobordisms.

This requires introducing ‘disorientations’ in the category of smoothings
and abstract cobordisms between them used in Bar-Natan’s definition.
Disorientations have ‘seams’ separating oppositely oriented regions, com-
ing with a preferred normal direction. The seams satisfy certain relations
(just as the underlying cobordisms satisfy relations such as the neck cut-
ting relation).

We construct explicit chain maps for the various Reidemeister moves, then
prove that the compositions of chain maps associated to each side of each
of Carter and Saito’s movie moves [9, 8] always agree. These calculations
are greatly simplified by following arguments due to Bar-Natan and Kho-
vanov, which ensure that the two compositions must agree, up to a sign.
We set up this argument in our context by proving a result about duality
in Khovanov homology, generalising previous results about mirror images
of knots to a ‘local’ result about tangles. Along the way, we reproduce Ja-
cobsson’s sign table [11] for the original ‘unoriented theory’, with a few
disagreements.
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1 Introduction

Khovanov homology [14, 15, 3] is a “categorified” invariant: it assigns to a
link a graded module (or a complex of such) rather than a “scalar” object such
as a number or a polynomial. Thus we expect not merely a module for each
link, but also a functor which assigns module isomorphisms to each isotopy
between links. (This isomorphism should depend only on the isotopy class of
the isotopy.) That is, given two links and a specific isotopy between them, we
want an explicit isomorphism between their Khovanov invariants, not merely
the knowledge that the Khovanov invariants are isomorphic. Unfortunately,
the original unoriented version of Khovanov homology gives slightly less than
this — the isomorphisms assigned to isotopies are well-defined only up to
sign.

Unoriented Khovanov homology also gives more: the functor extends to sur-
face cobordisms in B3×I (but still with a sign ambiguity) [11]. More precisely,
let L be the above category of oriented links and (isotopy classes of) isotopies
between them, and let C be the category whose morphisms are (isotopy classes
of) oriented surfaces properly embedded in B3× I . If we associate to each iso-
topy between links the track of the isotopy in B3× I , we get a functor L ↪→ C ,
and the Kh functor on L is the pull-back of an extended Kh functor on C .
The extended Kh also has a sign ambiguity.

The aim of this paper is to fix the above sign issues.

For motivation, consider the ‘pre-categorified’ situation. Unoriented Khovanov
homology is based on the unoriented Kauffman bracket polynomial, with skein
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relation shown in Figure 1 (with a further writhe correction, which introduces
a dependence on the orientations of the link). Closely related is the quan-
tum su2 polynomial, which has a skein theory based on piecewise oriented
(or “disoriented”) tangles, as shown in Figure 2 (see [19]). The two polyno-
mials (and their associated TQFTs) differ only by a sprinkling of signs. The
Kauffman bracket has the advantage of simpler (unoriented) objects and triv-
ial Frobenius-Schur indicators, while the quantum su2 polynomial has the ad-
vantage of producing positive-definite TQFTs (that is, TQFTs with nicer signs).

= − q

= q + q−1

Figure 1: A version of the Kauffman skein relations.

= q − q2

= −q−2 + q−1

= −

=

Figure 2: The ‘disoriented’ su2 skein relations.

Our strategy is to categorify the disoriented skein relation of the quantum su2

polynomial, rather than the unoriented Kauffman skein relation. We introduce
the appropriate category of disoriented surface cobordisms, and then imitate
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Bar-Natan’s approach. We find that disorientations also lead to nicer signs in
the categorified setting:

Theorem 1.1 There is a functor Kh from the category of oriented links in
B3 and (isotopy classes of) isotopies between them to the category whose
objects are graded complexes of disoriented smoothings and abstract disori-
ented cobordisms between smoothings (modulo local relations) and whose
morphisms are graded chain isomorphisms (modulo chain homotopy).

Theorem 1.2 The above functor extends to the category of oriented links in
B3 and oriented surface cobordisms (modulo isotopy) in B3 × I .

We split the statement into two theorems because functoriality with respect
to isotopies of links would be expected of any link invariant taking values in
a category, while functoriality with respect to surface cobordisms is a special
feature of Khovanov homology.

For each link L, Hom (Kh(∅),Kh(L)) is a doubly graded vector space (the
second grading is the homological shift of a chain map).1 It follows from The-
orem 4.1 that this vector space is isomorphic to the one constructed from the
unoriented theory as in [3]. Hence it is isomorphic to Khovanov’s original
construction, and in particular its graded Euler characteristic is the Jones poly-
nomial of L.

Similar results have been obtained independently by Caprau [7].

In [17], Khovanov and Rozansky define a link homology theory which is a
categorification of the generalized Jones polynomial based on Uq(sln). We do
not know whether our invariant is equivalent to Khovanov and Rozansky’s
for n = 2, but it seems reasonable to conjecture that it is.

We actually get much more than a functor on cobordisms. We can construct
a 4-category (or, if you prefer, a 4-dimensional version of a planar algebra)
whose 3-morphisms are tangles in B3 and whose 4-morphisms are elements
of appropriate Khovanov homology modules. This 4-category enjoys the fol-
lowing duality or “Frobenius reciprocity” type property:

1Here, Hom (Kh(∅),Kh(L)) is the space of chain maps up to homotopy between
Kh(∅) and Kh(L) in the category of complexes disoriented cobordisms. Equivalently,
we could apply the functor Hom (∅,—) to each object and morphism in the complex
Kh(L) , and then take the homology of the resulting complex of graded vector spaces.
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Theorem 1.3 Given compatible oriented tangles P , Q and R , there is a dual-
ity isomorphism between the spaces of chain maps up to homotopy

F : HomKh ([[P •Q]] , [[R]])
∼=→ HomKh

(
[[P ]] ,

[[
R •Q

]])
.

The notation P • Q indicates a ‘horizontal composition’ of tangles P and Q.
See 3.1 for a more precise statement.

The duality isomorphisms are coherent in the following sense (although this
is not proved in this paper). To each such isomorphism we can associate an
isotopy of links in S3 — roughly speaking we slide Q from the bottom of S3

to the top. Then two composable sequences of duality isomorphisms give the
same result if the associated isotopies in S3 × I are isotopic.

The paper is organized as follows.

Section 2 defines the invariant. We introduce the appropriate category of dis-
oriented cobordisms, associate a chain complex based on this category to each
oriented planar tangle diagram, and associate a morphism of complexes to
each Reidemeister and Morse move.

Section 3 verifies that our construction is well-defined. We show that if two
different sequences of Reidemeister and Morse moves are related by movie
moves, then the associated morphisms of chain complexes are equal. Along
the way, we prove the first part of the above duality result (Theorem 1.3).

Section 4, as its title suggests, contains miscellaneous results. We show that
setting ω = 1 in our construction recovers the signs from [11]. We show that
modulo signs, our invariant agrees with the original unoriented version. We
give an example calculation, showing that in the new construction, the cobor-
disms which ‘attach a handle to a strand’ on either side of a crossing give ho-
motopic chain maps, whereas the old construction gave maps homotopic only
with a sign. Finally, we discuss the possibility of extending the invariant from
oriented tangles to disoriented tangles.
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2 The new construction

2.1 Disorientations

In this paper we follow the Bar-Natan approach of defining Khovanov homol-
ogy in terms of surface cobordism categories — categories whose objects are
(possibly crossingless) tangles in B3 and whose morphisms are surface cobor-
disms between tangles. We’ll deal with three sorts of tangles and surfaces: un-
oriented (and possibly non-orientable), oriented, and disoriented. We assume
reader is familiar with the former two categories.

A disoriented 1- or 2-manifold is a piecewise oriented manifold where each
component of the interface between differently oriented domains is equipped
with a preferred normal direction. In figures, we indicate this normal direc-
tion with a fringe pointing in the preferred direction. We’ll call the interface
between differently oriented domains a disorientation seam.

We almost always (and usually without comment) consider disoriented sur-
faces modulo the local fringe relations illustrated in Figure 3. If ω is a prim-
itive fourth root of unity (ω2 = −1), we will see below that we get a version
of Khovanov homology that satisfies functoriality. If ω = 1, then we repro-
duce the original unoriented version of Khovanov homology, simply because
the disorientations become irrelevant. (We keep track of factors of ω explicitly,
rather than just writing ω = i everywhere, so that we can do calculations in
both the old and the new setup in parallel.)
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= ω

= ω−1

= ω−1

Figure 3: Disorientation relations.

2.2 Cobordism categories

The main goal of this paper is to construct a functor from OrTang , the cat-
egory of oriented tangles and oriented cobordisms in B4 , to Kom (DisAb),
a category of chain complexes based on abstract disoriented cobordisms be-
tween disoriented crossingless planar diagrams. Along the way we’ll meet
several other variant cobordism categories. In this subsection we introduce the
various categories we’ll need. The categories will be given compound names
like OrTang , Kom (DisAb) and Kom (UnAb); we’ll start by explaining the
meanings of the components of the names.

The manifolds in the categories (1-manifolds for objects, 2-manifolds for mor-
phisms) can be unoriented, oriented or disoriented, which we denote by Un,
Or and Dis. In all cases, we think of the objects as 1-manifolds embedded
in B2 × I = B3 , with specified endpoints along the circle ∂B2 × {1

2} ⊂ ∂B3 .
In particular there are morphisms between two tangles X and Y only if their
boundaries on the circle match, and in that case the morphism will be some
2-manifold with boundary X ∪ −Y ∪ (∂ × I).

We now introduce three categories of tangles. The first one, Tang , is the one of
real interest; it denotes the category whose objects are arbitrary tangles in B3

and whose morphisms are isotopy classes of surface cobordisms embedded in
B3 × I = B4 .

The second, PD, should be thought of as a ‘combinatorial model’ of Tang .
The objects of PD are tangles in B3 which are in general position with respect
to the projection pz : B3 ∼= B2 × I → B2 . The morphisms of the category can
be described by generators and relations. The generators are
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• Isotopies through tangles in general position.

• Morse moves; birth or death of a circle, or a saddle move.

• Reidemeister moves.

One should think of these generators as those isotopies which have at most
one ‘singular time slice’; that is, one moment at which the projection of the
link to B2 is not generic, and the only the simplest types of singularity are
allowed to occur. These simplest singularities are, of course, simply the Morse
and Reidemeister moves.

The first relation we impose is a boring one; composing an ‘isotopy through
general position tangles’ with any other morphism simply gives a morphism
of the same type, given by gluing the isotopies together. We then impose
more relations, the movie moves of Carter and Saito [9, 8] (see also Roseman
[22]). The unoriented versions of these moves are shown in Figure 4 (thanks to
Carter and Saito for originally drawing these diagrams!), using the numbering
scheme introduced by Bar-Natan in [3]. Note that we also need to consider
variations involving mirror images and/or crossing changes.

They prove a theorem to the effect that two unoriented cobordisms between
unoriented tangles represented by compositions of Morse and Reidemeister
moves are isotopic if and only if those compositions are related by a sequence
of movie moves. To describe the relations we impose in OrPD, we need the
oriented version of this, which, by much the same argument as they gave, re-
quires a separate version of each unoriented movie move for each possible ori-
entation of the strands (subject to some constraints; movies involving saddles
must have strands oriented appropriately so the saddles are valid morphisms).

Finally, note that in DisPD there are both additional Reidemeister moves
(sliding a disorientation through a crossing) and additional movie moves, in-
volving this new Reidemeister move. As we’re not attempting here to extend
Khovanov homology to all of DisTang , we’ll omit most of the details of this,
except what appears in §4.4.

Actually, we need to add a little more data to the objects in PD; a specified
ordering on the crossings. (The chain complexes we eventually assign to dia-
grams will vary in boring but important ways according to the ordering of the
crossings.) In addition to the morphisms described above (Reidemeister and
Morse moves), we need to add ‘reordering morphisms’, which are all isomor-
phisms. Further, we need to modify our notion of the Reidemeister moves so
that the source and target tangles have (arbitrarily) ordered crossings – but all
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MM1 MM5MM2 MM43MM

MM6

MM10

MM7

MM9

MM8

MM13 MM14 MM15MM11 MM12

Figure 4: Carter and Saito’s unoriented movie moves.

such different Reidemeister moves differ simply by pre- or post-composition
with reordering isomorphisms.

Finally, Ab denotes a category whose objects are tangles without any cross-
ings (think of them as embedded in B2 × {1

2} ⊂ B3 ). The morphisms from
a crossingless tangle X to a crossingless tangle Y are linear combinations of
abstract (not embedded in B4 ) surfaces, modulo the relations:

= 0 = 2 (2.1)

=
1
2

(
+

)
The coefficients are in some ring containing 1

2 . Note that for DisAb these
relations are imposed away from the disorientation seams. The last relation
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above is called the neck cutting relation. In DisAb we of course also impose
the fringe relations (Figure 3, earlier). In DisAb it is unnecessary to set the 2-
sphere equal to zero as it follows from the fringe relations that any connected,
closed, orientable, disoriented surface whose Euler characteristic is not a mul-
tiple of 4 is equivalent to zero. Further it’s easy to see via neck cutting that a
genus 2n+1 connected closed oriented surface is equal to 21−n n , and
that there are no unorientable disoriented surfaces.

As explained in [3, 21], setting the genus three surface to zero in UnAb leads
to the original version of Khovanov homology, while setting it to a nonzero
complex number gives something isomorphic to Lee homology [20]. Although
it makes very little difference for this paper, we’d like to encourage leaving this
surface unevaluated, as described in [21]. This makes the morphism spaces
into Z

2 [ ] modules. For convenience, we’ll abbreviate Z
2 [ ] sim-

ply as R; although for the purposes of the rest of the paper you can take R to
be any ring with 2 invertible, if you prefer.

We’ll now prove a lemma describing the morphism spaces in DisAb, in par-
ticular showing that the category is non-trivial and describing bases for some
of the morphism spaces.

First, let’s say that a disoriented circle has total disorientation number zero if
the numbers of forward- and backward-facing disorientation marks are equal
when we traverse the circle. (The total disorientation number itself is only
defined up to a sign unless we independently have an orientation of the en-
tire circle.) For such a circle, let’s call the standard disc the disoriented disc in
which the disorientation seams have been produced by successively connect-
ing each pair of disorientation marks which face towards each other with no
unconnected disorientation marks between them. Similarly the standard punc-
tured torus is the disoriented punctured torus in which the disorientation seams
have been produced in the same way. Finally, the standard cylinder is the dis-
oriented cylinder, with boundary two copies of the same disoriented surface,
in which the disorientation seams have been produced in this way near each
boundary component separately. In particular, no disorientation seams con-
nect one boundary component to the other. If the circle has 2m disorientation
marks, the standard cylinder is equal to ωm times the identity cylinder.

Lemma 2.1

• All closed surfaces in DisAb evaluate to a Z[12 , ω] multiple of a disjoint
union of copies of , and the surfaces ∪k are all linearly
independent. That is,

HomDisAb (∅, ∅) = R[ω].
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• If D1 and D2 are oriented diagrams in DisAb with the same boundary,
and D1 ∪D2 consists of k oriented circles, then HomDisAb (D1, D2) is a
free R[ω] module of rank 2k , spanned by surfaces consisting of discs or
punctured tori attached to the boundary circles.

• If D1 and D2 are arbitrary diagrams in DisAb with the same boundary,
and D1 ∪D2 consists of k disoriented circles each with total disorienta-
tion number zero then HomDisAb (D1, D2) is again a free R[ω] module
of rank 2k , spanned by surfaces consisting of standard discs or standard
punctured tori attached to the boundary circles.

(In fact, the first two statements are just special cases of the third.)

Remark. When the boundary circles don’t have total disorientation number
zero the morphism spaces are more complicated. For example, there are no
morphisms between circles with different total disorientation numbers. Fur-
ther, endomorphisms of the circle with total disorientation number two is a
rank 2 module, rather than a rank 4 module as for the total disorientation
number zero case. We won’t need to know these details; only what appears
here is needed for the proof of Theorem 4.1, although also see §4.4.

Proof Usually such an argument about the basis for a theory defined by lo-
cal relations proceeds by finding a functor (e.g. a TQFT) to vector spaces. We
won’t do this, but instead describe an ‘evaluation algorithm’ which writes an
arbitrary element of the morphism space as a linear combination of the indi-
cated elements, and then show that modifying that arbitrary element by one of
the local relations does not change the output of the algorithm. In particular,
if some nontrivial linear combination of the proposed basis elements was ac-
tually equivalent to zero by applying the relations, then the algorithm would
have to produce zero; we’ll show that the algorithm leaves each of the pro-
posed basis elements unchanged.

Given a surface in HomDisAb (D1, D2) with D1 and D2 satisfying the hypothe-
ses of the lemma, the algorithm proceeds by:

(1) Replace a collar of each circle with 2m disorientation marks with ω−m

times the standard cylinder on that circle.

(2) Neck cut around the middle of each of those standard cylinders.

(3) At this point we have a disjoint union of standard discs and punctured
tori, along with some disoriented closed surfaces. Apply the ‘disoriented
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neck cutting relation’

=
1
2

(
+

)
=

1
2

(
ω−1 + ω

)
at each closed disorientation seam.

(4) Now we have a disjoint union of standard discs and punctured tori,
along with some oriented closed surfaces. Replace any even genus closed
surface with 0, and each closed surface of genus 2n+1 with 21−n n .
(Notice this leaves unchanged.)

First observe that this algorithm leaves a standard disc or standard punctured
torus unchanged (this requires a short calculation; it’s good practice).

Next, we need to check each relation. Some of the relations are obvious; in
particular the first two disorientation relations in Figure 3, as well as the sphere
and torus relations from (2.1).

Neck cutting is not so hard. It’s easy to see that if Z is the result of neck cutting
on Y , then the first three steps of the algorithm run in exactly the same way
on each, and in particular do not modify Z or Y in the vicinity of the neck.
After these three steps we have Z ′ and Y ′ , where Z ′ is obtained from Y ′ by
neck cutting along a circle on one of the oriented closed surfaces. It’s easy to
check that the fourth step of the algorithm gives the same result in either case.

Finally, we need to check the last disorientation relation in Figure 3. Suppose Y
and Z are identical morphisms, except in some disc where they appear as the
left and right sides of the relation. After the first two steps of the algorithm,
we have Y ′ and Z ′ , which are still identical outside this disc (so far we’ve
only made modifications in a neighborhood of the boundary). Let’s assume
without loss of generality that in Y ′ the two disorientation seams involved
are part of two distinct circles, while in Z ′ the two seams are part of the same
circle. Consider then the pair of pants P that includes the disc in which the
relation takes place, and a neighborhood of the three disorientation circles. We
thus have

Y ′ = and Z ′ = .

13



Continuing now with the third step of the algorithm, we obtain

Y ′′ =
1
4

ω2 + + + ω−2


and

Z ′′ =
1
2

 + ω−2

 .

Knowing by now that we can freely neck cut, we neck cut each of the cylinders
appearing in the terms of Z ′′ , and see that the algorithm produces exactly the
same results.

In all of the above categories, we allow objects to carry an integer, thought of
as a ‘formal grading shift’, just as in [3]. We’ll denote this grading shift by
a power of q . We grade all of the morphism spaces, so that for a cobordism
C with source object qm1D1 and target object qm2D2 , each with k boundary
points, deg(C) = χ(C)−k/2+m2−m1 . It is not hard to see that these degrees
are additive under both composition and planar operations (in fact, χ(C)−k/2
and m2 −m1 are each additive separately). The local relations in Equation 2.1
are clearly degree homogeneous, so our grading makes sense on the quotient.

Given any category C with linear morphism spaces (called ‘pre-additive’ in
[3]), we can form a category Mat (C) whose objects are tuples of objects of C
(written as formal direct sums), and whose morphisms are matrices of mor-
phisms of C . Composition is given by multiplying matrices.

As an example to illustrate the grading and matrix conventions, let us re-
call the ‘delooping’ isomorphism described in [4]. This is an isomorphism
in Mat (UnAb) (there is an identical isomorphism in Mat (DisAb)) between

and q∅ ⊕ q−1∅, given by the matrices

(
1
2

)
and

(
1
2

)
. That

these matrices are inverses follows immediately from the relations in Equation
2.1 (and a quick calculation that the double torus is zero, by neck cutting). Ob-
serve that all the matrix entries here are degree 0 morphisms, once the grading
shifts on the source and target objects have been taken into account.
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We can also form the category Kom (C), whose objects are chain complexes
built out of Mat (C), and whose morphisms are degree 0 chain maps modulo
chain homotopy.

So, reviewing the nomenclature introduced thus far, we have:

• OrTang — objects are oriented tangles in B3 , and morphisms are ori-
ented surface cobordisms in B4 up to isotopy.

• OrPD — objects are oriented tangles in B3 , with generic projection in
the z direction, and morphisms are formal compositions (movies) of ori-
ented surface cobordisms, each of which has at most one ‘singular’ mo-
ment, modulo movie moves.

• UnAb — objects are crossingless unoriented tangles in B3 , and mor-
phisms are linear combinations of abstract unoriented cobordisms, mod-
ulo local relations.

• DisAb — objects are crossingless disoriented tangles in B3 , and mor-
phisms are linear combinations of abstract disoriented cobordisms, mod-
ulo local relations.

• Kom (DisAb) — objects are complexes in Mat (DisAb), and morphisms
are chain maps modulo chain homotopy.

Lemma 2.2 In either the oriented or unoriented context, the functor (i ◦ f) :
PD → Tang , which first forgets the ordering data on a planar diagram in
PD, then includes the diagram into Tang , (recall tangles in PD have generic
projections, whereas tangles in Tang need not) is a natural isomorphism of
categories. (The same result is true in the disoriented context too, but we don’t
need that for now.)

Proof First, we dispense with the ordering data on objects in PD: consider
for a moment PDunordered , the same category as PD, but without the order-
ing data on crossings. The forgetful functor f is an equivalence of categories;
its inverse (up to natural isomorphisms) can arbitrarily specify the crossing
ordering, after we’ve noticed that all possible orderings on a diagram are iso-
morphic.

Next, we construct a functor j which is the inverse of the inclusion i (up to nat-
ural isomorphism) of PDunordered into Tang . For every tangle T , choose an
isotopy IT to a general position tangle j(T ) (object of PD). For every cobor-
dism Y : T1 → T2 , IT2Y I

−1
T1

is a cobordism from j(T1) to j(T2). Up to ‘second
order’ isotopy, we can assume that IT2Y T

−1
T1

is composed of a sequence of Rei-
demeister moves and Morse moves. Define j(Y ) to be this sequence of moves.
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To show that j(Y ) is well-defined, we must show that choosing a different
second order isotopy above changes the sequence of Reidemeister and Morse
moves by movie moves. This is one of the fundamental properties of movie
moves. (Note that we have different versions of movie moves for Un, Or.)

To complete the proof, it is easy to show that {IT } comprise an invertible nat-
ural transformation between ij and the identity functor on Tang , and that
{j(I−1

T )} comprise an invertible natural transformation between ji and the
identity functor on PD.

The cobordism categories we’ve described above actually split up into disjoint
smaller categories, indexed by the number (and possibly orientations, when
relevant) of boundary points appearing on the equator of B3 . These categories
fit together as a canopolis (as introduced in [2]), that is, a planar algebra [12]
of categories. If you’re unfamiliar with planar algebras or canopolises, we’ve
included a brief summary in Appendix A.4. The planar operations are in all
cases simply given by gluing, both for objects and morphisms.

It’s worth pointing out how the planar operations interact with the ordering
of crossings in objects of PD. The internal discs of a spaghetti and meatball
diagram (indexing an operation of the planar algebra) come with an ordering.
When we glue together objects of PD inside of one of these diagrams, we
simply concatenate the orderings specified inside each object.

The ‘matrix category’ construction defining Mat (UnAb) and Mat (DisAb)
has an obvious analogue for canopolises; the planar operations distribute over
direct sums.

Similarly, taking complexes over a category extends to a parallel construction
for taking complexes over a canopolis. In any canopolis C , we can form a new
canopolis Kom (C) whose objects are complexes in C and whose morphisms
are chain maps (or chain maps up to homotopy). To apply a planar operation
to a suitable collection of complexes in Kom (C), we take the formal tensor
product of the complexes (i.e. form a multicomplex, sprinkle signs, and col-
lapse), then apply the specified planar operation to each object and differential.
See Appendix A.5 for more details. Notice that this planar operation on com-
plexes in Kom (C) depends on the ordering of the internal discs through the
way that signs appear when we take the tensor product of complexes, even
when the original canopolis was ‘symmetric’.

One consequence of these observations is that invariance for a local model of a
movie move implies invariance for that movie move embedded in any larger
tangle.
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2.3 Disoriented Khovanov homology

Our goal is to construct a map of canopolises (that is, a functor for each cate-
gory, compatible with planar operations) OrTang → Kom (DisAb). We fol-
low closely Bar-Natan’s approach, except that we replace his target category
Kom (UnAb) with Kom (DisAb). We’ll write [[T ]] to denote the complex in
DisAb associated to a tangle T .

It follows from Lemma 2.2 that if we want to construct a functorial invariant
of OrTang it suffices to construct a functorial invariant of OrPD, and to do
this it in turn suffices to

(1) Construct a complex for each planar tangle diagram (equipped with an
ordering of the crossings).

(2) Construct a map of complexes for each Reidemeister move, each Morse
move and each crossing reordering map.

(3) Check that the relations coming from each oriented movie move are sat-
isfied.

We’ll do the first two steps in this subsection and verify the movie move rela-
tions in §3.2.

2.3.1 The complex

The objects of OrPD are generated via planar algebra operations by positive
and negative crossings. We define the functor on single crossings as follows:

� //

(
• // q // q2

)

� //

(
q−2 // q−1 // •

)

(2.2)

In both cases, disorientation marks point to the right, relative to the overall
direction of the crossing. (This is just an arbitrary convention; they could be
equally well face to the left.)

17



Observe that a positive crossing is supported in homological heights 0 and
1, while a negative crossing is supported in heights -1 and 0. We denote the
grading shifts on objects simply by a multiplicative factor of some power of q .

Next we must define the functor on morphisms of OrPD. The morphisms
are generated (again, via planar operations) by Reidemeister moves, Morse
moves and the crossing reordering map which switches the ordering of a pair
of crossings. Note that Morse moves (the cup, the saddle and the cap) are al-
ready morphisms of DisAb, and hence also morphisms (between one term
complexes) of Kom (DisAb), so defining the functor on Morse moves is triv-
ial.

When switching the ordering of a pair of crossings in a tangle, we associate
a chain map which is simply ±1 on every object in the complex. Following
the homological conventions described in §A.6.2, this map is −1 on objects
in which both crossings have been resolved in the disoriented way, and +1
otherwise.

In the following sections, in which we describe the chain maps associated
to Reidemeister moves, we’ll restrict our attention to one particular ordering
of the crossings in the source and target tangle. The chain maps associated
to other moves with other orderings are simply obtained by pre- and post-
composition with the reordering maps from the previous paragraph.

Specifying the chain maps for the various Reidemeister moves will occupy the
remainder of this subsection. Each of these chain maps will be invertible up
to chain homotopy, so by the end of this subsection we will have established
the following weak result: If two planar tangle diagrams are isotopic, then
the complexes we assign to them are isomorphic up to chain homotopy. Full
functoriality will not be established until we have verified the movie move
relations in §3.2.

2.3.2 The R1 chain maps

The ‘twist’ and ‘untwist’ chain maps for the R1a and R1b moves are shown
in Figures 5 and 6. The horizontal straight arrows are the differentials in the
complex, and the vertical (green) arrows show the chain map itself.

Being extra careful, we might want to distinguish two variations of each of
R1a and R1b, depending on whether the kink lies on the left or the right side.
However, the chain maps are just mirror images of those shown here.
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Figure 5: The R1a chain maps.

Figure 6: The R1b chain maps.
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2.3.3 The R2 chain maps

The Reidemeister 2 move comes in four variations, which we’ll call R2al, R2ar,
R2b+ and R2b-.

R2al :
+ - →

R2ar :
+- →

R2b+ :
+- →

R2b− :
+- →

Notice that we always chose to number the crossings so the negative crossing
comes first. This is, of course, an arbitrary choice, but made so that the two
R2a maps, and the two R2b maps, look as similar to each other as possible.

Explicit chain maps between the two sides of the Reidemeister R2al and R2ar
moves are shown in Figure 7, while maps for the R2b- and R2b+ moves are
shown in Figure 8.

Calculations showing that these are indeed chain equivalences (and showing
how to discover them in the first place) have been relegated to Appendix A.2.

2.3.4 The R3 chain maps

The work of this section is divided into three parts. First, we explicitly describe
a chain map for one variation of the R3 move, and write down several prop-
erties of this chain map. Second, we state the corresponding generalisations
of these properties for the other seven variations of the R3 move. Third, we
describe an alternative chain map, which is chain homotopic to the initial one,
in each case.

We’ll construct the chain maps for the first R3 move directly using the simpli-
fication algorithm described by Bar-Natan in [4]; specifically, applying it to the
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+ -

Figure 7: The R2al chain map. (The R2ar chain map is identical.)

+-

Figure 8: The R2b- chain map. (The R2b+ chain map is the same, but with all
fringes reversed.)

21



complexes appearing on either side of the Reidemeister move, we’ll see that
we obtain (almost) exactly the same complexes. Composing the ‘simplifying’
and ‘unsimplifying’ maps gives us the desired chain map. The result appears
as Proposition 2.3.

We’ll provide the chain maps for the other seven R3 moves less explicitly,
using the idea that all R3 moves are equivalent modulo R2 moves.

We’ll state three lemmas (Lemmas 2.4, 2.5, 2.6 for the first variation, and Lem-
mas 2.7, 2.8, 2.9 for the other seven variations) capturing the features of these
maps relevant to later movie move calculations, but postpone the proofs until
§A.3.

Sadly, the ‘categorified Kauffman trick’ first described by Bar-Natan [3] doesn’t
work in the disoriented category; the disorientation marks get in the way of
using the second Reidemeister move. With ‘vertigos’ (as wished for in §4.4),
this method should recover its utility and give easier proofs of the statements
we need about the seven variations, by giving an easy direct construction of
the chain map in each case.

Proposition 2.3 There’s a homotopy equivalence between the complexes as-
sociated to either side of the Reidemeister move




given by

The complex for each tangle is shown as a cube, with 8 objects and 4 homo-
logical levels. The two layers, top and bottom, correspond to the two different
resolutions of the highest crossing, labeled 3. The chain map providing the
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homotopy equivalence is the sum of the three (green) arrows each connecting
one layer of the left cube to a layer of the right cube. The nonzero components
of the maps are

−hf :


→


 =

1 0

0 ω2



r :


→


 =


−ω2 ω2

−1

 .

Remark. The names ‘−hf ’ and ‘r ’ shouldn’t make any sense, unless you know
about the categorified Kauffman trick, and perhaps read a future paper about
the extension of Khovanov homology to disoriented tangles! If you do know
the categorified Kauffman trick, we’d be considering the cones over the mor-
phisms resolving the crossings labeled 3.

Proof See §A.2.

We won’t need to know much about the details of this chain map, however;
what little we do is encapsulated in the following three lemmas.

Lemma 2.4 (needed for MM6 and 10) The map from the bottom layer of the
initial cube to the top layer of the final cube is zero.

Lemma 2.5 (needed for MM6, 8 and 10) The top layer of the initial cube is
mapped identically to the top layer of the final cube.

Lemma 2.6 (needed for MM6) The leftmost and rightmost objects in the bot-
tom layer are sent to zero. That is, the map from the bottom layer to the bottom
layer kills the highest and lowest homological height pieces. Further, there is a
single entry of that map, in the middle homological height, which is a multiple
of the identity, that multiple is −1, and every other nonzero entry has a disc
component attached to a circle in either the source or target object (or both).

Now there’s not just one Reidemeister 3 move; our version of Khovanov ho-
mology depends more explicitly on the orientations in the original tangle than
previous constructions, and as a consequence we need to do more work. There
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are eight R3 moves, six ‘braidlike’ and two ‘starlike’. We’ll name the braidlike
moves by walking counterclockwise around the boundary, writing down the
height of each outgoing strand. Thus in R3hml we see the ‘high’ strand, the
‘middle’ strand, then the ‘low strand’. (We see the same sequence looking at
the incoming strands.) The other braidlike moves are R3hlm , R3lhm , R3mhl ,
R3mlh and R3lmh . There are then the two starlike R3 moves, which we’ll call
R3	 and R3� , depending on which way we have to walk around the bound-
ary in order to see the ‘outgoing low’, then ‘outgoing middle’, then ‘outgoing
high’ strands. All eight Reidemeister 3 moves appear in Figure 9.

R3hml //

R3−1
hml

oo

R3hlm //

R3−1
hlm

oo

R3lhm //

R3−1
lhm

oo

R3mhl //

R3−1
mhl

oo

R3mlh //

R3−1
mlh

oo

R3lmh //

R3−1
lmh

oo

R3	
//

R3−1
	

oo

R3�
//

R3−1
�

oo

Figure 9: The eight variations of the R3 move. These diagrams are taken from
[1]; they name the Reidemeister 3 moves differently, calling them IIIa through
IIIh , reading across the rows.

When discussing these variations of the R3 move, we’ll describe the left-hand
of each pair of tangles as the ‘initial’ tangle. In every case, in the initial tangle
the triangle lies to the right of the lowest strand, and in the final tangle it lies to
the left. We also need to specify the ordering of the crossings in these tangles.
It turns out to be convenient to use a slightly unnatural ordering: in the initial
tangle we number the crossings as ‘middle’, then ‘low’, then ‘high’, while in
the final tangle we number them as ‘low’, ‘middle’, ‘high’. Notice this rule
generalises the ordering we used in describing R3hml .

The R3 moves fit together into a cube, shown in Figure 10. The edges of this
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R3lhm R3hlm

R3�

������
R3hml

������

R3lmh R3	

R3mlh

������
R3mhl

������

Figure 10: The cube of R3 moves.

cube indicate pairs of R3 moves which are ‘related by R2 moves’. That is, for
each edge there’s a commutative diagram in the category of tangles and tangle
cobordisms. Here’s one of the edges, connecting R3	 and R3−1

hlm :

R2b

��

R3	
//

R3−1
hlm //

R2b−1

OO

(2.3)

We’ve already specified a chain map for R3hml , in Proposition 2.3, and we
can now specify chain maps for each of the others. To do this, we pick some
spanning tree for the cube. We’ll now inductively define the chain map for
a Reidemeister 3 variation in terms of the already defined chain map for an-
other variation adjacent in the spanning tree. We simply write down the com-
position of the other three chain maps appearing in the commutative square
corresponding to Equation (2.3) for the appropriate edge.

We’re never going to explicitly write down all the R3 maps; it would be in-
credibly tedious. Instead, we’ll just write down some lemmas (Lemmas 2.8,
2.7 and 2.9, generalising Lemmas 2.5, 2.4 and 2.6 respectively), which encap-
sulate the facts we need for the movie move calculations. We’ll prove these
statements by showing how they ‘propagate’ along the edges of the cube in
Figure 10.

Finally, you might worry about the choice of spanning tree. However, the
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sequence of movie moves corresponding to a face of the cube is a cobordism
isotopic to the identity, so functoriality will eventually assure us the choice
didn’t matter.

In order to state our more general lemmas, we’ll need to describe various parts
of the complexes appearing on either side of the variations of the R3 moves.
Thinking of such a complex as a cube, as in Proposition 2.3, we’ll consider it
as split into two layers, corresponding to the two resolutions of the ‘highest’
crossing (that is, the crossing between the ‘high’ and ‘middle’ strands). While
we could describe the two layers as the ‘oriented’ layer and the ‘disoriented
layer’, there’s something more useful; we’ll describe them as the ‘orthogonal’
(O ) and ‘parallel’ (P ) layers, as shown in Figure 11, depending on whether
the strands in the resolution of the highest crossing are orthogonal or parallel
to the third strand not involved at the resolved crossing.

= C

((
O =

)
s−→

(
P =

))

Figure 11: The complex for each tangle appearing in an R3 variation can be
divided into two layers, the ‘orthogonal’ (O ) and ‘parallel’ (P ) layers.

Notice that the differentials in the cube between the two layers point either
from the O layer to the P layer, or from the P layer to the O layer. This de-
pends on which R3 variations we’re looking at, in particular on the sign of the
highest crossing, and whether its oriented resolution is orthogonal or parallel
to the third strand. Notice that order of layers alternates between O → P and
P → O as we step across any edge in the cube in Figure 10.

R3 variation highest crossing order of layers orthogonal layer is
R3hml + O → P oriented
R3hlm + P → O disoriented
R3lhm + O → P oriented
R3mhl − P → O oriented
R3mlh − O → P disoriented
R3lmh − P → O oriented
R3	 − O → P disoriented
R3� + P → O disoriented

Figure 12: The variations of the R3 move.

We can then write each chain map R3? (where ? is one of hml , hlm, lhm, mhl ,
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mlh, lmh, 	 or �) as the sum of four components, R3? = R3O→O? +R3O→P? +
R3P→O? +R3P→P? , where R3a→b? are the components from the a layer to the b
layer.

Lemma 2.7 If the layers of R3? are arranged as O → P , then the map from
the parallel layer to the orthogonal layer, R3P→O? , is zero. Otherwise, if the
layers are arranged as P → O , then the map R3O→P? is zero. (That is, the
diagonal map pointing backwards in homological height is always zero.)

Lemma 2.8 The map between the orthogonal layers, R3O→O? , is the identity
chain map, when ? = hml, lhm,mhl or lmh. When ? = hlm,mlh,	 or �, the
maps R3O→O? are nonzero multiples of a certain standard chain map; forget-
ting disorientation data and coefficients, this map is the identity chain map.
The disorientation seams are the minimal ones compatible with the bound-
ary disorientation marks. The coefficients are all either −1 or ω2 , and are
determined by the rule that the coefficient κ? of the chain map in the lowest
homological height is given by

κ? =

{
ω2 if ? = hlm or �

−1 if ? = mlh or 	.

The fact that these are chain maps then determines the other coefficients; in
particular, on the highest homological height the coefficient is −ω2κ? .

Remark. This dichotomy distinguishes whether the orthogonal layer of the
cube comes from an oriented or disoriented resolution of the highest crossing.
These data are displayed in the last column of Figure 12.

As an example, the map R3O→Ohlm is

+
-

+
-

.
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Notice here that the inverse map is obtained by taking the adjoint (reflection in
the time direction) of each disoriented surface, and moving the coefficient of
ω2 , but not the coefficient of −1, to the other component in homological height
0.

As another example, the map R3O→O	 is

+
-

+
-

.

Again, the inverse map is obtained by taking the adjoint, and moving the co-
efficient of ω2 (but not the coefficient of −1), appearing at height 0 over to the
other map at that height.

Lemma 2.9 The maps between the parallel layers, R3P→P? , kill the highest
and lowest homological heights. Further, in the middle homological height
there are a pair of objects (one in the source complex, one in the target com-
plex) which have the same unoriented diagram, and the component of the
R3P→P? map between these is the unique disoriented surface with minimal
disorientation seams, and a coefficient of

p? =


−1 if ? = hml or lmh
1 if ? = hlm or mlh
ω2 if ? = lhm or mhl
−ω2 if ? =� or 	.

Every other entry of the map in the middle homological height is some multi-
ple of a surface with a disc component attached to a circle in either the source
or target object (or both).

The proofs appear in §A.3.
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At this point we can also give a description of the inverses of these chain maps.

Corollary 2.10 Lemmas 2.7, 2.8 and 2.9 also hold without changes when de-
scribing the inverses of the R3 chain maps.

Proof Consider the operation of rotating a tangle by π , and reversing all ori-
entations. Notice that this interchanges the source and target tangles of each
R3 variation.

Being a little more careful, and thinking about the source and target tangles
with their specified ordering of crossings, this operation actually needs to be
followed by switching the ordering of the low and middle crossings.

Thus for each R3 variation, we produce a chain map pointing the opposite di-
rection, by rotating each component of the original chain map by π , reversing
all orientations and disorientations, and introducing an extra sign in each com-
ponent going between a pair of resolutions in which for one or the other of the
initial and final resolutions, but not both, both the low and middle crossings
have been resolved in the disoriented way.

We now make two claims. Firstly, that this chain map really is the inverse of
the original map, and secondly, that this chain map is correctly described by
Lemmas 2.7, 2.8 and 2.9.

First, we consider the O → O parts of the map. It is readily seen (trivial in
the cases hml, lhm,mhl or lmh, easy in the cases hlm and mlh, and requiring
an easy calculation involving disorientations in the cases � and 	) that at
the lowest homological height, the composition of the original map and the
candidate inverse is the identity. This is enough to know that the candidate
really is the inverse.

Second, Lemma 2.7 holds obviously, Lemma 2.8 holds because the signs intro-
duced by reordering occur at homological height 0, so cannot affect the sign
κ? , and Lemma 2.9 holds because the reordering signs occur at heights ±1, so
cannot affect the sign p? .

Notice that the inverses of the example O → O maps given above agree with
the description here.

The third task of this section is to describe an alternative chain map for each
Reidemeister 3 move. This alternative will be chain homotopic to the one de-
scribed above, but not identical.
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The mirror image (in the direction perpendicular to the plane) of a tangle is
simply the obvious topological operation. At the level of the corresponding
Khovanov complexes, this corresponds to negating the homological height of
each step of the complex, and replacing each differential with its time reverse,
by switching source and target. That is, the mirror image of a complex (C•, d)
is
(
C
•
, d
)

, with C
i = C−i , and (di : Ci → C

i+1) = (d−i−1 : C−i−1 → C−i)∗ ,
where the ∗ here means time reversal, or ‘adjoint’. By the mirror image of a
chain map f• , we mean f

• , with f
i = f−i ; that is, exactly the same compo-

nents, but each in negated homological height.

We can think of the alternative chain map in two different ways. First, and
secretly, we think of it as coming from performing the Kauffman trick on the
lowest crossing, rather than the highest crossing as above. Second, we can
simply think of it, and define it, as the mirror image of one of the chain maps
above. Actually, more precisely, we need to modify this mirror image in two
ways. First, in all cases, we must pre- and post-compose with crossing reorder-
ing maps, to ensure that we start and finish at the same ordered tangles as the
usual chain maps. Second, only for the starlike R3 variations, we need to mul-
tiply the mirror image chain map by −ω2 . (This will ensure that the mirror
image chain map really is homotopic to the usual one. Recall of course that in
the disoriented theory, −ω2 = 1!)

Notice that taking mirror image exchanges pairs of R3 move variations, switch-
ing the labels ‘h’ and ‘l’, and interchanging 	 and �. Thus R3hml and R3lmh ,
which are antipodal in the cube of R3 variations in Figure 10, are exchanged,
as are R3	 and R3� . The other pairs are R3lhm and R3−1

hlm , and R3mlh and
R3−1

mhl , which are each adjacent in the cube.

To distinguish the chain maps defined in this way from the ones described
above, we’ll write a bar over the top. Thus R3hml is defined by taking the
chain map for R3lmh , and applying the mirror image operation described in
the paragraph above, and reordering crossings in the source and target tangles
appropriately.

Passing to the mirror image move reverses the ‘order of layers’ appearing in
Figure 12. It’s easy to see that the mirror image of a chain map for one vertex
does not give the chain map for the opposite vertex which has been described
above. This is essentially because the lemmas above are written in terms of
the orthogonal and parallel layers with respect to the highest crossing, which
are not preserved by mirror image. For example, look at the pair R3hml and
R3lmh , and in particular the completely oriented resolution. The completely
oriented resolution is in the orthogonal layer for R3hml , so the chain map
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above acts as the identity here, by Lemma 2.7 (or indeed, the original spe-
cial case Lemma 2.4). However the completely oriented resolution is killed by
the usual chain map for R3lmh , being in the parallel layer, using Lemma 2.9.
Thus we see that the chain map for R3hml coming from the mirror image of
the chain map for R3lmh is in fact different from the usual one.

On the other hand, these maps turn out to be homotopic to the usual maps,
even though we have seen they are not equal on the nose. The argument relies
on two results which live more naturally later in the paper, namely Corollary
3.3, appearing in the next section, and Lemma 3.5 appearing in §3.2, so the
reader may prefer to postpone deciphering this argument until having reached
those statements! Corollary 3.3, appearing in the next section, assures us that
the relevant space of chain maps, up to homotopy, is 1 dimensional. Thus we
know that each mirror image map must be homotopic to some multiple of the
usual map, and we only need to show that multiple is always 1. To do this, we
look at a particular resolution, namely the unique resolution which is in an ex-
treme homological height of the O layer for both the usual map and the mirror
image map. Lemma 2.8 then describes how this resolution is mapped to the
corresponding resolution of the target tangle, and it suffices, by Lemma 3.5 to
check that both the usual map and the mirror map act in the same way, with-
out coefficients, on this resolution. That check follows directly from Lemma
2.8, along with the relevant crossing reordering calculations. Recall also the
coefficient of −ω2 which we smuggled into the definition of the mirror image
maps for the starlike moves, precisely to allow the present result.

An important point we need to make is that the three Lemmas 2.7, 2.8 and
2.9 still apply to the mirror image maps, replacing as needed each reference to
an R3 variation R3? with R3?′ , where ?′ is the mirror variation, and under-
standing ‘orthogonal’ and ‘parallel’ layers as referring to the layers given by
resolving the lowest, rather than the highest, crossing.

Note in particular in regard to Lemma 2.8, that while R3O→O? is the identity
chain map, when ? = hml, lhm,mhl or lmh, when we look at R3O→O? , it is
? = hml, lmh,mlh and hlm that give the identity. This will be important in
the discussion of movie move 6.
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3 Checking movie moves

3.1 Duality, and dimensions of spaces of chain maps

Most nice (or at least, interesting to topologists) monoidal categories have du-
als. There are many formulations of this; see for example [5] for ‘pivotal cate-
gories’, etc. The category C should have an involution ∗ on objects, called the
dual, and isomorphisms between hom-sets of the form

HomC (U ⊗ V,W ) ∼= HomC (U,W ⊗ V ∗)
(along with the three other obvious variations of this), satisfying some axioms
(corresponding diagrammatically to ‘straightening an S-bend’).

There’s no shortage of examples. Categories of diagrams up to isotopy [13] are
generally tautologically equipped with duals, given by π rotations, and the
natural isomorphisms between hom-sets are just planar isotopies. Categories
of representations of quantum groups have duals, provided by the antipode in
the Hopf algebra structure of the quantum group. Bimodules over a von Neu-
mann algebra have duals; there the isomorphism between hom-sets is called
“Frobenius reciprocity” [6].

We’ll prove a result along these lines here. To fit with the above pattern, briefly
consider the 2-category whose objects are (oriented) points on a line, whose
1-morphisms are tangles between these points, and whose 2-morphisms are
chain maps up to homotopy between the Khovanov complexes associated
to the tangles. There’s a duality functor, at least at the level of 0- and 1-
morphisms, given by reflection. We’ll prove that there are isomorphisms of
the type described above.

In our case there is more structure than in the above examples, since we’re
actually in a 3- or 4-category rather than a 2-category. (3-category if we’re
thinking in terms of tangle projections living in B2 ; 4-category if we’re think-
ing in terms of unprojected tangles living in B3 , with cobordisms in B4 .) More
specifically, suppose we have tangles P with l+m points on its boundary and
Q with m+n points on its boundary. We can can glue P and Q together along
m consecutive points to obtain a new tangle, denoted P •Q, with l+ n points
on its boundary.

Proposition 3.1 Given oriented tangles P , Q and R , with l +m, m + n and
l+n points, respectively, on their boundaries, there is an isomorphism between
the spaces of chain maps up to homotopy

F : HomKh ([[P •Q]] , [[R]]) ∼= HomKh

(
[[P ]] ,

[[
R •Q

]])
{m− n

2
}.
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(Q denotes the reflection of Q.)

Diagrammatically, this statement claims that there’s an isomorphism between
the spaces of chain maps we can fill inside the following two cylinders.

∼=

These isomorphisms are natural in the sense that they are compatible with
pre-composition with a morphism into P , and with post-composition with a
morphism out of R .

Remark. For now, we’re just claiming that there is some isomorphism; in par-
ticular, all we’ll need for now is that the dimensions of the morphisms spaces
are the same.

In a future paper, we’ll explain a coherence result for these isomorphisms. Es-
sentially this result is the difference between ‘functoriality in B3 ’ and ‘functo-
riality in S3 ’. There are pairs of cobordisms in B3 which are not isotopic in
B3 , but become isotopic in S3 . The coherence result for the maps described
in the proposition above requires us to show that such pairs give homotopic
chain maps, and this remains beyond the scope of the current paper.

Proof We’ll prove the result for a short list of (very!) small tangles Q, which
easily imply the rest. Namely Q = , , and , and the other
oriented versions of these tangles. We can then build the isomorphism for
an arbitrary Q by composing isomorphisms for the constituent pieces of the
tangle Q.

We’ll begin with Q = , a negative crossing oriented to the right. (The
case for a positive crossing is exactly analogous.) Given a chain map f ∈
HomKh

([[
P •

]]
, [[R]]

)
, we’ll produce the chain map

F (f) = (f • 1 ) ◦ (1P •R2) ∈ HomKh

(
[[P ]] ,

[[
R •

]])
.
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We propose that the inverse of this construction is given by

HomKh

(
[[P ]] ,

[[
R •

]])
3 g 7→ F−1(g) = (1R •R2−1) ◦ (g • 1 ).

The composition F−1 ◦ F applied to a chain map f is

(1R •R2−1) ◦ (((f • 1 ) ◦ (1P •R2)) • 1 ) = .

To see that this just f , we can do some tensor category arithmetic;

F−1(F (f)) = (f • 1 ) ◦ (1P • (1 •R2−1 ◦R2 • 1 ))

=

= f.

The critical step in this calculation came at the end, in claiming that (1 •

R2−1) ◦ (R2 • 1 ) = 1 . This is exactly checking MM9, the ninth movie

move. Although it strains the logical order of the paper somewhat, we’ll post-
pone that calculation until §3.2.2, where we do all the other movie moves, be-
ing careful to point out that we don’t use any of the results of this section while
checking MM9.

A very similar argument shows F (F−1(g)) is also just g .

The case Q = is very similar.
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Next, we deal with the case that the tangle Q is just an arc, . This time, the
map F is given by

F (f) = (f • 1 ) ◦ (1P • ),

with inverse

F−1(g) = (1R • ) ◦ (g • 1 ).

The argument that F and F−1 are inverses is even easier than before; some
formal tensor category arithmetic and cobordism arithmetic is all we need.
For example,

F (F−1(g)) = = g.

The other three cases where Q is an arc are very similar.

We now get an easy corollary, which you should think of as a nice analogue of
Bar-Natan’s result about simple tangles in [3].

Corollary 3.2 Let T1 and T2 be tangles with 2k endpoints such that T1T2 is
an unlink with m components. Then the space of chain maps modulo chain
homotopy from [[T1]] to [[T2]] in grading m − k is 1-dimensional, and all chain
maps of grading higher than m− k are chain homotopic to zero.

Proof By Proposition 3.1

HomKh (T1, T2) ∼= HomKh

(
∅, T1T2

)
{−k}

∼=
[[
T1T2

]]
{−k}

∼= (R{−1} ⊕R{+1})⊗m{−k}

The next corollary is well known in the field, but perhaps worth stating again.
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Corollary 3.3 The chain maps defined for the three Reidemeister moves in
§2.3 are, up to chain homotopy and scalar multiples, the unique chain maps
between the complexes in the appropriate grading.

3.2 Movie moves

In this section, we’ll complete the proofs of Theorems 1.1 and 1.2, by check-
ing that changing the presentation of a cobordism by a movie move does not
change the associated chain map.

We’ll first prove some preparatory lemmas, which will significantly reduce the
computational burden.

Definition 3.4 Let C• and D• be complexes in some additive category, with
A a direct summand in some Ci . We say A is C -D homotopically isolated if,
for any homotopy h : C• → D•−1 , the restriction of dh+ hd to A is zero.

If we’re in a graded category then A is C -D homotopically isolated if dh+ hd
is zero for every grading 0 homotopy h.

Lemma 3.5 Say C• and D• are complexes associated to two tangle diagrams
(thus, complexes in the category of abstract disoriented cobordisms), and say
A is a smoothing appearing as a direct summand of some step of the complex
C• . Then

(1) A is C -C homotopically isolated if A does not contain any loops, and is
not connected by differentials to any diagrams containing loops;

(2) A is C -D homotopically isolated if C• and D• do not contain any dia-
grams with loops.

Proof This is easy from our definition of gradings on morphisms. A homo-
topy h : B → A always maps backward one step in homological height (re-
gardless of whether A and B are in the same or different complexes). Thus
h will have ‘bare’ grading +1, but there are no positive grading morphisms
between loopless diagrams by Euler characteristic considerations.

Lemma 3.6 In each of movie movies 6 through 8, every smoothing of the com-
plex C associated to the initial frame is C -C homotopically isolated. In movie
moves 11, 13 and 15, every smoothing in the initial and final complexes, C and
D , is C -D homotopically isolated.
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Proof This is trivial; no loops occur anywhere in these complexes.

We don’t need to say anything about homotopy isolation in MM9, because
we won’t be using any of these simplifying lemmas in that case—instead, the
complete calculations are necessary for the sake of Proposition 3.1 on duality
for Khovanov homology.

We can’t say anything about homotopy isolation in MM12 and MM14, because,
when reading backwards in time, there aren’t any isolated objects! We will
also use homotopy isolation in MM10, but identifying a different smoothing
in each of the many variations; the details are in §3.2.2.

Lemma 3.7 Suppose f and g are chain maps between the complexes [[T1]] and
[[T2]], and we know f ' αg for some α ∈ Z[12 , ω]. If f and g agree and are
nonzero on some homotopically isolated object in the complex [[T1]], say O ,
then in fact f ' g are actually homotopic.

Proof On O , f − αg = dh + hd = 0, so f = αg = g . Thus α must be 1, so f
and g are homotopic.

Finally, we observe that Corollary 3.2 applies to every movie move. The join
of the initial and final tangle is always just an unlink, so the relevant space
of chain maps modulo homotopy is always one dimensional. Combined with
the lemmas above, we see that every movie move must come out right up to a
multiple (in Z[12 , ω]), and to detect this multiple we can simply look at the re-
striction of the map to a single homotopically isolated object. (Remembering,
of course, that MM9, MM12, and MM14 take a little more work; MM9 because
there we don’t have access to any of the results on duality, in particular Corol-
lary 3.2, and MM12 and MM14 because we can’t find homotopically isolated
objects in the reverse time direction.) Movie moves MM1 through MM10 de-
scribe isotopies, not general cobordisms, so there any multiple would actually
have to be a unit.

In the calculations for MM6, MM8, MM9 and MM14, we’ll explicitly keep track
of the ordering of the crossings. In all of the other calculations, it turns out
the ordering of crossings is irrelevant; using the tricks described above, we
only need to look at the action of the chain maps on part of the complex, and
in most cases any crossing reordering maps automatically act on the objects
we’re interested in by +1, simply because there’s at most one crossing which
has been resolved disorientedly.
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3.2.1 MM1-5

The first five movie moves are trivial; they simply say that a Reidemeister
move followed by its inverse is the identity.

3.2.2 MM6-10

Movie moves 6 through 10 involve no Morse moves, and so are reversible. We
only need to check one time direction.

In the following calculations (and those for MM11-15), red and purple bands
appearing in diagrams in complexes are simply a hint to the reader, marking
where crossings appeared in the original tangle. (We hope they don’t obscure
too much for reader looking at a black and white printout.)

MM6

There are 24 variations of MM6. To see this we’ll first of all make use of rota-
tional symmetry to require that the ’horizontal’ strand (the one not involved
in either R2 move) points from left to right. There are then sixteen possibilities
for the initial frame of the movie move; these come from four choices of height
orderings and four choices of orientations. The horizontal strand can either lie
entirely above or entirely below the two vertical strands (’non-interleaved’),
or it may pass under one and over the other (’interleaved’, ’ascending’ or ’de-
scending’). The two vertical strands may be either parallel or anti-parallel.
When they are parallel, they may point up or down, and when they are anti-
parallel they may have a clockwise or anti-clockwise orientation. All of these
variations are displayed in Figure 13.

Note that the interleaved variations were not treated at all in versions of this
paper before ‘v2’ on the arXiv, or in Caprau’s paper [7] on the disoriented
version of Khovanov homology.

Further, the eight variations in which the strands are ’non-interleaved’ (the
first two rows of Figure 13) each have two sub-variations, which we don’t see
until the second frame of the movie. Of the two vertical strands, either one can
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Figure 13: 16 variations for the initial frame of MM6.

pass above the other during the R2 moves; in Figure 13, the ’left passing above
the right’ sub-variation is listed to the left of the slash. In the ’interleaved’
variations, there is no choice here.

We will thus treat four major cases,

• non-interleaved, parallel variations,

• non-interleaved, anti-parallel variations,

• interleaved, parallel variations and

• interleaved, anti-parallel variations.

Non-interleaved parallel variations There are four possible initial frames
which are ’non-interleaved’ and have parallel vertical strands. Each of these
initial frames has two possible sub-variations, depending on the relative heights
of the vertical strands during the R2 moves. For each of the four initial frames,
we will treat uniformly the sub-variations in which the upper R2-induced
crossing is negative and the lower one is positive, and then indicate how to
treat the other four sub-variations.

Recall that our lemmas encapsulating the details of the R3 variations require
that we separate the initial and final complexes into layers O and P by re-
solving a crossing. Maneuvering through the pair of R3s in this movie move
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is most efficiently managed by resolving the R2-induced crossings: the upper
one for the first R3, and the lower one for the second R3. Notice that since
the upper crossing is negative, the first R3 will have homological ordering
O → P , while the second R3 will have ordering P → O . It’s also worth men-
tioning that the horizontal strand could be above or below the vertical ones,
meaning that these two crossing could be either the high or low crossings in
their respective R3 moves. However, Lemmas 2.7, 2.8, and 2.9 work regard-
less2 of whether the resolved crossing is high or low, so we needn’t treat them
separately.

Our ‘bundle’ of maps for this subcase, then, will look like this:

(3.1)

In this diagram, the Os and P s describe whether the indicated crossing res-
olution has strands orthogonal or parallel to the horizontal strand. For ex-

ample is our notation for . Also, we’ve cheated slightly with this

diagram: the fourth column should contain two additional summands, those
2Recall the paragraphs following the statements of these Lemmas.
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with mixed Os and P s. However, while there are non-zero maps into these
summands, the R2−1 maps out are always zero. Thus we needn’t excessively
complicate things with their presence.

We’re left with a sum of four compositions. The two middle compositions are
both zero, as each contains a leg (labelled with ‘0’) that’s zero by Lemma 2.7.
The top composition (αi ’s) is just the identity: α1 and α4 are components of
R2a moves, and α2 and α3 are each the identity, by Lemma 2.8 (each map is a
component of the O → O map; when the horizontal strand lies below, the R3
moves are lmh, lhm,mhl and hml , which are exactly the four for which the
O → O part of the R3 map is the identity, and when the horizontal strand lies
above, the R3 moves are hml, hlm, lmh and mlh, which are exactly the four
for which the O → O part of the mirror image R3 map is the identity). The
bottom composition is slightly more mysterious, but we see that the map β
sends homologically extreme smoothings to zero by Lemma 2.9. Thus, if we
choose an extreme smoothing to begin with, for example the doubly oriented

one, it will necessarily map to an extreme smoothing in , and thence to

zero. Further, as mentioned before, any initial smoothing here is homotopi-
cally isolated, so the computation with this particular smoothing suffices.

The other four sub-variations, in which the signs of the R2-induced crossings
are reversed, are proven analogously: note that Equation (3.1) will then have
all Os and P s swapped.

Non-interleaved anti-parallel variations Let’s consider first those cases in
which the vertical strands are oriented in the anti-clockwise direction, so the
left vertical strand is oriented downward, and the right upward. Again we’ll

be referring to Equation (3.1). Consider the smoothing . Since we are

looking at non-interleaved anti-parallel variations, the two signs of the initial
crossings differ, and so this resolution has homologically extreme height. In
particular, when the horizontal strand is below the vertical strands, this res-
olution has height +1, and when the horizontal strand is above the vertical
strands, it has height −1.

The composition α4 ◦ α3 ◦ α2 ◦ α1 then looks like
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R2b //
R3 //

R3 //
R2b
−1

//

� α1 // � α2 // � α3 // � α4 // .

We now need to describe the maps αi , using our definitions of the R2 chain
maps from Figure 8 for α1 and α4 , and Lemma 2.8 for α2 and α3 . We use the
usual chain maps when the horizontal strand lies behind the others, and the
mirror image chain maps when it is in front. This description comes in three
steps; first the underlying surfaces, ignoring disorientation data, then any as-
sociated coefficients, and finally the arrangement of disorientation seams. The
underlying surface for each map is simply the cylinder over the initial (and
final) resolution. Figure 8 shows that α1 carries no coefficient, while α4 carries
a coefficient of ω2 .

For the R3 coefficients, notice that the R3 moves occurring in this configu-
ration are one of the following pairs: hlm/	, mlh/�, R3mhl

−1/R3	 , or
R3lhm

−1/R3� . Our computation involves an extreme resolution on the O
layer in both R3 moves; let σ2 and σ3 be the coefficients on the appropriate
height (either high or low) components of the O → O part of the correspond-
ing R3 moves. Then, according to Lemma 2.8 and Corollary 2.10, it is always
the case that one of the σi ’s is −1, while the other is ω2 .

In each of the four cases, a (cancelling) pair of reordering signs is needed.

Finally, we add disorientation seams:

α1 = α3 = σ3

α2 = σ2 α4 = ω2 .

Notice that in α2 , the left-most seams on the second two sheets are vertical,
as the associated crossing is not involved in the R3 move; the other seams
are the unique minimal ones connecting the remaining eight disorientation
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marks. Similarly, in α3 the right-most seams on the first two sheets are vertical,
leaving the others to be determined by minimality.

Thus, our composition α4 ◦ α3 ◦ α2 ◦ α1 is just

ω2σ2σ3 = − = −ω21.

Of course, starting with an extreme object also guarantees this α composition
is the only one we need to worry about, as β = 0 from Lemma 2.9.

The argument for the case in which the left vertical strand is oriented upward,
and the right downward, is essentially the same.

Interleaved variations There are eight variations, and essentially two dis-
tinct computations will cover them all. Let’s start with hml−1/ �, 	 /lmh−1 ,
mlh−1/mhl , and lhm/hlm−1 ; we’ll show the calculation for the first, and ex-
plain the necessary alterations for the other three versions.

R2b //
R3−1

hml//
R3�

// R2b−1
//

�
%%KKKKK

� //

� P→P
%%KKKKK

�P→P// �O→O// � //

�O→O//

3
99sssss

Notice that our first R3 map is ordered O → P and the second P → O , each
with the high crossing resolved, and that the maps for these moves are labeled
by their source and target layers; in particular, the initial O layer for the second
move and the final P layer for the first move coincide.
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Lemma 2.7 tells us there are only three compositions we need to keep track
of here. The first map into the second row has an extreme target in the initial
P layer of R3−1

hml , which thereafter maps to zero by Lemma 2.9. The compo-
sition including the rest of the second row contains a sphere; this is because,
disregarding coefficients and disorientation seams, the first and third maps are
cylinders from the R2b chain map definitions and Lemma 2.8, the second map
contains a cup by Lemma 2.9, and the fourth map, an R2b untuck, contains a
cap. Thus we’re left with the first row, and a brief look at Lemmas 2.8 and 2.9,
and a check that there are no signs from crossing reorderings, confirms that
this composition looks like

− = − = −ω21.

The calculations for the 	 /lmh−1 , mlh−1/mhl , and lhm/hlm−1 variations
are very similar. For 	 /lmh−1 , the initial object will have a disoriented left
crossing and an oriented right crossing, and we’ll resolve each R3 move into
layers using the low crossing. Thus we’ll need to compute using the mirror im-
age maps, which will introduce an extra factor of −ω2 . The mlh−1/mhl and
lhm/hlm−1 variations are even easier: we start with the doubly oriented object
in each case, and resolve into layers using the high crossings or the low cross-
ings, respectively. Crossing reordering maps are trivial in all three of these
additional variations, and the overall coefficient for each is just 1.

The computations for � /hml−1 , lmh−1/ 	, mhl/mlh−1 , and hlm−1/lhm are
somewhat different; again, we’ll explicitly show the first.
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R2b //
R3�

//
R3−1

hml// R2b−1
//

� //



%%JJJJJ

�O→O// �O→O//


 O→P
%%JJJJJ

� //

�O→O// �P→P// � //

Now our first R3 map is ordered P → O with the high crossing resolved, and
the second is ordered O → P with the low crossing resolved. Again, we’ll
keep track of the layers to which objects belong by referring to the labels on
the maps.

By Lemma 2.7, we have three compositions to consider. Two of them factor
through the second row, and thus map to a complex with the left crossing
disoriented; since our map is a multiple of the identity, these compositions
must sum to zero. So we’re left with the first row. Using Lemma 2.8 (and its
mirror image variant for the second R3), the R2b map definitions, and the fact
that crossing reorderings give a minus sign here, it’s straightforward to verify
this composition is given by

− = − = −ω21.

There are a few modifications necessary for lmh−1/ 	, mhl/mlh−1 , and for
hlm−1/lhm. In the lmh−1/ 	 case, we start with the object with oriented left
crossing and disoriented right crossing, and resolve the first R3 on low and the
second on high. A crossing reordering sign gives us an overall coefficient of
−ω2 . For each of mhl/mlh−1 and hlm−1/lhm our initial object will be the dou-
bly oriented one, so crossing reordering maps act trivially. In the calculations,
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hlm−1 and mlh−1 should be resolved on low, while mhl and lhm should be
resolved on high. An overall coefficient of 1 will result in each of these cases.

MM7

We need to consider four variations of MM7, depending on the orientation of
the strand, and whether the ‘first’ crossing is positive or negative. It’s easy to
check that reversing orientations in the two subsequent calculations doesn’t
change the result.

First we deal with a positive crossing:

R1a //
R1b //

R2b
−1

//

�
1
2

„
−ω−2

«
// � // �

−ω2

//

.

Composing, we see that the second term of the first map gives zero when com-
posed with the later maps. Cancelling the factor of 1

2 with the torus, we get
−ω2 times the identity.

For the negative crossing, we have

R1b //
R1a //

R2b
−1

//

� // �
1
2

“
−ω−2

”
// �

−ω2

//

and the composition is just the identity.
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MM8

This is the only movie move involving all three Reidemeister moves. There are
quite a few variations. By a rotation of the whole diagram, we can assume the
R1 move happens on the horizontal strand, beginning on the right. Moreover,
we can assume that the horizontal strand is oriented right to left (otherwise,
we can obtain this condition by a π rotation of its time reversal).

There are then sixteen variations, depending on whether the vertical strand
lies above or below the horizontal strand, its orientation, the sign of the cross-
ing introduced by the first Reidemeister move in the first frame, and finally
whether the first Reidemeister move introduces a twist on the left or right side.
The following diagram shows all the maps involved, independent of crossing
sign choices and thus without disorientation marks (we will add them later):

(3.2)

Note that the crossing introduced by the R1 move is always either the low or
high crossing in the R3 move, so we will denote its resolution with either O or
P as we did in the computation for MM6. We can also observe that any map
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factoring through the resolution must be zero, since this object maps

to zero under R1 (see §2.3.2). Thus we need only concern ourselves with the
other two compositions in Equation (3.2).

Let’s first treat the positive twist. We’ll show calculations for the case in which
the vertical strand is oriented downward (but ignore whether the twist ap-
pears on the left or right side of the horizontal strand; this barely changes any
of the calculations). Also, our computation will work regardless of whether
the vertical strand is above or below the horizontal strand.

Beginning with a downward-oriented vertical strand, the two relevant com-
positions are

R1a //
R2b //

R3 //
R2a

−1
//

R1a
−1

//

� // � //

�
##GGGGG

� 1 //

⊕

�
−

//

⊕

� //

� σ //

7 1

;;wwwww

where the initial R1a map is
1
2

„
−ω−2

«
−−−−−−−−−−−−−−→ . Here the

R3 move is either R3mlh or R3−1
hml , depending on whether the vertical strand

is in front or behind.

These chain map components come from §2.3.2. In particular, we use Lemma
2.8 (or its ‘mirror image’ analogue, depending on whether the vertical or hori-
zontal strand is on top), to see what the R3 maps do. In the first row our object
lies in the O layer, and thus maps via the identity. (Note that for R3mlh , when
looking for a description of the O → O layer in Lemma 2.8, we actually need
to look at the case corresponding to R3mhl , since R3mlh is defined in terms of
R3mhl .) All we need to know about the R3 map in the second row, labelled by
σ , is that, ignoring disorientation seams it is the cylinder cobordism. This tells
us that the lower row has a spherical component and can thus be ignored. As
such, the composition simplifies to
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◦ − ◦ 1 ◦ ◦ 1
2

 − ω−2


= −ω2 1

2

= −ω2 .

When the first Reidemeister move introduces a negative crossing, we see in-
stead

R1b //
R2b //

R3 //
R2a

−1
//

R1b
−1

//

� // � //

�
##GGGGG

� γ
//

⊕

�
−

//

⊕

� //

� 1 //

7 1

;;wwwww

where the final R1b
−1 map is

1
2

„
−ω−2

«
−−−−−−−−−−−−−−→ . Here the

R3 move is either R3−1
lmh or R3−1

mhl , depending on whether the vertical strand
is in front or behind.

This time the first row gives zero (γ is some disoriented cylinder, so the com-
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position contains a sphere), and we obtain

1
2

 − ω−2

 ◦ 1 ◦ 1 ◦ ◦

=
1
2

= .

Changing the orientation of the vertical strand (for either a positive or nega-
tive twist) alters the computations only slightly (in particular the coefficient
appearing on the R3 map is still always +1), and we obtain the same result:
the coefficient, 1 or −ω2 , just depends on the sign of the crossing introduced
by the first Reidemeister move.

MM9

For MM9 we have to be particularly careful; the proof of Proposition 3.1 relied
on this movie move, so while checking MM9 we don’t have access to any re-
sults about the space of chain maps being one dimensional. Thus we’ll fully
calculate the map, checking it’s the identity on every object in the complex
associated to the initial tangle.

There are four variations of MM9; we can fix the orientation of one strand, then
have to deal with either orientation of the other strand, and either sign for the
crossing.

We’ll do the calculations for both types of crossings, in a given orientation. It’s
easy to see that changing an orientation essentially interchanges these cases.

With a positive crossing, we have

R2a // renumber //
R2a

−1
//
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and the components of the chain map are given by:

� 1 //

�

((QQQQQQQQQQQQQ
� 1 //

⊕

� 1 //

⊕

� 1 //

-

0
66mmmmmmmmmmmmm

�

−

//

�

((QQQQQQQQQQQQQ

� −1
//

⊕

� //

⊕

� 1 //

-

0

66mmmmmmmmmmmmm

and the composition is just the identity.

With a negative crossing, we have

R2b // renumber //
R2b
−1

//

with the components of the chain map being given by

� //

�

((QQQQQQQQQQQQQ

� 1 //

⊕

�

−ω2

//

⊕

� 1 //

-

0
66mmmmmmmmmmmmm

� //

�

((RRRRRRRRRRRRR
� −1

//

⊕

�
ω2

//

⊕

� 1 //

-
0

66mmmmmmmmmmmmm

and the composition is −ω2 times the identity.
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MM10

This is the tetrahedron move, and is surprisingly easy. On the other hand,
there are a great many variations which we need to treat.

Firstly, let’s consider the case in which all strands are oriented to the right.
Here, all the crossings are positive, and if we consider the object in the initial
complex with homological height zero (ie, we’ve smoothed every crossing in
the oriented way), we see that it is homotopically isolated.

Notice further that each of the eight R3 moves in this movie is of type R3lmh ,
and so has homological ordering P → O when resolving the highest (or low-
est) crossing. The oriented smoothing lives in the O layer, and thus maps via
the identity to the oriented smoothing in the next frame by Lemma 2.8. Also,
by Lemma 2.7, there is no map to the P layer. It’s easy to see that the same
happens at each of the seven other R3 moves, so we’re just left with a string
of identity maps:

� 1 // � 1 // � 1 // � 1 // � 1 //

� 1 // � 1 // � 1 // � 1 // .

Thus this movie induces the identity chain map.

Beyond this, there are a frightening forty-eight variations. In the space of tan-
gle diagrams, MM10 corresponds to a codimension 2 stratum, appearing as a
non-generic projection in which four strands cross at a point. (See Figure 14).
Rotating the projection to put the highest strand in a standard position, there
are then 3! height orderings we need to consider for the other strands, and 23

orientations.

It turns out, however, that every variation of MM10 is actually equivalent,
modulo MM6.

The idea, essentially, is to add an extra crossing to MM10. We can do this at
any adjacent pair of boundary points; for concreteness, let’s imagine adding an
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Figure 14: A non-generic projection corresponding to a MM10 2-cell.

extra crossing at the top right, with opposite sign to the crossing that already
appears in the top right in the first and last frames. There’s now a pair of
strands carrying two crossings. We can now consider two different variations
of MM10, each of which involves only one of those two crossings, and see
that these two MM10 moves differ by some MM6 moves (and some ‘distant
Reidemeister moves commute’ moves).

More generally, we can stratify the space of smooth tangles so that in the dual
cell complex (where a k -cell corresponds to a codimension k stratum)

• 0-cells correspond to tangles whose projection to B2 is a generic immer-
sion.

• 1-cells correspond to Reidemeister moves.

• 2-cells correspond to movie moves and pairs of distant Reidemeister
moves.

• 3-cells correspond to redundancies amongst movie moves.

If we consider a 3-cell dual to the non-generic projection shown in Figure 15,
we find that the 2-cells on its boundary consist of two MM10 2-cells, four MM6
2-cells, and six distant R-move 2-cells: see Figure 16. Thus invariance for one
of the two MM10’s, plus invariance for all MM6’s and pairs of distant Reide-
meister moves, implies invariance for the other MM10.

Figure 15: A non-generic projection corresponding to a 3-cell involving MM10
and MM6.
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x

y
z

MM10

MM10

MM6

MM6

MM6

MM6

**

*

*

*

*

Figure 16: The 3-cell for the singularity in Figure 15, rotated 90 degrees. The
0-cells here are the generic tangle projections neighboring this singularity,
achieved by untucking the curved strands (z direction) and translating the
crossing (x and y directions). The 2-cells marked with an asterisk correspond
to distant Reidemeister moves.

This argument shows that a certain pair of variations of MM10 are equivalent.
Thinking about the non-generic projection corresponding to MM10 in Figure
14, the two variations are related simply by rotating one strand past an adja-
cent one. It’s relatively straightforward to see that these pairs suffice to connect
any two variations.
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3.2.3 MM11-15

MM11

This is trivial in either time direction; the complexes involved only have a
single object, and the relevant pairs of cobordisms are isotopic.

MM12

We can’t use a homotopy isolation argument for MM12, but it’s easy enough
to look at all components of the map.

We need to deal with MM12 in two mirror images. In the first mirror image,
there is a positive crossing. Reading down, we have on the left

∅ //
R1a //

∅ � // �

1
2

 
−ω−2

!
//

while on the right we have

∅ //
R1a //

∅ � // �

1
2

 
−ω−2

!
// .
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Composing, we see the morphisms agree in the disoriented theory, when ω2 =
−1, but differ by a sign in the unoriented theory.

Reading up, we have on the left

∅ oo
R1a

−1
oo

∅ �oo

⊕

�oo

0 �0oo

while on the right we have

∅ oo
R1a

−1
oo

∅ �oo

⊕

�oo

0 .�0oo

These chain maps agree exactly, in both the unoriented and the disoriented
theory.

The mirror image is much the same, although it’s the forward in time maps
that agree exactly, and the backwards in time maps that agree up to a factor of
−ω2 .

MM13

This time there are no orientation variations; we can take both strands in the
initial frame to be oriented upwards. We need to compare the two clips read
both up and down, and also consider the mirror image.
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Reading down we have on the left

R1a // saddle //

1
2

“
−ω−2

”
// saddle //

and on the right

R1a // saddle //

1
2

“
−ω−2

”
// saddle // .

These maps differ by a sign of −ω2 . Reading up, both maps are the identity
on the oriented smoothing, and zero on the disoriented smoothing, and hence
agree on the nose.

In the mirror image, we see the opposite pattern (since the ‘interesting’ mor-
phism in the R1a and R1b maps appears in opposite directions). There are no
other orientations to deal with.

MM14

Fixing the orientation of the strand to be from bottom to top, the loop can either
be clockwise or counterclockwise, and lie either below or above the strand.
We’ll first deal with the case in which is loop is oriented counterclockwise,
and lies below the strand.
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We can’t use a homotopy isolation argument for MM12, but it’s easy enough to
look at all components of the map. Because we’re looking at all components,
we actually need to pay attention to the ordering of crossings; for compatibility
with the Reidemeister maps described in §2.3.3, we’ll number the crossings
from the bottom up, so that the negative crossing comes first.

On either the left or right sides of MM14, we have an R2 map. Looking at
Figures 7 and 8, we see that on both sides we obtain the map

//

##GGGGGGGGGG

⊕

.

Backwards in time, we obtain different maps. On the left we see

⊕

//

−

;;wwwwwwwwww

and on the right

⊕

−ω2

//

ω2

;;wwwwwwwwww

.

Thus we see that forwards in time the maps agree, but backwards in time they
only agree in the disoriented theory.

Reversing the relative heights of the loop and the strand doesn’t change the
calculation; similarly reversing the orientation of one strand has no effect.
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MM15

We now consider both time directions in MM15.

We need to deal with 4 variations; assuming the middle strand is oriented left
to right, we can orient the highest strand either to the left or to the right (forcing
the lowest strand to be oriented oppositely), and we can tuck the middle strand
either under or over the other strands.

We’ll start by choosing orientations so the upper two strands are oriented to
the right, and the lowest strand is oriented to the left, and tuck the middle
strand under the others.

Reading down, we have on the left

R2a // saddle //

� 1 //

�

''PPPPPPPPP

� saddle //

⊕ ⊕

� //

and on the right

R2b // saddle //

� //

�

''PPPPPPPPP

� //

⊕ ⊕

� // .
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We’ve left some maps we don’t need to know about unlabeled.

Looking only at the component of the maps going to , we see each side
of the movie move agrees on the nose; both maps are a saddle involving the
lower two strands.

Reading up, we have on the left

R2a
−1

oo saddleoo

�1oo �saddleoo

and on the right

R2b
−1

oo saddleoo

�
−ω2

oo .�oo

We see that the two movies differ by a sign of −ω2 .

The other variations turn out exactly the same way. Changing the orientations
of the highest and lowest strand has no effect; we simply interchange R2a and
R2b maps throughout. Switching the height ordering interchanges R2al with
R2ar , and R2b+ with R2b−, with no net effect.

This concludes the proofs of Theorems 1.1 and 1.2.

4 Odds and ends

4.1 Recovering Jacobsson’s signs

Summarizing the results of the above calculations at ω = 1 (i.e. in the original
unoriented theory), in Figure 17, we see that in most cases we agree with the
signs Jacobsson observed [11]. There are exceptions, however (shown high-
lighted in the tables).
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In particular, MM6 (Jacobsson’s number 15) does not appear to exhibit a sign
problem in the unoriented theory (whereas we see both −ω2 and 1 in different
variations), and the two mirror images of MM12 (Jacobsson’s number 12) both
exhibit a sign problem, one forwards in time, one backwards. These disagree-
ments coincide with calculations performed by the first author using Lee’s [20]
variant of Khovanov homology. Further, we can’t easily extract the sign in the
unoriented theory for all the variations of MM10 (without analysing which
variants of MM6 are used in each of the 3-cells shown in Figure 16), so we
don’t know whether these agree with Jacobsson’s values.

MM J] ±
6 15 +
7 13 -
7 (mirror) 13 +
8 6 -
8 (mirror) 6 +
9 14 +
9 (mirror) 14 -
10 7 +

MM J] ↓ ↑
11 9 + +
12 11 - +
12 (mirror) 11 + −
13 12 - +
13 (mirror) 12 + -
14 8 + -
15 10 + -

Figure 17: The signs observed in the unoriented theory.

4.2 Relationship with the unoriented invariant

In this section we’ll prove that for knots and links (that is, ignoring tangles
and cobordisms), the disoriented and unoriented invariants are equivalent.
We’ll write [[L]]D and [[L]]U for the disoriented and unoriented invariants of L
respectively.

Theorem 4.1 There’s a fully faithful functor Alt : UnAb0 ⊗R[ω] ↪→ DisAb0

(here the subscript 0 denotes the part of the canopolis with no boundary points),
which ‘alternately orients’ each unoriented diagram. This induces another
functor Alt : Kom (UnAb)0 ⊗R[ω] ↪→ Kom (DisAb)0 such that

Alt ([[L]]U ) ∼= [[L]]D ,

although this isomorphism isn’t canonical.

Proof We’ve already seen the forgetful map DisAb→ UnAb, setting ω = 1
and forgetting orientation data. It’s relatively easy to see that this guarantees
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that we can reconstruct the unoriented invariant from the disoriented one (for
tangles too!). To see the two invariants are actually equivalent, we’ll introduce
a new canopolis of ‘alternately oriented cobordisms’, AltAb, a subcanopo-
lis of DisAb. We’ll construct an isomorphism UnAb0 ⊗ R[ω] ∼= AltAb0 ,
and additionally show that the invariant of a knot or link (but not a tangle!),
which is an up-to-homotopy complex in DisAb0 , always has a representative
in the subcategory AltAb0 , which coincides with the image of the unoriented
invariant in AltAb0 .

The category AltAb0 consists of diagrams in the disc comprised of oriented
loops, such that all ‘outermost’ loops are oriented counterclockwise, and at
each successive depth of nesting, the orientations reverse. This is a subset of
the objects of DisAb0 . The morphisms of AltAb0 are simply all the mor-
phisms of DisAb0 between these objects. In fact, AltAb0 is the ‘boundary-
less’ part of a full canopolis AltAb defined in much the same way.

The isomorphism UnAb0 ⊗ R[ω] ∼= AltAb0 is easy; simply orient the cir-
cles in an object of UnAb0 in the prescribed manner, and note that for any
cobordism, these orientations always extend to an honest orientation of the
cobordism. It’s injective by Lemma 2.1. It’s surjective because every cobor-
dism in AltAb0 , which a priori might have disorientation seams, is actually a
power of ω multiple of a properly oriented cobordism, by the following two
Lemmas.

Lemma 4.2 Reversing the fringe of a closed disorientation seam gives a sign
of −1.

Proof Use the neck cutting relation parallel to the seam.

Lemma 4.3 If Y is a disoriented surface with all disorientation seams closed,
and with alternately oriented boundary components, then Y is equal to a
power of ω multiple of the homeomorphic oriented surface.

Proof By applying fringe moves, we can assume that the disorientation seam
is connected on each connected component of Y . (If necessary, reverse fringe
directions using the previous lemma.) The assumption about boundary orien-
tations now implies that the seam is null-homologous, and so can be removed
via further fringe moves.

We next discover how to push a link complex [[L]] in DisAb0 down into the
subcategory AltAb0 .
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We begin with a quick statement about the disorientations that can appear on
a circle.

Lemma 4.4 Define the ‘disorientation number’ of a disoriented circle to be the
number of counterclockwise facing disorientation marks minus the number of
clockwise facing disorientation marks. (See Figure 18.) Then two disoriented
circles C1 and C2 are isomorphic in DisAb exactly if their disorientation num-
bers agree.

�

Figure 18: A disoriented circle with disorientation number +2 is not isomor-
phic in DisAb to an oriented circle.

We want to show that every circle appearing in an object of [[L]] has disorienta-
tion number 0. This is a conservation argument; near each disorientation mark
on the circle, there used to be a crossing in L, either just inside or outside the
circle. Whether the disorientation mark faces counterclockwise or clockwise
records whether the two strands in the crossing were oriented ‘inwards’ or
‘outwards’ across the circle. Since the original link must cross any given circle
a total of 0 times, the signed count of disorientation marks is 0 as well. This
shows that every object appearing in [[L]] is actually isomorphic to the corre-
sponding object appearing in [[L]]U (this is Lemma 4.4). In fact, the only choice
in this isomorphism is a multiple of ±1 or ±ω .

Thus we take the link complex [[L]], and replace every disoriented circle with
the appropriately oriented circle. The complex now lies entirely within the
subcategory AltAb0 . This complex agrees with the unoriented link complex,
thought of as living in AltAb0 , except for the fact that each morphism may be
off by a unit, simply because the underlying surfaces for each morphism are
the same, and by Lemma 4.3 above the morphisms are unit multiples of each
other.

A little combinatorial lemma about sprinkling units in a complex gets us to the
desired result.

Lemma 4.5 (Sprinkling units) Suppose we have two anticommutative cubes,
with identical objects, such that corresponding morphisms only ever differ by
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a unit. Further suppose that the composition of any two ‘edges’ of the cube is
nonzero. Then the two cubes are isomorphic, via a map which just multiplies
each object in the cube by some unit.

Remark. The hypothesis that the composition of any two composable maps in
the cube is nonzero certainly holds in the case we’re interested in. The complex
associated to a knot or link has as morphisms pairs of pants (or their time
reverse) and cylinders, and it’s easy to see that any way of composing two
pairs of pants is nonzero.

Remark. Something like this lemma is used in [16] in describing a categorifica-
tion of the colored Jones polynomial, without the need for functoriality. Note
also that our construction of a properly functorial version of Khovanov homol-
ogy should make a more direct construction of a categorification of the colored
Jones polynomial possible, and allow the possibility of this categorification it-
self being functorial. See p. 20 of [16].

Proof An easy induction on the dimension of the cube. For one dimensional
cubes, the result is trivial. For any cube, by induction we can choose an iso-
morphism φt between the top layers of the cubes, and another φb between
the bottom layers of the cubes. Now we need to tweak the top layer isomor-
phism, so together the isomorphisms give an isomorphism on the entire cube.
Consider the ‘highest’ vertical differential dv , between the initial objects in the
top and bottom layers, and define a unit ε by dvφt = εφbdv . Now replace the
isomorphism φt with εφt . We now just need to check that our isomorphism φ
commutes with every vertical differential. Thus consider a square of differen-
tials in one cube,

•
d1l

��

d1t // •
d1r

��
•

d1b // •

with d1
t a differential in the top layer, and d1

b a differential in the bottom layer.
There’s a corresponding square of differentials in the other cube, with differ-
entials d2

t , d
2
b , d

2
r and d2

l . By our construction φd1
t = d2

tφ, and φd1
b = d2

bφ,
and we’ll assume further φd1

l = d2
l φ (we’re going to apply this piece of the

argument to every such square, starting with dl = dv , the ‘highest’ vertical
differential described above). Now we know φd1

r = ζd2
rφ for some unit ζ ; we
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just need to show ζ = 1. We then deduce the following equations

φd1
rd

1
t = ζd2

rφd
1
t

= ζd2
rd

2
tφ

φd1
bd

1
l = ζd2

bd
2
l φ

= ζφd1
bd

1
l

and, making use of the hypothesis that the composition d1
bd

1
l is nonzero, con-

clude that ζ is indeed 1.

That concludes the proof of Theorem 4.1.

4.3 Sliding a handle past a crossing

In this section we give an example calculation in the new setup, illustrating an
interesting difference with the unoriented construction of Khovanov homol-
ogy.

Consider the following two cobordisms from to itself: the first is the

identity except for a handle attached to the over-sheet to the right of the cross-
ing, and the second is the same except that the handle is attached to the over-

sheet to the left of the crossing. We’ll denote these schematically by F =

and G = .

Proposition 4.6 F ' G are homotopic as maps in Kom (DisAb), whereas in
Kom (UnAb), we have F ' −G instead.

Proof Note that these cobordisms are clearly isotopic, and so the functoriality
result above gives us an automatic proof. (Exercise: figure out the sequence of
movie moves relating them!) However, we will construct an explicit homo-
topy: the arrow marked h in Figure 19.

We need a homotopy h such that hd+ dh = Fi −Gi , and propose

h = 2ω−1 .
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Figure 19: Chain maps and homotopy for the Proposition 4.6.

At height zero we then have

hd+ dh = 2ω−1

= ω−1

 +



= ω−1

ω + ω−1



= + ω−2 ,

which is just F0 −G0 when we set ω2 = −1. There’s a similar computation at
height 1:
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hd+ dh = 2ω−1

= 2

= +

= + ω−2 .

Again, setting ω2 = −1 makes the last line F1−G1 , which gives the result.

4.4 Confusions

In this final section, we’ll describe a defect in the discussion so far, and say a
little about a proposal to fix it.

The construction we’ve proposed so far is a functor from the category of ori-
ented tangles, OrTang , into the category of complexes of disoriented flat tan-
gles Kom (DisAb). In particular, it only gives maps for oriented cobordisms
between oriented links. This isn’t really ideal; the old unoriented theory gave
maps for nonorientable cobordisms. For example, while a Möbius band with
positive 3

2 twists provides a generator of the Khovanov invariant of the trefoil
in the old theory, our construction doesn’t know what to do with nonorientable
surfaces.
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Figure 20: A hypothetical isomorphism of complexes implementing a particu-
lar case of the ‘vertigo’ move.

Thus we’d like to extend the theory to a functor from DisTang , the category of
disoriented tangles. On the level of objects, this is no problem; simply map dis-
orientations to disorientations. Unfortunately, there is now an additional Rei-
demeister move, namely ‘sliding a disorientation through a crossing’, which
we’ll name a ‘vertigo’, for which we need to provide an isomorphism between
the corresponding complexes. Further, we’d need to check additional movie
moves, relating this new Reidemeister move to the original three.3

However, it’s easy to see that it just isn’t possible to produce a homotopy
equivalence between the corresponding complexes in Kom (DisAb). To be-
gin, such a homotopy equivalence would have to be an isomorphism; using
Lemma 3.5, we see no homotopies are possible in the complex for a single
crossing, regardless of any additional disorientations. Such an isomorphism
would presumably be of the form in Figure 20.

In particular, we’d need an isomorphism in DisAb reversing the direction of
a disorientation mark on a disoriented strand.

Such an isomorphism, which we’ll dub a ‘confusion’, would necessarily be a
troublesome thing; if the confusion were simply to be some ‘local’ structure on
a surface, which I’ll draw here as a box labeled by c (or a box labeled by c−1

3There’s actually a big incentive for this extension; it turns out that all the different
oriented versions of the usual 15 movie moves become equivalent modulo these extra
movie moves involving disorientations. This was actually our original motivation for
introducing confusions.
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for its inverse), we could perform the calculation

ω = = = = = ω−1 (4.1)

producing a contradiction with the requirement that ω2 = −1.

The way out of this seems to be to make the confusion a spinorial object, so an
extra sign gets introduced as we drag the confusion around the circle, in the
third equality in Equation 4.1.

At this point it seems appropriate to apologise for having talked about a par-
ticular diagrammatic model for such ‘spinorial confusions’ at various confer-
ences, but to be omitting the details in this paper. We still intend to write these
details down!

We’ll briefly list the improvements to the theory we anticipate being able to
make, after the introduction of confusions.

• Connecting the category DisAb; in particular, all disoriented circles
would be isomorphic.

• Extending the invariant to disoriented tangles, and disoriented cobor-
disms between them.

• Using the categorified Kauffman trick, to more easily describe the Rei-
demeister 3 chain map.

• After checking additional movie moves involving vertigos, being able to
reduce the computations required in §3.2, by taking advantage of the fact
that all oriented versions of each oriented movie move become equiva-
lent module disoriented movie moves.

A Appendixes

Throughout this appendix, we’ll at times just write a ‘bullet’, •, for a matrix
entry which we don’t need to care about.
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A.1 Gaussian elimination

Lemma A.1 (Gaussian elimination for complexes) Consider the complex

A
( •α )

//

B⊕
C

“
ϕ λ
µ ν

”
//

D⊕
E

( • ε )
// F (A.1)

in any additive category, where ϕ : B
∼=→ D is an isomorphism, and all other

morphisms are arbitrary (subject to d2 = 0, of course). Then there is a homo-
topy equivalence with a much simpler complex, ‘stripping off’ ϕ.

A
( •α )

//
OO

( 1 )

��

B⊕
C

“
ϕ λ
µ ν

”
//

( 0 1 )

��

D⊕
E

( • ε )
//

(−µϕ−1 1 )

��

FOO

( 1 )

��

A
(α )

// C
( ν−µϕ−1λ )

//

“
−ϕ−1λ

1

”OO

E
( ε )

//

( 0
1 )

OO

F

Remark. Gaussian elimination is a strong deformation retract. In fact, it pre-
serves the simple homotopy type of the complex.

Proof This is simply Lemma 4.2 in [4] (see also Figure 2 there), this time ex-
plicitly keeping track of the chain maps.

We’ll also state here the result of applying Gaussian elimination twice, on two
adjacent (but non-composable) isomorphisms. Having these chain homotopy
equivalences handy will tidy up the calculations for the Reidemeister 2 and 3
chain maps.

Lemma A.2 (Double Gaussian elimination) When ψ and ϕ are isomorphisms,
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there’s a homotopy equivalence of complexes:

A
( •α )

//
OO

( 1 )

��

B⊕
C

„
ψ β
• •
γ δ

«
//

( 0 1 )

��

D1⊕
D2⊕
E

“ • ϕ λ
• µ ν

”
//

(−γψ−1 0 1 )

��

F⊕
G

( • η )
//

(−µϕ−1 1 )

��

HOO

( 1 )

��

A
(α )

// C
( δ−γψ−1β )

//

“
−ψ−1β

1

”
OO

E
( ν−µϕ−1λ )

//

 
0

−ϕ−1λ
1

!OO

G
( η )

//

( 0
1 )

OO

H

Proof Apply Lemma A.1, killing off the isomorphism ψ . Notice that the
isomorphism ϕ survives unchanged in the resulting complex, and apply the
lemma again.

Remark. Convince yourself that it doesn’t matter in which order we cancel the
isomorphisms!

A.2 Calculations of Reidemeister chain maps

We can now go through the constructions of the Reidemeister chain maps.

Lemma A.3 The chain maps displayed in Figures 5 and 6 are homotopy equiv-
alences.

Proof We’ll just do the R1a move; the R1b is much the same.

The complex associated to is

q
d // q2

with d simply the disoriented saddle. Delooping at homological height 1, and
cancelling the disorientations at height 2, using the isomorphisms

ζ1 =


1
2

 ζ2 = ω−1
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with inverses

ζ−1
1 =

(
1
2

)
ζ−1
2 = ,

we obtain the complex

q2

⊕ „
ϕ = 1 λ = ω−2

2

«
// q2 .

The differential here is the composition ζ2dζ
−1
1 . Stripping off the isomorphism

ϕ, according to Lemma A.1, we see that the complex is homotopy equivalent to
the desired complex: a single strand. The ‘simplifying’ homotopy equivalence
is

s1 =
(
0 1

)
◦ ζ1 = s2 = 0

with inverse

s−1
1 = ζ−1

1 ◦
(
−ϕ−1λ

1

)
=

1
2

(
− ω−2

)
s−1
2 = 0

as claimed.

Lemma A.4 The chain maps displayed in Figures 7 and 8 are homotopy equiv-
alences.

Proof We’ll deal with the R2a move first.

The complex associated to + - is

q−1 d−1
//

⊕ d0 // q
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with differentials

d−1 =
( )

d0 =
(

−
)
.

(In these matrix entries, and below, an interval connecting two points on a
smoothing indicates a saddle cobordism along that interval.)

Applying the delooping isomorphism

(
1
2ω

)
(which has inverse

(
1
2ω

)
)

to the direct summand with a loop, we obtain the complex

q−1 d−1
//

⊕
q ⊕
q−1

d0 // q

where

d−1 =

γ =
•

ψ =

 d0 =
(
λ = ϕ = − •

)
.

Here we’ve named the entries of the differentials in the manner indicated in
Lemma A.2. Applying that lemma gives us chain equivalences with the de-
sired one object complex. The chain equivalences we’re after are compositions
of the chain equivalences from Lemma A.2 with the delooping isomorphism
or its inverse.

Thus the R2a ‘untuck’ chain map is

(
1 0 −γψ−1

)
◦

1 0
0 1

2ω

0

 =
(
1 − ◦

)
as claimed, and the ‘tuck’ map is

(
1 0 0
0 1

2ω

)
◦

 1
−ϕ−1λ

0

 =
(

1
◦

)
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Now the R2b move, in much the same way. The complex associated to +-

is

q−1 d−1
//

⊕ d0 // q

with differentials

d−1 =
( )

d0 =
(
−

)
This time instead of just delooping, we’ll also cancel the obvious pairs of dis-
orientation marks. The isomorphism we’ll use is

ζ• =
(
ω−1

)
,

ω−2 0
0 1

2

0

 ,
(
ω−1

)
,

with inverses

(ζ−1)• =
( )

,

(
0 0

0 1
2

)
,
( )

.

We obtain the complex

q−1 d−1
//

⊕
q ⊕
q−1

d0 // q

where

d−1 =

γ = ω−1

•
ψ = ω

 d0 =
(
λ = − ϕ = •

)
.

Thus the R2b ‘untuck’ chain map is

(
1 0 −γψ−1

)
◦

ω−2 0
0 1

2

0

 =
(
ω−2 −ω−2 ◦

)
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as claimed, and the ‘tuck’ map is(
0 0

0 1
2

)
◦

 1
−ϕ−1λ

0

 =
(

◦

)

Proof of Proposition 2.3 Finally, we’ll construct explicit chain maps for the
third Reidemeister move.

The complex associated to the left side is

d0 //

⊕
⊕ d1 //

⊕
⊕ d2 //

with differentials

d0 =

s1s2
s3


d1 =

s2 −s1 0
s3 0 −s1
0 s3 −s2


d2 =

(
s3 −s2 s1

)
.

We now need to simplify the complex; first delooping the last object at height
two, and cancelling pairs of disorientations at height three using the isomor-
phisms

ζl2 =


1 0 0
0 1 0

0 0 ω−1

2

0 0

 ζl3 =

ζ−1
l2 =


1 0 0 0
0 1 0 0

0 0 ω−1

2

 ζ−1
l3 = ω−2
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We obtain the complex

d′0 //

⊕
⊕ d′1 //

⊕
⊕
⊕

d′2 //

with differentials

d′0 = d0 =

s1s2
s3



d′1 = ζl2d1 =


1 0 0
0 1 0

0 0 ω−1

2

0 0


s2 −s1 0
s3 0 −s1
0 s3 −s2

 =

=

δ =
(
s2 −s1
s3 0

)
γ =

(
0
−s1

)
• •

β =
(
0 1

)
ψ = −1



d′2 = ζl3d2ζ
−1
l2 =

(
s3 −s2 s1

)
1 0 0 0
0 1 0 0

0 0 ω−1

2

 =

=
(
λ =

(
s3 − s2

)
ϕ = ω21 •

)
.

Applying the double Gaussian elimination lemma, we reach the homotopy
equivalent complex

d′′0 //
⊕ d′′1 //

⊕
(A.2)
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where

d′′0 = d′0 =


 (A.3)

d′′1 = δ − γψ−1β =

 −

−

 . (A.4)

via the simplifying (and unsimplifying) maps

σ0 = 1 σ−1
0 = 1

σ1 =
(

1 0 0
0 1 0

)
σ−1

1 =

(1 0
0 1

)
−ψ−1β

 =

1 0
0 1
0 1



σ2 =
((

1 0
0 1

) (
0
0

)
−γψ−1

)
ζl2 σ−1

2 = ζ−1
l2


(

1 0
0 1

)
−ϕ−1λ(
0 0

)


=
(

1 0 0
0 1 −c1

)
=

 1 0
0 1

−ω−1c2 ω−1c3


σ3 = 0 σ−1

3 = 0.

Here c1 is the cobordism from to with three components,

a disc, a curtain, and a saddle, c2 the similar cobordism from to

and c3 is the similar cobordism from to (the ad-
joint of c1 ).

That’s half the work! Now we need to do the same for the right side of the third
Reidemeister move, then compose a ‘simplifying map’ with an ‘unsimplifying
map’.

Briefly, we calculate that the complex for the right side is

d0 //

⊕
⊕ d1 //

⊕
⊕ d2 //
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with differentials

d0 =

s1s2
s3


d1 =

s2 −s1 0
s3 0 −s1
0 s3 −s2


d2 =

(
s3 −s2 s1

)
.

and, applying the simplification algorithm, that this is homotopy equivalent
to the same complex as we obtained simplifying the other side of the Reide-
meister move (shown in Equation A.2), but, somewhat tediously, with slightly
different differentials

d′′0 =




d′′1 =

 −

−

 .

These complexes thus differ by

ξ0 = 1 ξ1 =
(

1 0
0 1

)
ξ2 =

(
1 0
0 −1

)
.

The simplifying and unsimplifying maps are

τ0 = 1 τ−1
0 = 1

τ1 =
(

1 0 0
0 1 0

)
τ−1
1 =

1 0
0 1
1 0


τ2 =

(
1 0 0
0 −c4 1

)
τ−1
2 =

 1 0
ω2c5 ω2c6

0 1


τ3 = 0 τ−1

3 = 0.

Here

c4 : →

c5 : →
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and

c6 : →

are the obvious variations on c1, c2 and c3 .

The interesting compositions, which provide us with the chain map between
the two sides of the Reidemeister move, are

τ−1
0 ◦ σ0 =

(
1
)

τ−1
1 ◦ σ1 =

1 0
0 1
1 0

 ◦ (1 0 0
0 1 0

)

=

1 0 0
0 1 0
1 0 0


τ−1
2 ◦ ξ2 ◦ σ2 =

 1 0
ω2c5 ω2c6

0 1

 ◦ (1 0
0 −1

)
◦
(

1 0 0
0 1 −c1

)

=

 1 0 0
ω2c5 −ω2c6 ω2c6c1

0 −1 c1



The cobordism c6c1 is the same ‘monkey saddle’ appearing in [3].

The maps described in Proposition 2.3 describing the R3 chain map are simply
a rearrangement of those presented here via matrices.

A.3 Proofs of the R3 variations lemmas

We now turn to the proofs of Lemmas 2.7, 2.8 and 2.9. As explained previously,
in §2.3.4, our strategy is to use the fact the Lemmas 2.4, 2.5 and 2.6 are exactly
the special case that the Reidemeister 3 move is R3hml , and then to show that
if two Reidemeister 3 variations are adjacent in the cube of variations shown in
Figure 10, and the spanning tree of definitions includes the connecting edge,
then if the Lemmas hold for one variation, they must hold for the other. How-
ever, this approach immediately requires two cases, depending on whether we
are looking at one of the four ’vertical’ edges of the cube of R3 variations, or
one of the eight ’horizontal edges’.
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The case that the connecting edge is ’vertical’, the formula defining one R3
variation in terms of the other (look back at Equation (2.3), for example, re-
lating R3	 and R3hlm ) involves conjugation by an R2 move in the direction
opposite the highest crossing. On the other hand, when we look at the eight
’horizontal’ edges, the R2 move conjugation takes place opposite either the
middle or lowest crossing. Because all of our lemmas are written describing
the R3 moves in terms of resolutions of the highest crossing, it’s unsurprising
we need to treat these cases separately.

It turns out that in order to prove Lemma 2.8 for a given vertex ?, connected
in the spanning tree to a vertex ?′ , we’ll have to know slightly more about the
R3 map for ?′ than is explicit in the Lemmas. This extra information follows
from the Lemmas however, and so we’ll state it in the Corollary below. Once
we have established the Lemmas for the vertex ?′ (starting at ?′ = hml), we
also know the Corollary for ?′ , and can use it in proving the Lemmas for ?.

Corollary A.5 (Corollary of Lemmas 2.7 and 2.8) In the P layers of the cube
of resolutions of R3? there is exactly one resolution which appears for both the
initial and final tangles of the R3 move. By grading considerations, the com-
ponent of the R3 map between these resolutions is some multiple of a map
whose underlying unoriented surface is the identity. There is always a unique
configuration of seams on this surface without loops, and we will write ‘1’ for
such a ‘disorientation cylinder with minimal seams’. Write p? for the coeffi-
cient of this disoriented surface. Writing κ? for the coefficient appearing in the
lowest homological height of the O → O map, and λ? for the coefficient in the
highest height (so by Lemma 2.8, λ? = κ? if ? = hml, lhm,mhl or lmh, and
λ? = −ω2κ? otherwise), we have

p?
κ?

=

{
−1 if ? = hml, lmh,mlh or �

ω2 if ? = lhm,mhl, hlm or 	

Proof This is actually quite involved! Along the way, we’ll also need to un-
derstand one of the coefficients in the ’downhill’ map. We’ll introduce some
further notation for particular resolutions of the R3 tangle, as follows: a sym-
bol abc, with each of a and b either > or <, and c either O or P , refers to the
resolution in which the first crossing is either in the higher or lower homologi-
cal height resolution, depending on a, the second crossing is again either in the
higher or lower homological height resolution, depending on b, and the third
crossing is either in the orthogonal or parallel resolution relative to the triangle
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formed by the R3 tangle, depending on c. Remember that the convention for
the ordering of crossings is unobvious; before an R3 move (when the triangle
is on the left of the lowest strand), the crossings are ordered as ’middle’ then
’low’ then ’high’, while after the R3 move the crossings are ordered as ’low’
then ’middle’ then ’high’.

It’s easy to verify that in the O → P cases, the ><O resolution of the initial
tangle is the same, ignoring orientation data, as the <<P resolution of the
final tangle. Since these resolutions are in the same q -grading, the only maps
between them are disoriented cylinders. Taking into account orientation data,
we claim that there is a unique allowed configuration of disorientation seams
on the cylinder with the appropriate boundary. We then define q? to be the
coefficient appearing on this map in the R3? map. Similarly, in the P → O
cases, the >>P resolution of the initial tangle is the same up to orientation
data as the ><O resolution of the final tangle, and we define q? to be the
coefficient appearing on coefficient of the component of the R3 map between
these resolutions.

The resolutions described in the statement of the corollary are in this notation
><P (in the initial tangle) and <>P (in the final tangle), in the O → P cases,
and the reverse in P → O cases.

We now determine q? , and then p? in terms of κ? , by considering the following
two pairs of commuting squares coming from chain map conditions.

<<O
κ?1 //

(−1)?=lhm or mlhs
��

<<O
+s

��

><O
q?‘1’

//

+s

��

<<P
(−1)?=hml or lhms

��

><P
p?‘1’

// <>P

(A.5)

>>O
λ?1 // >>O

>>P
q?‘1’

//

+s

OO

><O

(−1)?=hlm or �s

OO

<>P
p?‘1’

//

(−1)?=� or lmhs

OO

><P

+s

OO

(A.6)
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The signs appearing on saddles in Equations (A.5) and (A.6) are calculated
by the usual rule for sprinkling signs in tensor products of complexes (see
§A.6.1), and the convention for ordering crossings before and after Reidemeis-
ter 3 moves.

These calculations tell us that

p? =

{
−κ? if ? = hml,mlh, lmh or �

ω2κ? if ? = hlm, lhm,mhl or 	

=


−1 if ? = hml or lmh
1 if ? = hlm or mlh
ω2 if ? = lhm or mhl
−ω2 if ? =� or 	.

Unfortunately there’s a small subtlety in extracting the relation between k?
and p? from Equations (A.5) and (A.6); the horizontal arrows are not labelled
by multiples of the identity map, but by multiples of the ‘minimal seam’ iden-
tity map. Depending on the configuration of these seams, it might not be the
case that s‘1’ = ‘1’s, but that they differ by a power of ω . This requires a case
by case analysis. Defining σ? and τ? so that s‘1’ = σ?‘1’s in the upper squares
of Equations (A.5) and (A.6), and s‘1’ = τ?‘1’s in the lower squares, we find
that all σ? and τ? are equal to 1, except that

σlhm = σmhl = τ� = τ	 = ω2

The corollary now follows.

Let’s begin the ’vertical’ edge case by introducing some notation for particu-
lar subspaces of the complexes associated to the four tangles appearing in our
formula for one R3 move in terms of another. The symbols O| and P| will
denote the spaces of the Khovanov complex of the initial tangle in which the
highest crossing has been resolved in the orthogonal and parallel manners re-
spectively. The symbols |O and |P will denote the corresponding subspaces
of the final tangle. The symbols a|bc and ab|c, where a, b, c = O or P will de-
note subspaces of the two intermediate tangles (the lower left and lower right
tangles in Equation (2.3), respectively), in which the three crossings not involv-
ing the lowest strand (that is, the original highest crossing, and the two new
crossings introduced by the R2 move) have been resolved either orthogonal or
parallel to the lowest strand, according to the values of a, b and c, with a re-
ferring to the original highest crossing, b referring to the new crossing closest
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to the original tangle, and c to the new crossing furthest away. (The vertical
bar | is meant to denote the lowest strand.)

We know, from Figures 7 and 8, that the R2 maps only see those subspaces
in which the two crossings involved in the R2 move have been resolved the
same way, that is, with b = c. Thus if R3?′ is defined in terms of R3? as the
composition of an R2 map, the map R3−1

? , and an inverse R2 map, as in the
example in Equation (2.3), it will have the form shown in Figure 21.

Figure 21: One R3 variation defined in terms of another via R2 moves.

Proof of Lemma 2.7, vertical edge cases. If the statement of the Lemma holds
for some move R3? , and we’re defining another R3?′ in terms of it via a verti-
cal edge of the cube in Figure 10, it must also hold for R3′? . (Recall that adjacent
R3 moves in the cube have opposite arrangements of layers.) This is the case
simply because in Figure 21 the map R3P→O?′ factors through R3−1

?
O→P , and

the map R3O→P?′ factors through R3−1
?
P→O .

Proof of Lemma 2.8, vertical edge cases. Using Lemma 2.7, one sees that the
component R3O→O? is itself a chain map. This follows in the case that the
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layers are arranged as O → P by writing d = dO→O+ dO→P + dP→P ; then the
O → O component of the equation dR3? = R3?d simply says

dO→OR3O→O? = R3O→O? dO→O +R3O→P? dP→O

and since by Lemma 2.7 R3P→O? = 0,

dO→OR3O→O? = R3O→O? dO→O.

The other case, in which the layers are arranged as P → O , is the same.

We claim then that the only chain maps from one orthogonal layer to another
are multiples of the identity in the ? = hml, lhm,mhl or lmh cases, and multi-
ples of the standard chain map described in the Lemma when ? = hlm,mlh,	
or �. The overall coefficient is easily determined from Figure 21, and the for-
mulas for the R2 maps in Figures 7 and 8. We obtain the result described in the
Lemma, that for ? = hml, lhm,mhl or lmh the component in lowest homolog-
ical height is actually the identity, that for ? = hlm and � the coefficient of the
component in the lowest homological height is ω2 , and that for ? = mlh and
	 that coefficient is −1.

Proof of Lemma 2.9, vertical edge cases. Again looking at Figure 21, we see
that R3P→P?′ factors through R3−1

?
P→P . Thus if the lemma holds for R3?

(which it does for ? = hml , by Lemma 2.6), it also holds for any adjacent
R3 move which we’re defining in terms R3? . The second part of the Lemma,
describing the normalisation, has already been proved as part of Corollary
A.5. The final statement, about the other entries of the map in the middle ho-
mological height having disc components, follows immediately from grading
considerations.

We now deal with the cases involving a horizontal edge.

Proof of Lemma 2.7, horizontal edge cases. We’ll introduce a new notational
convention; when decorating a crossing with an O or a P , to indicate a par-
ticular resolution, we’ll also draw a short squiggly line pointing towards the
nearby strand with respect to which we mean ‘orthogonal’ or ‘parallel’. We can
rotate this short squiggly line into a different region adjacent to the crossing, if
at the same time we interchange the labels O and P .

When we define an R3 map via a ‘horizontal’ edge in the cube, in terms of
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some other map, say R3? , it has the form:

.

(A.7)
(Here the labelled crossings in the initial and final step are the highest cross-
ings, as usual.) Thus we see that the O → P component factors through the
original P → O component of R3? , and similarly the P → O component fac-
tors through the O → P component. Since the relative heights of the O and P
maps are reversed in adjacent R3 variations in the cube, this suffices to estab-
lish the lemma.

Proof of Lemma 2.8, horizontal edge cases. This follows the argument above
in the vertical edge case; Lemma 2.7, ensures that the component R3O→O? is a
chain map, and thus only multiples of the map described in this Lemma are
possible. To check that the multiple is the one described, we follow through
the O → O composition in Equation (A.7) above. Notice that this relies on
Corollary A.5, for the normalisation of the P → P map appearing in Equation
(A.7). Further, in the cases where the R2 moves appearing are R2b moves, one
must take into account a sign of homological origin, coming from reordering
crossings.

Proof of Lemma 2.9, horizontal edge cases. We now look in slightly more de-
tail at Equation (A.7). The highest and lowest homological heights of the P
layer consist of those resolutions in which the other two crossings (i.e., the
middle and lowest crossing) have been resolved in opposite ways; one as a O ,
one as a P . We look at one of the two cases, the other being essentially iden-
tical. Making use of Lemma 2.8 (in particular, that, ignoring all disorientation
data and coefficients, the O → O components of all R3 variations are simply
the identity), we see

.

(A.8)
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The second part of the Lemma, describing the normalisation, has already been
proved as part of Corollary A.5. The final statement, about the other entries
of the map in the middle homological height having disc components, follows
immediately from grading considerations.

A.4 Planar algebras and canopolises

A planar algebra is a gadget specifying how to combine objects in planar ways.
They were introduced in [12] to study subfactors, and have since found more
general use.

In the simplest version, a planar algebra P associates a vector space Pk to each
natural number k (thought of as a disc in the plane with k marked points on
its boundary) and a linear map P(T ) : Pk1 ⊗ Pk2 ⊗ · · · ⊗ Pkr → Pk0 to each
planar tangle4 T , for example

,

with internal discs with k1, k2, . . . , kr marked points, and k0 marked points
on the external disc. These maps (the ’planar operations’) must satisfy cer-
tain properties: “radial” tangles induce identity maps, and composition of the
maps P(T ) is compatible with the obvious composition of planar diagrams by
gluing one inside the other.

For the exact details, which are somewhat technical, see [12].

Planar algebras also come in more subtle flavors. Firstly, we can introduce a
label set L, and associate a vector space to each disc with boundary points
marked by this label set. (The simplest version discussed above thus has a sin-
gleton label set, and the discs are indexed by the number of boundary points.)
The planar tangles must now have arcs labeled using the label set, and the
rules for composition of diagrams require that labels match up. Secondly,
we needn’t have vector spaces and linear maps between them; a planar al-
gebra can be defined over an arbitrary monoidal category, associating objects

4Familiarly known as a ’spaghetti and meatballs’ diagram.

86



to discs, and morphisms to planar tangles. Thus we might say “P is a planar
algebra over the category C with label set L.” 5

A “canopolis”, introduced by Bar-Natan in [3]67, is simply a planar algebra
defined over some category of categories, with monoidal structure given by
cartesian product. Thus to each disc, we associate some category of a specified
type. A planar tangle then induces a functor from the product of internal disc
categories to the outer disc category, thus taking a tuple of internal disc objects
to an external disc object, and a tuple of internal disc morphisms to an external
disc morphism. It is picturesque to think of the objects living on discs, and the
morphisms in ‘cans’, whose bottom and top surfaces correspond to the source
and target objects. Composition of morphisms is achieved by stacking cans
vertically, and the planar operations put cans side by side.

The functoriality of the planar algebra operations ensure that we can build a
‘city of cans’ (hence the name canopolis) any way we like, obtaining the same
result: either constructing several ‘towers of cans’ by composing morphisms,
then combining them horizontally, or constructing each layer by combining
the levels of all the towers using the planar operations, and then stacking the
levels vertically.

A.5 Complexes in a canopolis form a planar algebra

Given a quadratic tangle, and a pair of complexes associated to

the inner discs,

C1 =
(

// // //

)
C2 =

(
// // //

)
we need to define a new complex associated to the outer disc.

5A “subfactor planar algebra” is defined over Vect , and has a 2 element label set.
We impose an additional condition that only discs with an even number of boundary
points and with alternating labels have non-trivial vector spaces attached. There is
also a positivity condition. See [4, §4].

6He called it a ‘canopoly’, instead, but we’re taking the liberty of fixing the name.
7See also [23] for a description of Khovanov-Rozansky homology [17, 18] using

canopolises.
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We’ll imitate the usual construction for tensor product of complexes, but use
the quadratic tangle to combine objects and morphisms. Form a double com-
plex then collapse along the anti-diagonal:

//

��

//

��
⊕

//

��
⊕

��
⊕

−
//

��

−
//

��
⊕

−
//

��
⊕

��
⊕

//

��

//

��
⊕

//

��
⊕

��
⊕

−
//

−
//

−
//

Here each horizontal arrow is the planar composition of a morphism from C1 ,
placed in the left disc, with the identity on the appropriate object from C2 ,
in the right disc. Similarly, each vertical arrow is the planar composition of a
morphism from C2 with an identity morphism.

The extension to tangles with more than 2 internal discs is obvious. Moreover,
it’s not hard to see that chain maps between complexes in a canopolis also form
a planar algebra, providing the morphism part of ‘the canopolis of complexes
and chain maps’.

A.6 Homological conventions

A.6.1 Tensor product

In the next two sections we’ll describe certain conventions to do with tensoring
complexes. (Please accept our apologies if they’re not what you’re used to!)
[10]

The tensor product of two complexes (A•, dA) and (B•, dB) is defined to be

(A⊗B)• =
⊕
i+j=•

Ai ⊗Bj ,

and
d(A⊗B)• =

∑
i+j=•

(−1)jdAi ⊗ 1Bj + 1Ai ⊗ dBj .

If you think of A• as lying horizontally, and B• as vertically, this rule says
“negate the differentials in every odd row”.
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A.6.2 Permuting tensor products

Unfortunately, while A• ⊗ B• ∼= B• ⊗ A• the isomorphism can’t just be the
identity. Instead, we’ll take it to be Ai ⊗Bj 7→ (−1)ijBj ⊗Ai ; that is it negates
anything in ‘doubly odd’ degree.

The only complexes we ever take tensor products of are the complexes associ-
ated to tangles. In the simplest case, where we are taking the tensor product
of two crossings, the ‘crossing reordering’ map is ‘negate doubly disoriented
smoothings’. That is, objects in which both crossings have been resolved in the
disoriented direction get negated when we change the ordering of the cross-
ings.
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