
September 9, 2008 22:16 WSPC/INSTRUCTION FILE su˙3-foams

1

ABSTRACT

We reconsider the su3 link homology theory defined by Khovanov in [10] and general-
ized by Mackaay and Vaz in [16]. With some slight modifications, we describe the theory
as a map from the planar algebra of tangles to a planar algebra of complexes of ‘cobor-
disms with seams’ (actually, a ‘canopolis’), making it local in the sense of Bar-Natan’s
local su2 theory of [1].

We show that this ‘seamed cobordism canopolis’ decategorifies to give precisely what
you’d both hope for and expect: Kuperberg’s su3 spider defined in [15]. We conjecture an
answer to an even more interesting question about the decategorification of the Karoubi
envelope of our cobordism theory.

Finally, we describe how the theory is actually completely computable, and give a
detailed calculation of the su3 homology of the (2, n) torus knots.

Keywords: Categorification, Cobordism, Spider, Jones Polynomial, Khovanov Homology,
Quantum Knot Invariants.
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1. Introduction

Bar-Natan formulated a highly geometric version of Khovanov homology in [1]. His

approach uses the language of planar algebras for the construction of the complex.

In particular, it has the pleasant feature of being a local theory, which makes it

useful for fast ‘divide and conquer’ computations [2].

Khovanov constructed a homology theory of links that categorifies the su3 quan-

tum knot invariant in [10]. Mackaay and Vaz generalized this theory in [16]. In the

spirit of Bar-Natan, we provide a local perspective on this knot homology. Our

formulation uses a planar algebra of categories (a ‘canopolis’) as the setting for the

complex.

The su3 quantum knot invariant is determined by the following formulas, which

should be thought of as defining a map of planar algebras:

7→ q2 − q3

7→ −q−3 + q−2

This sends an oriented link diagram to a Z[q, q−1]-linear combination of oriented

planar graphs with trivalent vertices (‘webs’). We then evaluate these webs using

2
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the relations of Kuperberg’s su3 spidera [15]

= q2 + 1 + q−2 (1.1)

= q + q−1 (1.2)

= + (1.3)

to obtain a polynomial invariant of links.

Just as the categorified version of (one variation of) the Kauffman skein relation

for the Jones polynomialb

7→ q − q2

becomes the following complex in Khovanov’s theory,

� //

(

• // q // q2 // •

)

we should expect the categorified su3 invariant to associate to a crossing some

two step complex, with something like a cobordism for the differential. However,

since the diagrams in the su3 spider have singularities, the category of cobordisms

can’t suffice; therefore, we’ll work with seamed cobordisms (or ‘foams’) that allow

singular seams where three half-planes meet:

� //

(

• // q2 // q3 // •

)

� //

(

• // q−3 // q−2 // •

)

aNote that these aren’t precisely Kuperberg’s relations. Following [10], we’ve replaced q with −q.
We do this in order to produce relations with positive coefficients, which are thus more readily
categorifiable.
bThis isn’t quite the quantum su2 skein theory; see [4].
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We’ll describe this construction in detail, essentially paralleling the work of

Khovanov and of Mackaay and Vaz, with some minor differences which we find ap-

pealing.c For most of the paper, it isn’t necessary to have read their work (although

§Appendix A which explicitly compares the details of our construction with that of

Khovanov and of Mackaay and Vaz assumes this). We emphasize the local nature

of our construction, giving automatic proofs of Reidemeister invariance, following

Bar-Natan’s simplification algorithm, in §4.2. Later, in §6.1, we provide explicit

detailed calculations of the su3 Khovanov invariant for the (2, n) torus knots.

Our version of this invariant associates to every tangle an up-to-homotopy com-

plex in the canopolis of foams. In §5, we prove ‘decategorification’ results both

for this canopolis and for Bar-Natan’s canopolis of cobordisms corresponding to

the original Khovanov homology. Roughly speaking, this involves collapsing the

categorical structure of the canopolis (taking the split Grothendieck group) while

preserving its planar algebra structure. The decategorification of Bar-Natan’s ca-

nopolis is the Temperley-Lieb planar algebra. Similarly, the decategorification of the

canopolis of foams is the Kuperberg’s su3 spider. As we will see, the su3 case requires

more complicated techniques, because the morphisms are much harder to classify

than the cobordisms in the su2 canopolis. Among these techniques is a kind of du-

ality: in §5.4.2 we’ll produce isomorphisms Hom (U ⊗ V,W ) ∼= Hom (U,W ⊗ V ∗)

in the canopolis of su3 foams, which we think of as meaning that it’s secretly a

‘spatial algebra’ (i.e. a higher dimensional analogue of a planar algebra), not just

a canopolis.

Some interesting things happen in the su3 theory which have no analogues for

su2. In particular, there are grading 0 morphisms other than the identity between

irreducible diagrams. We’ll discuss an example in which the identity morphism can

be written as a sum of orthogonal idempotents, and make a conjecture about the

decategorification of the Karoubi envelope. (The Karoubi envelope is the category

we get by adding in all idempotents as extra objects.) A further conjecture says

that the minimal idempotents correspond to the dual canonical basis in the su3

spider [11].

The authors would like to thank Rahel Wachs for teaching us how to draw the

figures in this paper, and our referee for making many useful suggestions.

2. Preliminaries

2.1. Locality, or, “What is a planar algebra?”

A planar algebra is a gadget specifying how to combine objects in planar ways.

They were introduced in [9] to study subfactors, and have since found more general

use.

cMuch of our work was done before the appearance of [16], which perhaps partially excuses our
giving a self-contained development of the theory.
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In the simplest version, a planar algebra P associates a vector space Pk to each

natural number k (thought of as a disc in the plane with k points on its boundary)

and a linear map P(T ) : Pk1 ⊗ Pk2 ⊗ · · · ⊗ Pkr → Pk0 to each ‘spaghetti and

meatballs’ diagram T , for example

,

with internal discs with k1, k2, . . . , kr points, and k0 points on the external

disc. These maps (the ’planar operations’) must satisfy certain properties: radial

spaghetti induce identity maps, and composition of the maps P(T ) is compatible

with the obvious composition of spaghetti and meatballs diagrams by gluing one

inside the other.

For the exact details, which are somewhat technical, see [9].

Planar algebras also come in more subtle flavors. Firstly, we can introduce a

label set, and associate a vector space to each disc with boundary points colored by

this label set. (The simplest version discussed above thus has a singleton label set,

and the discs are indexed by the number of boundary points.) The planar tangles

must now have arcs colored using the color set, and the rules for composition of

diagrams require that labels match up. We can also have a oriented label set; the

label set has an involution and the arcs carry both an orientation and a label,

modulo reversing both. Secondly, we needn’t restrict ourselves to vector spaces

and linear maps between them; a planar algebra can be defined over an arbitrary

monoidal category, associating objects to discs, and morphisms to planar tangles.

Thus we might say “P is a planar algebra over the category C with label set L.” d

A ‘canopolis’, introduced by Bar-Natan in [1]ef , is simply a planar algebra de-

fined over some category of categories, with monoidal structure given by cartesian

product. Thus to each disc, we associate some category of a specified type. A planar

tangle then induces a functor from the product of internal disc categories to the

outer disc category, thus taking a tuple of internal disc objects to an external disc

object, and a tuple of internal disc morphisms to an external disc morphism. It is

picturesque to think of the objects living on discs, and the morphisms in cans, whose

bottom and top surfaces correspond to the source and target objects. Composition

of morphisms is achieved by stacking cans vertically, and the planar operations put

cans side by side.

dA subfactor planar algebra is defined over Vect, and has a 2 element label set. One imposes an
additional condition that only discs with an even number of boundary points and with alternating
labels have non-trivial vector spaces attached. There is also a positivity condition. See [2, §4].
eHe called it a ‘canopoly’, instead, but we’re taking the liberty of fixing the name here.
fSee also [20] for a description of Khovanov-Rozansky homology [12,13] using canopolises.
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The functoriality of the planar algebra operations ensure that we can build

a ‘city of cans’ (hence the name canopolis) any way we like, obtaining the same

result: either constructing several towers of cans by composing morphisms, then

combining them horizontally, or constructing each layer by combining the levels of

all the towers using the planar operations, and then stacking the levels vertically.

2.2. The su2 cobordism theory

We will now briefly recall the canopolis defined by Bar-Natan in [1], and used in

his local link homology theory.

Slightly modifying Bar-Natan’s notation, Cob (su2) is our name for his Cob3/l, the

canopolis of cobordisms in cans modulo the su2 relations.

The objects of Cob (su2) consist of planar tangle diagrams:

or

equipped with the obvious planar algebra structureg.

Let R0 be any commutative ring in which 2 is invertible. If D1 and D2 are

diagrams with identical boundary, a morphism between them is a formal R0-linear

combination of cobordisms from D1 to D2 modulo the following local relations:

= 0 = 2

=
1

2
+

1

2
(2.1)

The planar algebra structure on morphisms is given by plugging cans into T × [0, 1],

where T is a spaghetti and meatballs diagram, as in this example:

.

gWe may think of this as the free planar algebra with no generators.
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We refine the theory by introducing a grading on the canopolis. We equip the

objects of Cob (su2) with a formal grading shift, so that they are of the form qmD,

where m is an integerh. (We will, however, sometimes suppress the grading for

simplicity, or conflate diagrams with objects when it is convenient.) We let grad-

ing shifts add under planar algebra operations. The degree of a cobordism C from

qm1D1 to qm2D2 is defined as χ(C) − k/2 +m2 −m1, where χ is the Euler char-

acteristic and k is the number of boundary points of Di. It is not hard to see that

degrees are additive under both composition and planar operations.i Note also that

the local relations are degree-homogeneous, and therefore this grading descends to

the quotient.

We can further introduce formal direct sums, and allow matrices of morphisms

between direct summands. This is the matrix category construction, applied to each

category in our canopolis. We denote the result Mat (Cob (su2)).

2.2.1. The structure of morphisms in Cob (su2)

The structure of this canopolis has been thoroughly analyzed elsewhere, in Bar-

Natan’s paper [1, §9] and in Gad Naot’s [17]. We will need one of their results.

First, note that almost all closed surfaces in Cob (su2) can be evaluated as scalars.

In fact, applying the ‘neck-cutting’ relation (2.1) shows that they are all zero except

for the surfaces of genus one and three. We saw above that the torus was equal to

2, but there is no a priori way to evaluate the surface of genus three. Therefore, we

absorb it into our ground ring, letting R = R0[ ].

Proposition 2.1. For any two diagrams D1 and D2, let l be the number of

components of D1 ∪ D2 ∪ (∂ × [0, 1]). Consider the set of cobordisms C ∈

HomCob(su2) (D1, D2) such that every component of C is either a disc or a punctured

torus. These cobordisms form a basis for HomCob(su2) (D1, D2) over R.

Note that such cobordisms must have exactly l components, and the boundary

of each component is a single component of D1 ∪D2 ∪ (∂ × [0, 1]).

Remark. This classification requires the neck-cutting relation, and only holds when

2 is invertible. (See [17] for details otherwise.)

We call a diagram ‘non-elliptic’ j if it contains no circles. By the previous result

and some Euler characteristic calculations, we get:

Corollary 2.2. Endomorphisms of a non-elliptic diagram are all in non-positive

degree.

Corollary 2.3. If a nonzero endomorphism of a non-elliptic diagram factors

through a different non-elliptic diagram, then it necessarily has negative grading.

hThis is Bar-Natan’s D{m}.
iObserve that χ(c) − k

2
and m2 − m1 are additive separately.

jThis is the obvious extension of Kuperberg’s meaning of ‘non-elliptic’ in [15] to the su2 case.
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Remark. It’s easy to see that elliptic diagrams have positively graded endomor-

phisms; for example, a circle which dies and is born again, each time via a disc

cobordism, has grading +2.

This classification also yields a description of the ‘sheet algebra’ for the su2

canopolis:

Corollary 2.4. Let S be the diagram consisting of a single arc. Then

End (S) = R

[ ]/

〈

2

−
1

2

〉

.

3. The su3 cobordism theory

3.1. Seamed cobordisms, and the su3 theory

We now describe Cob (su3), the analogous canopolis of ‘seamed cobordisms’ associ-

ated to su3. The objects consist of ‘webs’ – elements of the planar algebra freely

generated by the trivalent vertices

and .

(It’s a planar algebra whose label set consists of just two labels: ‘in’ and ‘out’.) Let

S be a commutative ring in which 2 and 3 are invertible. The set of morphisms be-

tween two webs with the same boundary will be an S-module generated by ‘seamed

cobordisms’, also called ‘foams’.

The local model for a seamed cobordism is the space Y ×[0, 1], the space obtained

by gluing together three copies of [0, 1]× [0, 1] along [0, 1] × {0}, with orientations

on the three squares, all inducing the same orientation on the common [0, 1]×{0},

along with a cyclic orientation of the three squares.k

Definition 3.1. Given two webs, D1 and D2, drawn in a disc, both with boundary

∂, a seamed cobordism from D1 to D2 is a 2-dimensional CW-complex l F (the

‘foam’) with

• exactly three 2-cells meeting along each singular 1-cell,

• a cyclic ordering on those three 2-cells,

• orientations on the 2-cells, compatible with the cyclic orderings,

kWe say that a seamed cobordism C is locally modeled on Y × [0, 1] in the same sense that that
a topological n-manifold is modeled on (topological) R

n. We mean that for every point p of C,
there is a point p′ of Y , neighborhoods p ∈ Up ⊂ C and p′ ∈ U ′

p′ ⊂ Y × [0, 1] and a bijection

fp : Up → U ′

p′ . Moreover, the ‘transition maps’ f−1
p fq should preserve the local structure specified

for Y × [0, 1]; in particular, the topological structure and, more importantly, the orientation data.
lWe don’t care about the actual cell decomposition, of course.
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• and an identification of the boundary of F with D1 ∪D2 ∪ (∂ × [0, 1]) such

that

– the orientations on the sheets induce the orientations on the edges of

D1, and the opposite orientations on the edges of D2,

– and the cyclic orderings around the singular seams agree with the

cyclic orderings around a vertex in D1 or D2 given by its embedding in

the disc; the anticlockwise ordering for ‘inwards’ vertices, the clockwise

ordering for ‘outwards’ vertices.

We think of such a foam as living inside the ‘can’ D2 × [0, 1], even though it is not

embedded there; there’s just an identification of its boundary with a subset of the

surface of the can.

Compositions, both vertical (everyday composition of morphisms in a category)

and horizontal (the action of planar tangles on morphisms), are almost trivial to

describe. To compose vertically, we stack cans on top of each other, and to compose

horizontally using a spaghetti and meatballs diagram T , we glue together T × [0, 1]

with the input cans.

As before, to put a grading on our canopolis, we endow diagrams with formal

grading shifts written as factors of q. The degree of a cobordism C from qm1D1 to

qm2D2 is defined as

degC = 2χ(C) − ]∂ +
]V

2
+m2 −m1, (3.1)

where ]∂ is the number of boundary points of Di and ]V is the total number of

trivalent vertices in D1 and D2. We leave it to the reader to check that this is

additive under canopolis operations.

It is not hard to verify that this canopolis of su3 foams is generated (as a

canopolis!) by the morphisms cup, cap, saddle, zip, and unzip (after [19]):

As a little piece of nomenclature, we’ll introduce the cobordism we call a ‘choking

torus’, . Whenever you see this, you should assume the cyclic ordering at

the seam is ‘bulk/handle/disc’.

3.2. Local relations

We now introduce local relations on the modules of seamed cobordisms. These are

motivated in two ways:

(1) We expect that the canopolis of seamed cobordisms should have isomorphisms

reflecting the relations appearing in the su3 spider.
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(2) We intend to construct an invariant of tangles, valued in complexes of seamed

cobordisms.

We’ll see both of these motivations validated, in sections §3.4 and §4.1 respec-

tively.

• ‘Closed foam’ relations:

= 0 = 3 (3.2)

= 0 = 0

• The ‘neck cutting’ relation:

=
1

3
−

1

9
+

1

3
(3.3)

• The ‘airlock’ relation:

= − (3.4)

• The ‘tube’ relation

=
1

2
+

1

2
(3.5)

The smallm circles here indicate the two sheets coming together; they’re a

composition, zip followed by unzip.

mGreen, if you read the online version of this paper.
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• The ‘three rocket’ relation:

+ + = 0 (3.6)

• The ‘seam-swap’ relation: reversing the cyclic order of the three 2-cells attached

to a closed singular seam is equivalent to multiplication by -1.

The relations have appeared in other forms before, in [16] and [10]. See in partic-

ular Figure 19 of [10] for our Equation (3.4), and in the proof of Proposition 9 of the

same for our Equation (3.6). For the other relations, you should read §Appendix A,

and then check that following that translation the relations in Equations (3.3) and

(3.5) also appeared in [10]. For an example of why we impose all of these relations,

rather than impose some and derive others, see §3.3.1.

As consequences of the above relations, it is not hard to derive the following:

• The sheet relations:

= 0 = −3 (3.7)

= 0 = 0 (3.8)

The ‘blister’ relation follows directly from seam-swapping. The ‘choking

torus multiplication’ relation on the first line follows from applying neck-cutting

in reverse. The equations in the last line follow from neck cutting, and the closed

foam relations.

• The ‘bamboo’ relation:

=
1

3
+

1

3
(3.9)

which follows from neck-cutting one side of the bamboo, then reducing terms

via airlocks and blisters.

As before, we introduce formal direct sums of the objects and matrices of mor-

phisms, yielding a canopolis we call Mat (Cob (su3)).
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3.3. Consistency

The purpose of this section is two-fold. First, we want to provide a set of assump-

tions, plausibly desirable in any categorification of the su3 planar algebra, which

allows us to to derive the relations described in the previous section. Second, we

prove the following result:

Theorem 3.2. The local relations of §3.2 are consistent, in the sense that

HomCob(su3) (∅, ∅) 6= 0.

These two goals are related. In the process of justifying the local relations, we

will divide them into two classes: the ‘evaluation relations’, and the ‘local kernel’

relations. The evaluation relations are the ‘closed foam’ relations, ‘seam swapping’,

‘neck cutting’ and ‘airlock’. The ‘local kernel’ relations are ‘tube’ and ‘rocket’. We

begin by showing the evaluation relations follow from some appealing assumptions.

We then show that these relations, living up to their name, suffice to evaluate any

closed foam. Further, in §3.3.2 we’ll show they’re consistent; denoting the canopolis

in which we only impose the evaluation relations by Cob (su3)
ev

, we have

Lemma 3.3.

HomCob(su3)
ev (∅, ∅) = S.

It’s then time to introduce the local kernel relations. The canopolis Cob (su3)
ev is

an unsatisfactory one, in the sense that it is ‘degenerate’ or has a ‘local kernel’:

non-zero foams with boundary, all of whose completions to a closed foam are zero.

In a slightly different guise, Khovanov proved the following lemma in [10]:

Lemma 3.4. The tube relation and rocket relation are in the local kernel (justifying

the name ‘local kernel relations’).

We’ll show in §3.3.3 that

Lemma 3.5. The local kernel is generated, as a canopolis ideal, by the tube and

rocket relations.

We thus impose the local kernel as additional relations, and together Lemmas

3.3 and 3.5 imply Theorem 3.2.

Note that this distinction between ‘evaluation’ and ‘local kernel’ relations is

a new feature of the su3 theory. The relations required for evaluation in the su2

theory, namely

= 0 = 3 = 0
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and

=
1

2
+

1

2

produce a canopolis which is already non-degenerate in the sense above, so there is

no need to add ‘local kernel’ relations to produce a satisfactory local theory.

3.3.1. Explaining the relations

We now set out some plausible assumptions one might make about any categori-

fication of the su3 spider. (Perhaps these assumptions might be useful to someone

categorifying something else, as well!)

Firstly, we’ll ask, without much motivation, for the grading rule given previously;

the grading of a morphism is given by twice its Euler characteristic, as in Equation

(3.1).

We’ll just have to pull the ‘seam-swapping’ relation described earlier out of a

hat.n This relation kills off certain closed foams, amongst them the ‘theta’ foam,

the ‘blistered torus’ (in fact, any foam with a blister) and .

We’ll then put in by hand a few relations motivated by the desire that

HomCob(su3) (∅, ∅), the space of closed foams, as a graded S-module, be just S gen-

erated by the empty foam. Later, we’ll see that the relations we’ve imposed do in

fact imply this. First of all, we force the sphere to be zero (it’s in positive degree)

and the torus to be some element of S. We’ll assume, in fact, that the torus is

invertible. Briefly, we’ll write t for this value, but very shortly discover that t = 3.

Further, various closed foams with negative degrees are forced to be zero, such as

and .

(However, see §A.2 for a discussion of the variation in which we just ask that

HomCob(su3) (∅, ∅)>0 = 0 and HomCob(su3) (∅, ∅)0 is 1-dimensional.)

Next, we’ll ask that HomCob(su3)

(

, ∅
)

is a free module of rank 3, and in

fact with graded dimension q2 + 1 + q−2, on the basis that we expect this graded

dimension to agree with the evaluation of in the su3 spider. Since the cobordisms

and (3.10)

nNote though, that it’s the n = 3 special case of the idea described in [10, §6] that if the ‘k-
sheets’ of an sun foam were to be labeled by elements of the cohomology ring of Gr(k ⊂ n),
then the relations around a seam should be the kernel of the map

⊗

i H•(Gr(ki ⊂ n)) →
H•

(

Flag(k1 ⊂ k1 + k2 ⊂ · · · ⊂
(
∑

i ki

)

)
)

induced by the ‘take orthogonal complements’ map at
the geometric level.
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lie in this morphism space, with gradings 2, 0 and −2 respectively, we’ll further ask

that in fact the morphism space is freely generated by these three cobordisms. (Un-

surprisingly, we’ll ask the same thing for .) Remember there are two variations

of the middle cobordism above, differing in the cyclic ordering of the sheets at the

seam; the two cyclic orderings only differ by a sign, however, by the seam-swapping

relation.

Further, we’ll ask that Hom
(

,
)

∼= Hom
(

, ∅
)

, with the isomor-

phism given by isotopy. This behavior will follow from any good notion of duality in

a categorification; moreover, it certainly happens in the su2 canopolis, and we’ll see

the appropriate generalization to arbitrary diagrams in §3.3.3. Even more, we’ll ask

that the obvious map Hom
(

, ∅
)

⊗Hom
(

, ∅
)

→ Hom
(

, ∅
)

, given by

disjoint union, is actually an isomorphism; again, we’ll later see that this is generally

true.

With these relatively benign constraints, we can get a long way! Firstly, looking

at the degree 4 piece of Hom
(

,
)

, we see it’s 1 dimensional, and so the

‘airlock’ must be proportional to . We’ll declareo that

= − .

Next, looking at the degree 0 piece, we see a 3 dimensional space. Writing down

4 obvious cobordisms here,

, , and

we see there must be some relation amongst them (this will turn out to be neck

cutting, of course), which we’ll suppose is of the form

= x + y + z .

We can determine the coefficients here by considering various closures.

Adding a punctured torus at the top and a disc at the bottom gives us t = xt2,

and vice versa gives us t = zt2, so x = z = 1
t . Adding a ‘choking torus’ at top

and bottom gives −t2 = yt4, so y = − 1
t2 . Finally, gluing top to bottom gives

t = 1
t t−

1
t2 (−t2) + 1

t t = 3. We’ve at this stage recovered the neck cutting relation!

oWe could try an arbitrary constant here, = −µ , say. The argument above would
continue much the same, except that we wouldn’t be able to find an analogue of the tube and
rocket relations in the local kernel.
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3.3.2. Consistency of the evaluation relations

Proof. [Proof of Lemma 3.3.] In Cob (su2), all closed foams are equivalent to scalars.

This is not as immediately apparent in Cob (su3), but it’s in fact true even in

Cob (su3)
ev

; that is, even when we only impose the evaluation relations. We de-

scribe an algorithm for evaluating closed foams and prove that it’s well-defined

with respect to the evaluation relations. This is perhaps a somewhat unsatisfying

proof of consistency, but it’s the only method we can see available, in our setup.

The first step, in which we do nearly all the work (exactly following Khovanov’s

method from [10]), is to perform neck cutting on each sheet incident at each seam

(all of which are circles). Thus if there are k seams in a closed foam, we perform

neck cutting 3k times, resulting in 33k terms. The compensation for creating so

many terms is that each term is now relatively simple, being a disjoint union of two

different types of small closed foams.

The first type, arising from a seam in the original closed foam, consists simply

of a seam, with three of the elements appearing in Equation (3.10) attached.

The second type, arising from a sheet in the original closed foam, consists of a

closed foam in which the only seams appears as part of some ‘choking torus’. Notice

that all of these choking toruses are of the same type; the cyclic order around the

seam is ‘bulk-handle-disc’, simply because this is the cyclic order appearing in the

neck cutting relation. These surfaces are thus parameterized by two numbers; the

number of choking toruses, and the number of punctured toruses. We’ll write such

a surface as Σk,l:

Σk,l = .

The second step of the algorithm is to evaluate all of these small closed foams. In

the first type, we quickly see by the seam swapping relation that nearly all are zero.

In particular, unless the three different sheets carry different surfaces, the closed

foam must be zero. There are thus only two non-zero possibilities, depending on the

cyclic order around the seam. We can either have ‘disc/choking torus/punctured

torus’ or ‘disc/punctured torus/choking torus’:

and (3.11)

We now apply the seam-swapping if we find ourselves in the second case, then

evaluate the first closed foam (via ‘airlock’) as −9.

We evaluate nearly every case of the second type of closed foam, Σk,l by making

use of Equation (3.8). Specifically, if k ≥ 1 and l ≥ 1, or simply l ≥ 2, we see
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Σk,l = 0. If k ≥ 3, Equations (3.7) and (3.8) together imply Σk,l = 0. This leaves

four cases, shown in Figure 3.1, each of which we already know how to evaluate

directly.

Σ0,0 = = 0 Σ1,0 = = 0

Σ0,1 = = 3 Σ2,0 = = −9

Fig. 3.1. The irreducible examples of Σk,l, modulo neck cutting.

The algorithm described so far evaluates any closed foam as a scalar. We now

check that the evaluation relations are consistent, by showing that the evaluation

algorithm produces the same result on either side of each relation, when applied

to some large closed foam. This check requires a few cases, each of which is almost

trivial.

The first, and most trivial, cases are the closed foam relations. It’s easy to see

that applying the above algorithm to any of the four closed foams in Equation (3.2)

above simply gives the specified evaluation. This is completely trivial in 3 cases,

and a short calculation for (because there we do some ‘unnecessary’ neck

cutting).

The seam-swapping relation is also relatively trivial. If we change the cyclic order

at a seam, the evaluation algorithm only differs in that the two surfaces in Equation

(3.11) are interchanged, resulting in an extra sign (actually, these two surfaces

actually occur three times each, corresponding to the three cyclic permutations

around the seam, but each pair is interchanged).

Slightly more interesting is the airlock relation. Here we simply need to check

that when we cut both seams in an airlock, modulo the specified closed foam eval-

uations, we obtain exactly the other side of the airlock relation.

Most interesting is the neck cutting relation. There are three distinct ways

we can apply the neck cutting relation; parallel to a seam, not parallel but still

separating the sheet into two pieces, and non-separating. The first is easy; the

evaluation algorithm produces the same result, simply because neck cutting twice

along parallel circles is the same as neck cutting once (modulo evaluating the 9

resulting closed foams). If we apply neck cutting separating a sheet into two pieces,

it’s obviously the same as applying a corresponding neck cutting to one of the second

type of small closed foams resulting from the evaluation algorithm. Thus we need

to check that the evaluation algorithm produces the same results on Σk1+k2,l1+l2
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and on
1

3
Σk1,l1+1Σk2,l2 −

1

9
Σk1+1,l1Σk2+1,l2 +

1

3
Σk1,l1Σk2,l2+1.

This check involves quite a few cases; when k1 + k2, l1 + l2 ≥ 1 (which splits into

two subcases, k1, l1 ≥ 1, and k1, l2 ≥ 1), when l1 + l2 ≥ 2, when k1 + k2 ≥ 3, and

the ‘small’ cases when none of these hold. Each case is pretty much immediate,

however.

Finally, for a ‘non-separating’ neck cutting relation we need to check that the

evaluation algorithm produces the same results on Σk,l (l here must be at least 1)

and
2

3
Σk,l −

1

9
Σk+2,l−1. (3.12)

If k ≥ 1, each closed foam appearing here evaluates to 0. If k = 0, everything is

zero unless l = 1, in which case the expression in Equation (3.12) is 2
33 − 1

9 (−9) =

3 = Σ0,1.

3.3.3. The local kernel

For a given disc boundary ∂ in a planar algebra P , the ‘pairing tangle’ has two

internal discs, labeled by ∂ and ∂∗, with an empty external circle, and the obvious

spaghetti:

We’ll denote the result of inserting x ∈ P∂ and y ∈ P∂∗ simply by 〈x, y〉.

Definition 3.6. In a sphericalp planar algebra P , the ‘local kernel’ (or maybe the

‘kernel of the partition function’) is the set of elements x ∈ P∂ such that the pairing

of x with any y ∈ P∂∗ is zero.

Remark. We need the adjective spherical here in order to give such a snappy def-

inition. In a possibly non-spherical planar algebra, you’d want to say it’s the set

x ∈ P∂ such that for every planar tangle T , with no labels on the outer boundary

and k internal discs, the first of which has label ∂, and for every k − 1 appropriate

elements of P , say x2, . . . , xk, the composition T (x, x2, . . . , xk) is zero.

Definition 3.7. In a spherical canopolis C, the ‘local kernel’ is the set of morphisms

(x : A → B) ∈ C∂ such that for every (y : C → D) ∈ C∂∗ and for any morphisms

z : ∅ → 〈A,C〉 and w : 〈B,D〉 → ∅, the composition w ◦ 〈x, y〉 ◦ z is zero.

pA planar algebra is spherical if two planar tangles with no points on the external disc which only
differ by pulling an edge ‘around the back’ of the disc always act in the same way.
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It’s obvious that in both cases, the local kernel is an ideal. One can always

quotient by the local kernel.

Definition 3.8. A planar algebra or canopolis is ‘nondegenerate’ if the local kernel

is zero.

Lemma 3.9. Given any two webs A and B with common boundary ∂∗, there is an

isomorphism of Z-modules

G : HomCob(su3) (A,B) → HomCob(su3) (∅, 〈A∗, B〉)

induced by an invertible sequence of canopolis operations. (Here, A∗ denotes A with

its orientation reversed, so that it has boundary ∂.) In particular, this isomorphism

preserves membership in canopolis ideals.

Proof. There is an obvious homeomorphism h : A∪B ∪ (∂× [0, 1]) → 〈A∗, B〉. We

define G(F ) to be F with its boundary identification map i replaced by h ◦ i. This

yields an isomorphism of the morphism spaces.

To see that this isomorphism is induced by canopolis operations, note that

A∪B ∪ (∂× [0, 1]) and ∅∪ 〈A,B〉 ∪ (∅× [0, 1]) are naturally isotopic in the cylinder

D2 ∪D2 ∪ (S1 × [0, 1]) (which is, of course, just a 2-sphere). One may envision this

isotopy as ‘pulling A to the ceiling’. Pick a nice isotopy and let M denote its trace in
(

D2 ∪D2 ∪ (S1 × [0, 1])
)

× [0, 1]. Because M comes with an induced 2-dimensional

CW structure, it can be decomposed as a sequence M∗ of canopolis operations

taking a foam in Hom (A,B) (the inner can) to a foam in Hom (∅, 〈A∗, B〉) (the

outer can). Since h is induced by the isotopy, M∗ = G.

Remark. This isomorphism does not preserve gradings of morphisms; see Lemma

5.10 for a statement involving gradings.

Corollary 3.10. In a spherical canopolis, the local kernel is generated as a canop-

olis ideal by the set of morphisms x : ∅ → B such that for every y : B → ∅, the

composition x ◦ y is zero.

With these definitions made, it’s time to prove Lemma 3.5.

In this section, we’ll write T = 1
2T↓ + 1

2T↑ − Tz for the difference of the foams

appearing in the tube relation, and R = Rx + Ry + Rz for the sum of the foams

appearing in the rocket relation. (That is, the tube and rocket relations are T = 0

andR = 0.) We’ll write I for the canopolis ideal generated by T and R.

Proof. [Proof of Lemma 3.5.] Let
∑

cαFα be an element of the local kernel of

Cob (su3); that is, a linear combination of foams Fα ∈ Hom (A,B) such that every

closure is zero. By Lemma 3.9, we may assume that A is empty, and B has empty

boundary. We proceed by induction on the complexity of B.
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If B is empty, then each Fα is equivalent to a scalar, so trivially
∑

cαFα = 0 ∈ I.

If B is nonempty, then an Euler characteristic argument shows that B contains a

square, bigon, or circle.

Suppose B contains a square. We compose with an ‘identity rocket’ over the

square, writing Fα = Rz ◦ Fα. Then

Rz ◦ Fα = R ◦ Fα −Rx ◦ Fα −Ry ◦ Fα.

By definition R ◦ Fα ∈ I. We expand Rx ◦ Fα as Rupper
x ◦Rlower

x ◦ Fα, where

Rlower
x = and Rupper

x = .

Now
∑

Rlower
x ◦ cαFα = Rlower

x ◦ (
∑

cαFα), and since
∑

cαFα is in the local kernel,

so is Rlower
x ◦ (

∑

cαFα). Also, Rlower
x ◦ (

∑

cαFα) has a simpler target than B, and

is therefore in I by our inductive hypothesis. Hence Rx ◦
∑

cαFα ∈ I, and by the

same argument, Ry ◦
∑

cαFα ∈ I. Therefore
∑

cαFα ∈ I.

The argument when B contains a bigon is similar. We express

Fα = Tz ◦ Fα =
1

2
T↓ ◦ Fα +

1

2
T↑ ◦ Fα − T ◦ Fα.

By definition T ◦ Fα ∈ I. We write T↓ ◦ Fα = T upper
↓ ◦ T lower

↓ ◦ Fα, where

T lower
↓ = and T upper

↓ = .

T lower
↓ ◦

∑

cαFα is in the local kernel and has simpler target, and is therefore in I.

As above, it follows simply that T↓◦
∑

cαFα and T↑◦
∑

cαFα are in I, and therefore

so is
∑

cαFα.

Lastly, suppose B contains a circle. Then by the neck-cutting relation,

Fα = ◦ Fα =
1

3
◦ Fα −

1

9
◦ Fα +

1

3
◦ Fα.

◦
∑

cαFα is an element of the local kernel with simpler target, so by induction,

it is in I. So ◦
∑

cαFα ∈ I. This argument works for the other two terms in the

above equation, and therefore
∑

cαFα ∈ I.

3.4. Isomorphisms

In this section, we discover what all those local relations in Cob (su3) are really for:

they imply certain isomorphisms between objects in the category Mat (Cob (su3)).

These isomorphisms should be thought of as categorifications of relations appearing

in the su3 spider.
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Thus we set out to prove:

Theorem 3.11. There are isomorphisms

∼= q−2 ∅ ⊕ q0 ∅ ⊕ q2 ∅

∼= q−1 ⊕ q

∼= ⊕

Proof. Let’s define ϕ : → q−2 ∅⊕q0 ∅⊕q2 ∅ and ϕ−1 : q−2 ∅⊕q0 ∅⊕q2 ∅ →

by

ϕ : q−2 ∅

⊕

0

88ppppppppppppp
�

1
3

//

�

1
3 &&N

NNNNNNNNNNNNN q0 ∅

⊕

q2 ∅

and

ϕ−1 : q−2 ∅

⊕

1
3

&&NNNNNNNNNNNNN

q0 ∅

⊕

− 1
3

//

q2 ∅

88pppppppppppppp

and then perform the routine verification that these are indeed inverses:

ϕ−1ϕ =
1

3
−

1

9
+

1

3
=

neck cutting
= id
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and

ϕϕ−1 =

















− 1
3

1
3

















(

1
3

1
3

)

=







1
3

1
3

− 1
9 − 1

9 − 1
3

1
9

1
9

1
3







=





1 0 0

0 1 0

0 0 1



 = idq−2 ∅⊕q0 ∅⊕q2 ∅

Next we need to define the isomorphism ∼= q−1 ⊕ q . It’s given by

q−1

⊕

1
2

++WWWWWWWWWWWWWW33gggggggggggggg

1
2

++WWWWWWWWWWWWWW

q

33gggggggggggggg

This follows straightforwardly from the relation in Equation (3.5), along with the

‘bagel’ and ‘double bagel’ relations:

= 2 = 0, (3.13)

(the ‘bagel’ here is the union of a torus and the part of the equatorial plane outside

the torus; it has two circular seams) which are easy consequences of the ‘bamboo’

relation appearing in Equation (3.9).
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Finally, the isomorphism ∼= ⊕ is described by the diagram

Verifying that these maps are mutual inverses requires the blister, airlock and rocket

relations.

4. The knot homology map

In this section we will describe the construction of the su3 knot homology theory.

This description will, of course, be essentially equivalent to the previous construc-

tions in [16,10], but we will emphasize certain differences. In particular, the knot

homology theory will be explicitly local, described as a morphism of planar algebras.

The strength of this locality is that it allows us to perform ‘divide and conquer’

calculations. We’ll explain that Bar-Natan’s [2] ‘complex simplification algorithm’

can be applied in the su3 case. This allows us to calculate the invariant of a knot

by calculating the invariant for subtangles, simplifying these, then gluing together

the simplified complexes by the appropriate planar operations. In §6.1, we’ll apply

these ideas to compute the su3 Khovanov homology of the (2, n) torus knots.

The complex simplification algorithm also allows us to give ‘automatic’ proofs

of Reidemeister invariance; we just simplify the complexes associated to either side

of the Reidemeister move, and observe the resulting complexes are the same.

We wish to associate to every oriented tangle a complex in Mat (Cob (su3)).

Oriented tangles form a planar algebra generated by the positive and negative

crossings modulo relations given by the Reidemeister moves.

In any canopolis, the complexes again form a planar algebra. Moreover, com-

plexes together with chain maps between them form a canopolis. Bar-Natan proves

this for Cob (su2) in Theorem 2 of [1], but his argument is completely general.

There’s also a discussion of the planar algebra structure on complexes in [4].

It thus suffices to define the knot homology map on the positive and negative
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crossing:

� //

(

• // q2 // q3 // •

)

� //

(

• // q−3 // q−2 // •

)

Here, the relative horizontal alignments of the complexes denote homological

height; both of the two-strand diagrams are at homological height zero. Further,

notice that, with the given grading shifts on the objects, the differentials are grading

zero maps. Since degrees are additive under tensor products, this is true for the

differentials in the complex for any tangle.

Verifying that this map is a well-defined morphism of planar algebras amounts

to checking Reidemeister invariance, which we do in §4.2. Verifying that it’s a map

of canopolises (from tangle cobordisms to chain maps) remains to be done; we

provide some evidence that this is true (on the nose, no sign ambiguities) in §4.3.

4.1. The simplification algorithm

The following lemma from [2] is our fundamental tool for simplifying complexes up

to homotopy.

Lemma 4.1 (Gaussian elimination for complexes). Consider the complex

A
( •
α )

//

B
⊕

C

(

ϕ λ
µ ν

)

//

D
⊕

E

( • ε )
// F (4.1)

in any additive category, where ϕ : B
∼=
→ D is an isomorphism, and all other

morphisms are arbitrary (subject to d2 = 0, of course). Then there is a homotopy

equivalence with a much simpler complex, ‘stripping off’ ϕ.

A
( •
α )

//
OO

( 1 )

��

B
⊕

C

(

ϕ λ
µ ν

)

//

( 0 1 )

��

D
⊕

E

( • ε )
//

(−µϕ−1 1 )

��

FOO

( 1 )

��

A
(α )

// C
( ν−µϕ−1λ )

//

(

−ϕ−1λ
1

)

OO

E
( ε )

//

( 0
1 )

OO

F
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Remark. Note that the homotopy equivalence is also a simple homotopy equivalence;

we’re just stripping off a contractible direct summand. Remark. This is simply

Lemma 4.2 in [2] (see also Figure 2 there), this time explicitly keeping track of

the chain maps. Notice also that in a graded category, if the differentials are all in

degree 0, so are the homotopy equivalences which we construct here. In particular,

this applies to the homotopy equivalences associated to Reidemeister moves we

construct in §4.2.

We’ll also state here the result of applying Gaussian elimination twice, on two

adjacent but non-composable isomorphisms. Having these chain homotopy equiva-

lences handy will tidy up the calculations for the Reidemeister 2 and 3 chain maps.

Lemma 4.2 (Double Gaussian elimination). When ψ and ϕ are isomor-

phisms, there’s a homotopy equivalence of complexes:

A
( •
α )

//
OO

( 1 )

��

B
⊕

C

(

ψ β
• •
γ δ

)

//

( 0 1 )

��

D1
⊕

D2
⊕

E

(

• ϕ λ
• µ ν

)

//

(−γψ−1 0 1 )

��

F
⊕

G

( • η )
//

(−µϕ−1 1 )

��

HOO

( 1 )

��

A
(α )

// C
( δ−γψ−1β )

//

(

−ψ−1β
1

)

OO

E
( ν−µϕ−1λ )

//

(

0
−ϕ−1λ

1

)

OO

G
( η )

//

( 0
1 )

OO

H

Proof. Apply Lemma 4.1 on the isomorphism ψ. Notice that the isomorphism ϕ

survives unchanged in the resulting complex, and apply the lemma again.

Remark. Convince yourself that it doesn’t matter in which order we cancel the

isomorphisms!

We can now state the simplification algorithm for complexes in Mat (Cob (su3)),

analogous to Bar-Natan’s algorithm [2] for su2:

• If an object in a complex contains a closed loop, bigon, or square, then we

replace it with the other side of the corresponding isomorphism in Theorem

3.11. (You might call this step ‘delooping’, ‘debubbling’, and ‘desquaring’.)

This increases the number of objects in the complex, but decreases the number

of possible distinct objects, so informally we expect it to make the appearance

of isomorphisms more likely.

• If an isomorphism appears as a matrix entry anywhere in the complex, we

cancel it using Lemma 4.1.

In practice in Mat (Cob (su2)) this algorithm provides by far the most efficient

algorithm for evaluating the Khovanov homology of a knot. This algorithm, imple-

mented (not-so-efficiently) by Bar-Natan and (efficiently!) by Green [7] proceeds by
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breaking the knot into subtangles, applying the simplification algorithm above to

the corresponding complexes, then gluing two simplified complexes together via the

appropriate planar operation, simplifying again, and so on. Sadly, there isn’t yet

such a program for the su3 case. A significant motivation for writing this program

would be to entirely mechanise the isotopy invariance proofs of the next section.

Indeed, a well written program would also automate checking movie moves.

4.2. Isotopy invariance

For each Reidemeister move, we will produce the complex associated to the tangle

on either side, and apply the simplification algorithm described above (when ap-

propriate, also making use of Lemma 4.2). There’s plenty of computational work

required, but it’s important to notice that no further insight is required. Unusually

for mathematics, this is a good thing; it shows that our tools, namely the sim-

plification algorithm, are sufficiently well developed. Actually, below we give an

alternative proof of the third Reidemeister move, making use of the insight behind

the ‘categorified Kauffman trick’, even if it isn’t strictly necessary.

We’ll produce explicit chain maps between either side of each Reidemeister

move; a gift to whomever wants to check that the su3 theory is functorial!

Moreover, because we use the simplification algorithm, we’ll see that the two

sides of each Reidemeister move aren’t just homotopic, they’re simply homotopic.q

4.2.1. Reidemeister 1

The complex associated to is

q2
d // q3

with d simply a zip map. Delooping at homological height 1, and removing the

bigon at height 2, using the isomorphisms

ζ1 =









1
3

1
3









ζ2 =













1
2













qThis will presumably allow an extension of the work of Juan Ariel Ortiz-Navarro and Chris
Truman [18] on volume forms on Khovanov homology to the su3 case.
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with inverses

ζ−1
1 =

(

− 1
3

1
3

)

ζ−1
2 =

(

1
2

)

,

we obtain the complex

q4

⊕

q2

⊕





















ϕ =











1
6

0 −











λ =













− 1
6

1
3

































//

q4

⊕

q2

.

The differential here is the composition ζ2dζ
−1
1 , and we’ve named some compo-

nents, getting ready to apply Lemma 4.1. Stripping off the isomorphism ϕ, accord-

ing to that lemma, we see that the complex is homotopy equivalent to the desired

complex: a single strand, in grading zero. The simplifying homotopy equivalence is

s1 =
(

0 0 1
)

◦ ζ1 =

s2 = 0

with inverse

s−1
1 = ζ−1

1 ◦

(

−ϕ−1λ

1

)

=
1

3
−

1

9
+

1

3

s−1
2 = 0.

Notice here that s−1
1 = , by the neck cutting relation. This agrees with

the homotopy equivalence proposed in [16].

The calculations for the Reidemeister 1b move are much the same. We obtain

s1 =
1

3
−

1

9
+

1

3

s2 = 0
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with inverse

s−1
1 =

s−1
2 = 0.

4.2.2. Reidemeister 2a

The complex associated to is

q−1
d−1

//
⊕ d0 // q

with differentials

d−1 =

( )

d0 =
(

−
)

(In this and the next section, we’ll use the above shorthand for simple foams; a bar

connecting two edges denotes a zip, and a bar transverse to an edge denotes an

unzip. If you’re reading this in colour, those bars are red.)

Applying the debubbling isomorphism





1
2



 (with inverse
(

1
2

)

)

to the direct summand with a bigon, we obtain the complex

q−1
d−1

//

⊕

q
⊕

q−1

d0 // q

where

d−1 =





γ =

•

ψ =



 d0 =
(

λ = ϕ = − •
)

.

Here we’ve named the entries of the differentials in the manner indicated in

Lemma 4.2. Applying that lemma gives us chain equivalences with the desired one

object complex. The chain equivalences we’re after are compositions of the chain

equivalences from Lemma 4.2 with the debubbling isomorphism or its inverse.
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Thus the R2a ‘untuck’ chain map is

(

1 0 −γψ−1
)

◦







1 0

0 •

0






=
(

1 − ◦
)

and the ‘tuck’ map is

(

1 0 0

0 •

)

◦





1

−ϕ−1λ

0



 =

(

1

◦

)

4.2.3. Reidemeister 2b

The complex associated to is

q−1
d−1

// ⊕

d0 // q

with differentials

d−1 =

( )

d0 =
(

−
)

We now apply simplifying isomorphisms at each step (some identity sheets have

been omitted in these diagrams):

ζ−1 =













1
2













ζ0 =











































0

0

0

0 1
3

0 1
3











































ζ1 =











1
2













with inverses (which we’ll need later)

ζ−1
−1 =

(

1
2

)

ζ−1
1 =

(

1
2

)
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ζ−1
0 =















− − 0 0 0

0 0 1
3 − 1

3















We thus obtain the complex

q0
⊕

q−2

d−1
//

q0
⊕

q0
⊕

q−2

⊕

q0
⊕

q+2

d0 //

q0
⊕

q+2

where

d−1 =



















γ =

(

0

)

ψ =

(

−1 •

0 1

)

(

• •

• •

)



















d0 =



λ =





0




(

• •

• •

)

ϕ =

(

1 0

• 1

)



 .

Quite a bit of cobordism arithmetic is hidden in this last step. For example,

in calculating the coefficient of the saddle appearing γ, we used the ‘bagel = 2’

relation. As in the R2a moves above, we’ve named entries as in Lemma 4.2, and

simply written \bullet for many matrix entries, because they won’t matter in the

computations to follow.

Thus the R2b ‘untuck’ chain map is

(

(

1
)

−γψ−1 =

(

0 −

)

(

0 0
)

)

◦

























0

• 0

0

0 •

0 •

























=






−






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and the ‘tuck’ map is













− • 0 0 0

0 0 • •













◦



















(

1
)

(

0

0

)

−ϕ−1λ =





0

−























=

















−

−

















4.2.4. Reidemeister 3

There are two almost equally appealing approaches to the third Reidemeister move.

The first is to realize that the simplification algorithm is just as good as it is back

in the su2 setting:

Proof. [Proof modulo actually doing all the cobordism arithmetic!]Apply the sim-

plification algorithm to the complex associated to either side of a particular vari-

ation of the third Reidemeister move, and observe that the results are identical.

Thus the two complexes are homotopy equivalent.

Remark. There’s obviously some work to do here, calculating all the maps, identi-

fying isomorphisms, writing down the homotopy equivalences provided by Lemma

4.1, and so on. The point is that this is all entirely algorithmic; it’s an automatic

proof, with no insight required.

The second method is more conceptual; it allows no real savings in the cal-

culations, but emphasizes that invariance under the third Reidemeister move is a

consequence of the ‘naturality’ of the braiding in the category of complexes, de-

scribed in the next two lemmas. We’ll show most of the details.

Lemma 4.3. Applying the simplification algorithm to the complex

[[ ]]

=



















q4
d0=

(

zip

zip

)

//

q5

⊕

q5

d1=( zip −zip )
// q6



















(4.2)

gives the complex

q8

[[ ]]

[+2] =



 q5
unzip

// q6





and the simplifying map is

s0 =
(

0
)

s1 =
(

1 −z ◦ d
)

s2 =
(

r
)

.
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Here d is the debubbling map, z is a zip map, and r is one of the ‘half barrel’

cobordisms in the ‘rocket isomorphism’. You can work out exactly where all these

maps are taking place simply by considering their source and target objects.

Remark. If you follow closely, you’ll see we order the crossings so the first crossing

is on the right, the second crossing is on the left. Without this, you might not like

some of the signs appearing in the proof.

Proof. We begin with the complex in Equation (4.2) which, upon applying the

simplifying isomorphisms from §3.4, becomes

q4
d0 //

q5

⊕

q4

⊕

q6

d1 //

q6

⊕

q6

,

with differentials

d0 =





γ = z

ψ = 1

•





d1 =

(

λ = u • φ = 1

ν = u • µ = 0

)

,

where z indicates a ‘zip’ map in the appropriate location, and u an ‘unzip’ map. Here

we applied the airlock relation in calculating φ, and the blister relation in calculating

µ. Notice here that µ = 0, making the cancellation of the isomorphisms markedly

simple; there’s no error term. We thus obtain exactly the complex associated to

, but shifted up in homological height by +2, and in grading by +8.

The simplifying map itself a composition of the simplifying isomorphisms fol-

lowed by the homotopy equivalence killing off the contractible pieces. The homotopy

equivalence is 0 at height 0, (−γψ−1 0 1 ) = (−z 0 1 ) at height 1, and the identity

at height 2. Composing with the simplifying isomorphisms gives the map in the

statement of this lemma.

Analogously, we have the somewhat more awkward

Lemma 4.4. The simplification algorithm provides a simple homotopy equivalence

between the complex
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[[ ]]

=































q4
d0=

(

zip

zip

)

//

q5

⊕

q5

d1=( zip −zip )
// q6































(4.3)

and the complex










q5
−unzip

// q6











via the map

s′0 =
(

0
)

s′1 =
(

−z ◦ d 1
)

s′2 =
(

r
)

.

This second complex isn’t quite the complex associated to q8 [2]; the differ-

ential has been negated. Thus the map

s′′0 =
(

0
)

s′′1 =
(

z ◦ d −1
)

s′′2 =
(

r
)

.

is a simple homotopy equivalence between q8

[[ ]]

[2] and

[[ ]]

.

Lemma 4.5. The two compositions

z // s //

and

z // s′′ // ,

using the maps defined in the previous two lemmas, are equal.

Proof. Easy arithmetic (just in Z, not even foam arithmetic).

We now need a few facts about cones.
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Definition 4.6. Given a chain map f : A• → B•, the cone over f is C(f)• =

A•+1 ⊕B•, with differential

dC(f) =

(

dA 0

f −dB

)

Lemma 4.7. If f : A• → B• is a chain map, r : B• → C• is a simple homotopy

equivalence throwing away contractible components (e.g. a simplification map, like

those appearing above) and i : C• → B• is the inverse of r, then the cone C(rf) is

homotopic to the cone C(f), via

C(f)• = A•+1 ⊕B•

( 1 0
0 r )

..

A•+1 ⊕ C• = C(rf)•
(

1 0
−hf i

)

nn

Remark. If instead f : B• → A•, then the cone C(f i) is homotopic to C(f) via

C(f)• = B•+1 ⊕A•

(

r 0
hf 1

)

..

C•+1 ⊕A• = C(f i)•

( i 0
0 1 )

nn

Together, the previous four lemmas provide a proof of invariance under one

variation of the R3 move, via the categorified Kauffman trick.
[[ ]]

∼= C





zabove

−−−−−−→





' C





s◦zabove

−−−−−−→





= C





s′′◦zbelow

−−−−−−→





' C





zbelow

−−−−−−→





∼=

[[ ]]

The equality on the third line is simply Lemma 4.5.

The other R3 move requires similar calculations.

4.3. Tangle cobordisms

We’ve almost, but not quite, provided enough detail here to check that the su3

cobordism theory is functorial on the nose, not just up to sign. The calculations for
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the third Reidemeister move would have to be made slightly more explicit, and then

a great many movie moves (unfortunately, there are lots of different orientations to

deal with!) need to be checked.

Conjecture 4.8. The su3 cobordism theory is functorial; in particular the sign prob-

lems seen in the su2 case [1,8,4] don’t occur.

Remark. This conjecture has two sources of support. Firstly, the representation

theoretic origin of the sign problem in su2, namely that the standard representa-

tion is self-dual, but only antisymmetrically so, is simply irrelevant: the standard

representation of su3 isn’t self-dual at all. Secondly, looking at §4.2.1, we see that

the coefficients of the first and last terms of the ‘unsimplifying’ map for the first

Reidemeister move are equal. This easily implies that the movie moves only involv-

ing the first Reidemeister move, MM12 and MM13 (in [1]’s numbering), come out

right. These moves had already failed in the su2 case.

5. Decategorification

5.1. What is decategorification?

As with quantization [5], while categorification is an art, decategorification is a

functor; it’s just a fancy name for taking the Grothendieck group[22]. Even so, our

situation requires slightly unusual treatment.

Usually, given an abelian category, we would form the free Z-module on the

set of objects, and add one relation A = B + C for every short exact sequence

0 → B → A→ C → 0.

In the cobordism categories we’re interested in, there are no notions of kernels,

images, or exactness. However, our categories still have direct sums, so we instead

add relations A = B + C whenever A ∼= B ⊕ C. You can think of the result as the

‘split Grothendieck group’, which still makes sense in this context.

It’s easy to see that we can also decategorify a canopolis; starting with a planar

algebra of categories, we obtain a planar algebra of Z-modules.

When we decategorify a graded category, we remember the grading data and

form a Z[q, q−1]-module instead of a Z-module.

5.2. A direct argument for su2

Our first result describes the decategorification of the Bar-Natan canopolis of su2.

Definition 5.1. The Temperley-Lieb planar algebra T L is the free planar algebra

of Z[q, q−1]-modules with no generators, modulo the relation © = q + q−1. (Its

objects are Z[q, q−1]-linear combinations of planar tangle diagrams modulo that

relation.) The planar algebra T L is isomorphic to the representation theory of

Uq (sl2), or, more precisely, to the full subcategory with objects restricted to the

standard representation, and tensor powers.
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Theorem 5.2. The (graded!) decategorification of the Bar-Natan canopolis

Mat (Cob (su2)) is the Temperley-Lieb planar algebra.

Proof. The argument splits into two parts.

The first half is easy. We must show that the relation © = q+ q−1 holds in the

decategorification of Mat (Cob (su2)); that is, © ∼= q ∅ ⊕ q−1 ∅ in Mat (Cob (su2)).

This has already been done for us by [2].

Now for the other half. We need to show that there are no more relations in the

decategorification than we one we’ve just seen.

Suppose we have some isomorphism φ : ⊕DnDD ∼= ⊕Dn′
DD, where each D is a

non-elliptic diagram. We need to show that the multiplicities nD and n′
D appearing

on either side agree for each diagram D. Fix any particular diagram ∆, let

J =
⊕

D 6=∆

nDD

(J stands for ‘junk’),

J ′ =
⊕

D 6=∆

n′
DD,

and write both φ : n∆∆⊕J → n′
∆∆⊕J ′ and its inverse φ−1 : n′

∆∆⊕J ′ → n∆∆⊕J

as 2 × 2 matrices:

φ =

(

φ00 : n∆∆ → n′
∆∆ φ01 : J → n′

∆∆

φ10 : n∆∆ → J ′ φ11 : J → J ′

)

φ−1 =

(

φ−1
00 : n′

∆∆ → n∆∆ φ−1
01 : J ′ → n∆∆

φ−1
10 : n′

∆∆ → J φ−1
11 : J ′ → J

)

Looking at the top-left entry of the composition φφ−1, we see that φ00φ
−1
00 +

φ01φ
−1
10 must be the identity on n∆∆. Notice that φ01φ

−1
10 is a linear combination

of endomorphisms of ∆, each of which factors through some non-elliptic object

other than ∆. Therefore, by Corollary 2.3, their gradings are all strictly negative,

so φ01φ
−1
10 lives entirely in negative grading. Consequently, φ00φ

−1
00 is equal to the

identity, plus terms with strictly negative grading. By the same argument, φ−1
00 φ00

has the same form. Furthermore, because all the entries of φ00 and φ−1
00 are in

non-positive grading, we must have
(

φ00φ
−1
00

)

0
= (φ00)0

(

φ−1
00

)

0
and

(

φ−1
00 φ00

)

0
=

(

φ−1
00

)

0
(φ00)0. (Here the final subscript 0 indicates the grading 0 piece.) Therefore,

both (φ00)0
(

φ−1
00

)

0
and

(

φ−1
00

)

0
(φ00)0 are identity matrices. By Corollary 2.3, the

entries of (φ00)0 and
(

φ−1
00

)

0
are simply multiples of the identity on ∆. So these two

matrices are, essentially, invertible matrices over R, and therefore square [23]! This

gets us the desired result: n∆ = n′
∆.

See also §10 of [1], on ‘trace groups’, for another way to recover the Temperley-

Lieb planar algebra from this canopolis. (In fact, the construction there doesn’t

really start in the same place; it uses the pure cobordism category, whereas our
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decategorification only makes sense on the category of matrices over the cobordism

category, where direct sum is defined.)

5.3. ... and why it doesn’t work for su3

We wish to prove that the decategorification of Mat (Cob (su3)) is the su3 spider:

the planar algebra of webs modulo the relations in Equation 1.1.

A proof along the lines of the previous section won’t work for the su3 canopolis,

simply because we have no guarantee that non-identity morphisms between non-

elliptic diagrams are in negative degree. In fact, Theorem 5.3 below shows that this

is false. Without this, we can’t argue that (in the notation of the proof of Theorem

5.2)
(

φ00φ
−1
00

)

0
= (φ00)0

(

φ−1
00

)

0
.

While we think it would be nice to have a proof of a su3 decategorification

statement purely in terms of the su3 cobordism category, we’ll fail at this for now,

and instead describe in §5.4 a proof that relies on some su3 representation theory.

We’ll now show that both Corollary 2.2 and Corollary 2.3 describing the mor-

phisms in the su2 category fail in the su3 category.

Theorem 5.3. There are morphisms between non-elliptic objects in zero grading,

and in arbitrarily large positive gradings.

Proof. See Figure 5.1 for the first example of a grading zero cobordism between

non-elliptic objects. We can easily count the total grading; going from the first

frame to the second, we create 6 circles, for a grading of +12, and going from the

third frame to the fourth we do 12 ‘zips’, for a grading of −12.

Fig. 5.1. The simplest example of a grading zero cobordism between non-elliptic objects which
is not an identity cobordism.

Calling this cobordism x and the time-reversed version x∗, observe that x∗x

is a (nonzero!) multiple of the identity on the initial frame of Figure 5.1 (and in

particular, x 6= 0). This is an exercise in the repeated application of the ‘bamboo’

relation, and a few closed foam evaluations.

We leave the construction of positive grading morphisms as an exercise to the

reader. (Hint: if you perform a sequence of zips which produce a non-elliptic diagram
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with some extra circles, then kill the resulting circles, the total grading is minus

the Euler characteristic of the graph dual to the unzipped edges.)

We’ll return to the consequences of this phenomenon in §5.5.

5.4. Nondegeneracy

5.4.1. Nondegeneracy for su2

Let T Lk denote the space of Temperley-Lieb diagrams with k endpoints, modulo

the usual relation © = q + q−1. We define a symmetric Z[q, q−1]-bilinear pairing

〈 , 〉
su2

: T Lk×T Lk → Z[q, q−1] by gluing the k endpoints together, and evaluating

the resulting closed diagram.

Proposition 5.4. The pairing 〈 , 〉
su2

is non-degenerate on non-elliptic diagrams.

The following argument first appeared in [14].

Proof. [Proof. ‘Diagonal dominance’ [21]] Fix k. We’ll show that the determinant

of the matrix for the pairing (with respect to the diagrammatic basis) is nonzero.

This will follow easily from the fact that the term in the determinant corresponding

to the product of the diagonal entries has strictly higher q-degree than any other

term.

Each entry of the matrix is of the form (q+q−1)k, where k is the number of loops

formed when two basis diagrams are glued together. Pairing a diagram with itself

produces strictly more loops than pairing it with any other diagram, and hence the

highest value of k appearing in any row appears only on the diagonal.

The main result of this section is that this pairing actually tells us the graded

dimension of the space of morphisms between two particular (unshifted) diagrams

in Cob (su2).

Proposition 5.5. For A and B in T Lk, 〈A,B〉
su2

= q
k
2 dimq Hom (A,B)

Proof. [The easy proof specific to su2.]

First, note that 〈A,B〉
su2

= (q + q−1)l, where l is the number of boundary

components of A∪B∪∂×[0, 1]. By Proposition 2.1, the morphism space Hom (A,B)

is generated by 2l cobordisms consisting of l connected surfaces, each of which has

Euler characteristic ±1. The degree of such a cobordism is equal to χ(C)− k/2, so

dimq Hom (A,B) = (q + q−1)lq−
k
2 , and the result follows.

However, because we have no simple classification of morphisms in Cob (su3),

this argument does not apply to that case. We therefore give a second proof of

Proposition 5.5, this one using geometric techniques that work equally well on

foams.
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Proof. [A proof that will generalize.]

Lemma 5.6 (su2 Reduction lemma). Suppose B contains a circle, and

let B• denote B with that circle removed. Then dimq Hom (A,B) = (q +

q−1) dimq Hom (A,B•), and 〈A,B〉
su2

= (q + q−1) 〈A,B•〉
su2

. The same result ap-

plies to removing a circle from A.

Proof.

The first equality follows from the delooping isomorphism in [2], and the second

from the definition of the Temperley-Lieb algebra.

Lemma 5.7 (su2 Shellback lemma). Suppose B is non-elliptic and contains

an arc α between two adjacent boundary points. Let B′ denote B with α removed,

and let A′ denote A with the corresponding boundary points joined by an arc α′.

(Note that ∂A′ = ∂B′ has two fewer points than ∂A.) Then dimq Hom (A,B) =

q−1 dimq Hom (A′, B′).

Proof. Although a direct argument using canopolis operations is possible, it is far

easier to think of this operation as pulling α ‘down the wall’ of A ∪B ∪ ∂ × [0, 1].

Because A ∪ B ∪ ∂ × [0, 1] and A′ ∪ B′ ∪ ∂ × [0, 1] are isotopic on the surface of

the cylinder, there is an obvious induced isomorphism between Hom (A,B) and

Hom (A′, B′). The only difference is in the gradings, which are shifted because of

the change in number of boundary points.

To prove Proposition 5.5, first observe that it holds when A and B are empty

diagrams.

Assume that B is empty. Since ∂A is empty, A is a disjoint union of loops, and

we can apply Lemma 5.6 repeatedly to reduce to the previous case.

Assume B is non-empty. Then either B contains a circle, or B contains an arc

connecting adjacent boundary points. If it contains a circle, we apply Lemma 5.6.

Otherwise, we apply Lemma 5.7. The result follows by induction on the number of

edges in B.

We can extend this pairing to sums of diagrams:

〈A,B + C〉
su2

= q
k
2 dimq Hom (A,B ⊕ C) .

(This is just observing that Hom respects direct sums.)

Together, Proposition 5.4 and Proposition 5.5 combine to yield a simple proof of

Theorem 5.2. Essentially, knowing that the Hom pairing is nondegenerate on non-

elliptic diagrams guarantees that there are no isomorphisms amongst non-elliptic

diagrams:

Proof. [Alternate proof of Theorem 5.2] Suppose that ⊕niDi and ⊕n′
iDi are iso-

morphic objects in Mat (Cob (su2)), with each Di being a non-elliptic object. Then
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for any object C, dimq Hom (⊕niDi, C) = dimq Hom (⊕n′
iDi, C). Therefore,

〈

∑

niDi −
∑

n′
iDi, C

〉

su2

= 0

and
∑

niDi =
∑

n′
iDi in the Temperley-Lieb algebra. There are no relations

amongst non-elliptic objects in the Temperley-Lieb planar algebra, and so ni = n′
i

for each i.

5.4.2. Nondegeneracy for su3

We now have a new plan for a decategorification statement for su3; prove an ana-

logue of Proposition 5.5, prove an analogue of Proposition 5.4, and then follow

the alternate proof of the su2 decategorification statement given at the end of the

previous section.

To this end, we define a pairing 〈 , 〉
su3

on spider diagrams with identical bound-

ary. Let 〈A,B〉
su3

be the evaluation of the closed web resulting from reversing the

orientations of A, then gluing A and B along their boundary. (This is 〈A∗, B〉 in

the notation of §3.3.3.)

Proposition 5.8. For spider diagrams A and B with boundary ∂, 〈A,B〉
su3

=

qk dimq Hom (A,B), where k = |∂|.

We’ll need two lemmas first. (It might be helpful to recall the isomorphisms

from Theorem 3.11 at this point.)

Lemma 5.9 (su3 Reduction lemma).

Suppose B contains a circle, and let B• denote B with that circle removed. Then

dimq Hom (A,B) = (q2 + 1 + q−2) dimq Hom (A,B•), and 〈A,B〉
su3

= (q2 + 1 +

q−2) 〈A,B•〉
su3

.

Similarly, assume B contains a bigon, and let B! denote B with that

bigon deleted and replaced by an edge. Then dimq Hom (A,B) = (q +

q−1) dimq Hom
(

A,B!
)

, and 〈A,B〉
su3

= (q + q−1)
〈

A,B!
〉

su3
.

Lastly, suppose B contains a square, and let B] and B[ denote B with the

two possible smoothings where opposite sides of the square are erased. Then

dimq Hom (A,B) = dimq Hom
(

A,B] ⊕B[
)

, and 〈A,B〉
su3

=
〈

A,B] +B[
〉

su3
.

Analogous statements hold for A.

Proof. The equalities of morphism dimensions come directly from the isomor-

phisms in Theorem 3.11. The equalities of pairings are exactly Kuperberg’s spider

relations.

Lemma 5.10 (su3 Shellback lemma).

Suppose B is non-elliptic and contains an arc α between two adjacent bound-

ary points. Let B′ denote B with α removed, and let A′ denote A with the
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corresponding boundary points joined by an arc α′. Then dimq Hom (A,B) =

q−2 dimq Hom (A′, B′).

Suppose B has a trivalent vertex v with an edge β touching ∂. Let B† denote

B with v removed and the other edges of v now terminating at ∂. Let A† denote

A with an extra vertex v′ added at the appropriate boundary point, and two edges

connecting it to the boundary.

Then dimq Hom (A,B) = q dimq Hom
(

A†, B†
)

.

A picture is worth far, far more than the words in the preceding paragraph:

dimq Hom

















































= q dimq Hom

















































Proof. The first statement is simply Lemma 5.7, modified to fit the grading on

su3 foams.

The second looks more frightening, but it is proved by exactly the same argu-

ment: A ∪ B ∪ ∂ × [0, 1] and A† ∪ B† ∪ ∂ × [0, 1] are isotopic on the surface of the

cylinder, so ‘dragging v down the wall’ changes Hom (A,B) only by a grading shift.

The power of q reflects that ∂A† has one more point than ∂A.

Thus armed, we have a

Proof. [Proof of Proposition 5.8] The proposition clearly holds when both A and

B are empty diagrams.

Assume that B is empty. Then A is a closed web, and we can apply Lemma 5.9

repeatedly to reduce to the previous case.

Assume B is non-empty. IfB contains a circle, bigon, or square, we apply Lemma

5.9. Otherwise, B has no closed components, and ∂B is non-empty. In this case,

either we can find a trivalent vertex v adjacent to the boundary, or B is a disjoint

union of arcs, and we can find an arc α connecting two adjacent boundary points.

Either one will allow us to use Lemma 5.10. The result follows by induction on the

number of edges in B.

Remark.The geometrically-inclined reader may take the above nonsense with grad-

ing shifts as evidence that a canopolis is not the most natural setting for our seamed

cobordisms. Indeed, we claim that their native habitat is a ‘spatial algebra’, a

higher-dimensional variant of a planar algebra.

Proposition 5.11. The pairing 〈 , 〉
su3

is non-degenerate.
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It suffices to prove nondegeneracy at q = 1, because this implies that it holds for

generic q. The proof of this statement will require an equivalent algebraic definition

of 〈 , 〉
su3

. We can interpret any spider diagram with boundary ∂ as the set of

invariant tensors in V ⊗∂ , where V is the fundamental representation of su3. There

is a standard Hermitian inner product on V . If A and B are spider diagrams with

identical boundary, let 〈A,B〉R denote the extension of this inner product to tensor

products of V and V ∗. Clearly 〈 , 〉R is nondegenerate. It remains to show that

〈 , 〉
su3

= 〈 , 〉R. We will proceed, as above, by induction on A and B.

First, if ∂ = ∅, then the two pairings coincide by [15]. For dealing with nonempty

boundaries, we prove the following lemma, which is most easily stated in pictures:

Lemma 5.12.

〈

,

〉

R

=

〈

,

〉

R

and

〈

,

〉

R

=

〈

,

〉

R

The corresponding statements with other orientations also hold, but we omit those

calculations.

Here, only the middle parts of the diagrams are meant literally; the number of

side strands is irrelevant. In a nutshell, this says that pieces of spider diagrams can

be dragged between ‘floor’ and ‘ceiling’ without changing the value of 〈 , 〉R. Since

we know this to be the case for 〈 , 〉
su3

by Lemma 5.10, the equality between 〈 , 〉
su3

at q = 1 and 〈 , 〉R follows from this lemma by induction on the size of B.

Proof.

Translating pictures to symbols, the first statement says:

〈

A, (id ⊗ ⊗ id) ◦ B
〉

R
=
〈

(id ⊗ ⊗ id) ◦ A,B
〉

R

and the second that

〈

A, (id ⊗ ⊗ id) ◦ B
〉

R
=
〈

(id ⊗ ⊗ id) ◦ A,B
〉

R

Let {ei} be a basis for V and {f i} the dual basis. We write out these pictures

explicitly:



September 9, 2008 22:16 WSPC/INSTRUCTION FILE su˙3-foams

42 Scott Morrison and Ari Nieh

= e1 ⊗ f1 + e2 ⊗ f2 + e3 ⊗ f3

= f1 ⊗ e1 + f2 ⊗ e2 + f3 ⊗ e3

=
∑

σ∈S3

(−1)sgn(σ)eσ(1) ⊗ eσ(2) ⊗ eσ(3)

=
∑

σ∈S3

(−1)sgn(σ)fσ(1) ⊗ fσ(2) ⊗ fσ(3)

Then the lemma follows from the definition of the inner product: 〈ei, ej〉R =

δij = 〈fi, fj〉R.

Theorem 5.13. The graded decategorification of the canopolis Mat (Cob (su3)) is

Kuperberg’s su3 spider.

Remark. See the next section, however, for a conjecture which goes further.

Proof. Given Proposition 5.8, the alternate proof of Theorem 5.2 works mutatis

mutandis.

5.5. The Karoubi envelope

We now return to the example of a degree zero non-identity morphism from The-

orem 5.3. Recall we had named the cobordism shown there in Figure 5.1 x, and

x∗ denoted its time reversal. We proved x 6= 0 by showing x∗x was a (nonzero!)

multiple of the identity on the first frame.

Composing the other way round, xx∗ is a (multiple of a) projection on the

final frame of Figure 5.1. Normalizing correctly, let’s call the projection p. This

projection p certainly has an image in the foam category; just the initial frame.

However, 1 − p, while necessarily also being a projection, does not have an image.

(For a projection p2 = p : O → O in an arbitrary linear category, an image is pair

of morphisms r : O → O′ and i : O′ → O, such that p = i ◦ r, and i ◦ r = 1O′ .) A

clumsy way to see this is to compute the pairing matrix for all non-elliptic diagrams

with the prescribed boundary; there’s just a single pair of off diagonal entries with

maximal q degree, corresponding via Proposition 5.8 to the maps r and i for the

projection p, leaving no room for maps r and i for the projection 1 − p.

We might suggest fixing this ‘problem’ by passing to the Karoubi envelope (see

[3] and references therein) of the foam category, which artificially creates images for

every projection. There, we can make a conjecture relating the minimal projections

appearing in the foam category to the dual canonical basis.

Conjecture 5.14. The Grothendieck group of Kar (Cob (su3)) is the same as that of

Cob (su3), namely the su3 spider.

In particular, there is an ordering ≺ of the objects of in Cob (su3) (the ordering

generated by ‘cap’ and ‘unzip’ will probably do), and a bijection between non-elliptic
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diagrams in Cob (su3) and minimal idempotents in Kar (Cob (su3)), D ↔ pD such

that

1D ∼= pD ⊕
⊕

i

qnipDi

for some collection of diagrams Di ≺ D, and grading shifts ni. Equivalently,

when we write 1D as a sum of minimal projections, there is one ‘new’ projection,

which we might think of as the ‘leading term’, plus ‘old’ projections, each equivalent

to the new projection associated to some simpler diagram.

Conjecture 5.15. Further, the basis for Kar (Cob (su3)) coming from the minimal

idempotents is the dual canonical basis of the su3 spider.

The immediate evidence for these conjectures is provided by the work of Kho-

vanov and Kuperberg in [11]. There, they show that the first non-elliptic diagram

which is not a dual canonical basis element is the final frame of the movie in Figure

5.1. Instead, in the space Inv
(

(

V ⊗2 ⊗ V ∗⊗2
)⊗3
)

, they find that while 511 of the

dual canonical basis vectors are given by non-elliptic diagrams, the 512-th is given

by

−

This is exactly the behavior described by the conjectures above. Up until this

point, every identity map on a non-elliptic diagram has been a minimal idempotent.

However, in the Karoubi envelope, we have (identifying diagrams with their identity

maps)

∼= (1 − p) ⊕ .

6. Calculations

Over Q, at least, the su3 invariant is completely computable for links.

Lemma 6.1. For any link, there is a homotopy representative (in fact, a simple

homotopy representative) of the associated complex in the category with objects being

direct sums of graded empty diagrams and only the zero morphism.

Proof. By applying isomorphisms, we can reduce the complex for a link to one in

which the objects are all direct sums of graded empty diagrams. The morphisms are
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then matrices over Q; any non-zero entry is invertible, and so there is an associated

contractible direct summand, which we can remove using Lemma 4.1.

This essentially says that over Q, the homotopy type of the invariant is charac-

terized by its Poincaré polynomial, and that we lose nothing by having a topological

rather than algebraic construction.

Over Z[ 12 ,
1
3 ], it’s more complicated; we can still reduce all objects to the empty

diagram, but there may be ‘integral torsion’; the differentials may still have non-

zero entries. In the extension described in §A.2, in which we relax the relations

= 0 and = 0, there may be further torsion associated to the

polynomial ring generated by these two foams.

6.1. The (2, n) torus knots

We now calculate the complex associated to the two strand braid σn, and from that

the knot homology of its closure, the (2, n) torus knot.

To begin, we introduce some notation for cobordisms,

ψR = unzipR ◦ zipR = ◦ =:

ψL = unzipL ◦ zipL = ◦ =:

along with ψ± = 1
2 (ψR ± ψL). These cobordisms satisfy some simple relations,

namely that ψ2
R = ψ2

L = 0, by the double bagel relation from Equation (3.13), and

ψRψL = ψLψR. As a consequence, ψ±ψ∓ = 0.

We’ll further define, (harmlessly reusing names)

ψR = ψC = ψL = .

We now calculate the complex associated to a 2-twist.

Theorem 6.2. Assuming 2 is invertible, the invariant of σn is

zip
//

ψ−
//

ψ+
// · · ·

ψ∓
//

ψ±
// (6.1)

with in homological height 0, and the final in homological height n, so the

final map is ψ(−1)n+1 . The is in grading 2n, the first in grading 2n+ 1,

and each subsequent in grading 2 higher than the previous, so the last is in

grading 4n− 1.

Proof. The proof is by induction on n. For n = 1, this complex is just the usual
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invariant of a positive crossing. For n = 2, we begin with the complex

zip
//

zip

&&L
LLLLL

⊕

&&MMMMMM

−

//

(The sign appearing on the differential here is just the usual sign introduced by

taking tensor products of complexes [6].) Reducing the object using the

debubbling isomorphism, we obtain

zip
//

zip

!!
DDD

DD
DD

D
⊕

( 1
2
ψR 1 )

##G
GG

GG
GG

(

−
ψL
2

−1

)

//









⊕









Cancelling off the matrix entry isomorphism −1 in the bottom row, using Lemma

4.1, we reach the desired complex

zip
//

ψ−
//

The second differential here, ψ−, is calculated as ψR
2 − (−ψL

2 · (−1)−1 · 1).

Now, suppose equation (6.1) holds for some n ≥ 2. The argument is no more

difficult than the n = 2 calculation we just did, but there’s more to keep track of.

To calculate Foam
(

σn+1
)

, we simply tensor the complex in Equation (6.1) with

the two step complex for a positive crossing, producing

zip
//

•

%%L
LLL

LL ⊕

ψ−
//

•
&&MM

MMM
M

⊕

ψ+
//

•

''NNNNN
NN

· · ·
⊕

ψ±
//

•

&&M
MMMMMMMMMM

&&MM
MMM

M

−

//

−ψC+ψL

//

−ψC−ψL

// · · ·
−ψC∓ψL

//

We now reduce every diagram in the complex with the debubbling isomorphism,

obtaining

zip
//

•

  
AA

AA
AA

AA
⊕

ψ−
//

•
""

EE
EE

EE ⊕

ψ+
//

•

$$H
HHHHHH

· · ·
⊕

ψ±
//

•

""
EEEEEEEEEEEEE

( 1
2
ψR 1 )

""
EE

EE
EE

(

−
ψL
2

−1

)

//









⊕







 Θ+

//









⊕







Θ−

// · · ·
Θ∓

//









⊕








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where Θ± =

(

±
ψL
2

0

−1 ±
ψL
2

)

.

This complex contains many isomorphisms; we’ll cancel off all the isomorphisms

appearing as matrix entries on the horizontal arrows in the second row. This doesn’t

affect any of the original differentials in the first row because there are no differ-

entials from the second row to the first. The only object in the second row that

survives is the first summand at the highest homological level. The last differential

is then 1
2ψR − (∓ψL

2 · (−1)−1 · 1) = ψ∓, as claimed.

We leave it to the reader to check the gradings come out as claimed.

It’s now quite easy to compute the su3 homology invariant for a (2, n) torus

knot; when we close up the braid σn, all the differentials ψ− become zero, and we

end up with

q2n
zip

// q2n+1 0 // q2n+3 // q2n+5 0 // · · ·

· · ·
0 // q4n−1

when n is even, or

q2n
zip

// q2n+1 0 // q2n+3 // q2n+5 0 // · · ·

· · ·
0 // q4n−3 // q4n−1

when n is odd.

The complex
zip

// q is homotopic to q−2 0 // • , while

the complex // q2 is homotopic to q−1 0 // q3 .

Making these replacements, we obtain the complexes

q2n−2 0 // •
0// q2n+2 0 // q2n+6 0 // · · ·

· · ·
0 // (q4n−2 + q4n)

when n is even, or

q2n−2 0 // •
0// q2n+2 0 // q2n+6 0 // · · ·

· · ·
0 // q4n−4 0 // q4n
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when n is odd. (If you’re paying careful attention to gradings, be extra careful here;

notice that the grading on the first loop omitted by the ellipsis in the n even case

is actually 2n+ 6 again, not 2n+ 10.)

The Poincaré polynomials are thus

(q−2+1+q2)q2n
(

q−2 + (1 + q4t)(q2t2 + q6t4 + · · · + q2n−6tn−2) + (q2n−2 + q2n)tn
)

when n is even, and

(q−2 + 1 + q2)q2n
(

q−2 + (1 + q4t)(q2t2 + q6t4 + · · · + q2n−4tn−1)
)

when n is odd.

The only other knot we’ve done calculations for is the 41 knot, whose su3 Kho-

vanov homology has Poincaré polynomial (q−2 +1+q2)(q−6t−2 +q−2t−1 +1+q2t+

q6t2).

Appendix A. This isn’t quite the same as Khovanov or

Mackaay-Vaz

There are three significant differences between the su3 cobordism theory defined

here, and the one defined by Khovanov in [10] and deformed by Mackaay and Vaz

in [16]. (We assume familiarity with both of these papers throughout this section.)

The first is ‘locality’. Our category is described by ‘pictures modulo relations’,

rather than by a partition function. The knot invariant is explicitly local, defined

as a map of planar algebras.

The second is that it’s purely topological, in the sense that our cobordisms don’t

require any dots. As in the su2 case, they aren’t needed, and the ‘sheet algebra’ can

be realized by topological objects.

The third is that its deformations, in the sense of Mackaay and Vaz, are also

purely topological; instead of introducing three complex deformation parameters,

we simply remove two relations setting certain closed foams to zero. There’s a fair bit

to explain here; why, by introducing only two closed foams we see everything they

see with three deformation parameters, and the possibility of retaining a grading

in the various degenerations of the su3 theory.

A.1. Locality

Our local description of the foam category, using the canopolis formalism, has two

principal advantages over the descriptions given in [10] and [16]. Firstly, as discussed

previously in §4.1, we now have access to Bar-Natan’s simplification algorithm,

which allows for automatic proofs of Reidemeister invariance (§4.2), and explicit

calculations (§6.1).

Secondly, we can give a clearer analysis of the different types of relations ap-

pearing the the theory.
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Mackaay and Vaz begin by imposing certain relations on closed foams, sufficient

for evaluation; in their notation, 3D, CN, S and Θ. In our language, their Definition

2.2 says that the category they are really interested in is the quotient by the local

kernel of the category with closed webs. (Recall the appropriate definitions from

§3.3.3.)

Following this definition, they derive certain relations, in Lemma 2.3. We’d like

to emphasize that these relations are actually of two quite different natures. The

first two, 4C (which we don’t use) and RD (our ‘bamboo’ relation), are actually in

the canopolis ideal generated by the ‘evaluation’ relations. On the other hand, the

last two, DR and SqR (our tube and rocket relations), cannot be derived from the

evaluation relations by canopolis operations, but only appear in the local kernel.

Moreover, while pointing out some relations coming from the local kernel, they have

no analogue of our Lemma 3.5, providing generators of the local kernel. Indeed,

without a local setup, in which we can describe the local kernel as a ‘canopolis

ideal’, it seems impossible to do this.

A.2. Relaxing our relations

In this section, we describe a slight generalization of our canopolis, in which we no

longer impose the relations

= 0 = 0

but instead absorb these closed foams into the ground ring, calling them α and

β respectively. These foams have grading −4 and −6 respectively. This change

requires modifications to several subsequent parts of the paper.

The neck cutting relation gains an extra termr

=
1

3
−

1

9
+

1

3
−

1

9
(A.1)

Consequently, there are extra terms in the sheet algebra relations, (compare Equa-

rThe new neck cutting relation may be derived just as in §3.3.1, being slightly more careful about
the dimensions of the various morphism spaces, taking into account the fact that the coefficient
ring is no longer all in grading zero.
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tions (3.7) and (3.8))

= −3 − α

=
2α

3
+
β

3

=
α

3
−
β

9
+

2α2

9

although pleasantly there are no other changes to the local relations! These relations

give the su3 analogue of Corollary 2.4.

The isomorphisms of Theorem 3.11 mostly survive unchanged, except the de-

looping isomorphism.s Now, somewhat strangely, we have a family of isomorphisms,

indexed by a parameter t ∈ S defined by

ϕt : q−2 ∅

⊕

0

88ppppppppppppp
�

1
3

//

�

1
3

+αt &&N
NNNNNNNNNNNNN q0 ∅

⊕

q2 ∅

and

ϕ−1
t : q−2 ∅

⊕

1
3

−α(t+ 1
9
)

&&NNNNNNNNNNNNN

q0 ∅

⊕

− 1
3

//

q2 ∅

88pppppppppppppp

sThe authors of [16] don’t describe a delooping isomorphism.
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It’s just as easy as it was before to check that this is an isomorphism.

Next, we turn to the isotopy invariance proofs, and check for any use of the

delooping isomorphism, or the affected relations. Both Reidemeister 1 and Reide-

meister 2b made use of the delooping isomorphism to simplify the complexes; it

turns out that the calculation of Reidemeister 2b remains independent of which ϕt
delooping isomorphism we use, and the chain homotopy we produce at the end is

unchanged.

The Reidemeister 1 calculation is slightly more interesting. Using ϕt as the

delooping isomorphism, we need to modify that calculation as follows. The isomor-

phisms become

ζ1 =









1
3 + αt

1
3









ζ−1
1 =

(

− 1
3

1
3 − α(t+ 1

9 )
)

and so in the differential in the simplified complex we see

λ =













− 1
6 + α(t+ 1

18 )

1
3 .













Finally then, the simplifying maps acquire an extra term,

s1 =
(

0 0 1
)

◦ ζ1 =

s2 = 0

but the inverse chain homotopy acquires an extra term

s−1
1 =

1

3
−

1

9
+

1

3
−
α

9

s−1
2 = 0.

Notice, however, that it is still the case that s−1
1 = .

A.3. Dots and deformation parameters

First, recall the definition of Mackaay and Vaz of Foam/l(a, b, c) (we’ve added the

explicit notational dependence on a, b and c here).
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There is an action of the ground ring on the collection of cobordism categories

Foam/l(a, b, c) by category equivalences:

ϕt : 7→ + t ,

taking Foam/l(a, b, c) to Foam/l(a− 3t, b+ 2at− 3t2, c + bt+ at2 − t3). It’s easy

to see that ϕ−t ◦ ϕt = 1, and that these maps preserve the associated filtration on

the categories, but not the grading.

In the case that a, b and c are complex numbers (so the grading is already lost),

it’s then easy to see that Foam/l(a, b, c) is isomorphic to Foam/l(0, b+
a2

3 , c+
ab
3 +

2a3

27 ), and hence we need only consider the a = 0 case.

We now turn to showing that the dots appearing in the foams described by

Khovanov, and by Mackaay and Vaz, have ‘topological representatives’. Moreover,

two out of the three ‘deformation parameters’ in Mackaay and Vaz’s paper, b and

c, also have topological representatives.

We begin by evaluating a punctured torus in the Mackaay-Vaz theory by neck

cutting.

= −3 + 2a + b (A.2)

Next, we use the Mackaay-Vaz ‘bamboo’ relation,t

= −

to evaluate the choking torus

= 3 − a (A.3)

and thus

= 1/3 + a/3

Using this, we can write any cobordism involving dots as a Z[ 13 ][a]-linear com-

bination of cobordisms without dots.

tThe cyclic orientation here is lower cylinder/upper cylinder/disc.
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What about the parameters a,b,c? Using Equation (A.2), we obtain

= 9 − 12a + (4a2 − 6b)

= −a2 − 3b

and along with Equation (A.3),

= −a3 − 9ab+ 27c.

Rearranging these, we can express the deformation parameters b and c in terms of

a and some closed foams.

b = −
1

3

(

+ a2
)

c =
1

27

(

− 3a + a3
)

In particular, in the special case a = 0, we can entirely replace the deformation

parameters with closed foams.

We can now explicitly describe the correspondence between our theory and

that of Mackaay and Vaz. At the level of closed spider diagrams, u our cobordism

category is equivalent to theirs at a = 0, via the map

7→ 1/3 + a/3

b 7→ −
1

3

c 7→
1

27

The inverse map is just inclusion; checking they’re inverses involves a little cobor-

dism arithmetic in each setup.
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