The Blob Complex, part 2

Kevin Walker
(joint work with Scott Morrison)

slides and prepreprint available at canyon23.net/math/
(or the URLs Scott gave)
Goals:
- n-category definition optimized for TQFTs (prove gluing theorem, blob complex product theorem)
- should be very easy to show that topological examples satisfy the axioms
- as simple as possible (but not simpler)
- both plain and infinity type categories
- also define modules, coends, tensor products, etc.
Goals:
• n-category definition optimized for TQFTs (prove gluing theorem, blob complex product theorem)
• should be very easy to show that topological examples satisfy the axioms
• as simple as possible (but not simpler)
• both plain and infinity type categories
• also define modules, coends, tensor products, etc.

Main ideas:
• don’t skeletonize (don’t try to minimize generators, don’t try to minimize relations)
• build in “strong” duality from the start
• non-recursive (don’t need to know what an (n-1)-category is)
Ingredients for an n-category:
1. morphisms in dimensions 0 through n
2. domain/range/boundary
3. composition
4. identity morphisms
5. special behavior in dimension n
Morphisms

- Need to decide on “shape” of morphisms
Morphisms

- Need to decide on “shape” of morphisms

- We will allow morphisms to be of any shape, so long as it is homeomorphic to a ball
Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $C_k(X)$.
Morphisms (preliminary version): For any k-manifold X homeomorphic to the standard k-ball, we have a set of k-morphisms $C_k(X)$.

Morphisms: For each $0 \leq k \leq n$, we have a functor C_k from the category of k-balls and homeomorphisms to the category of sets and bijections.
Morphisms \textit{(preliminary version):} For any \(k \)-manifold \(X \) homeomorphic to the standard \(k \)-ball, we have a set of \(k \)-morphisms \(C_k(X) \).

\textbf{Morphisms:} For each \(0 \leq k \leq n \), we have a functor \(C_k \) from the category of \(k \)-balls and homeomorphisms to the category of sets and bijections.

Balls could be PL, topological, or smooth. Also unoriented, oriented, Spin, Pin\(_\pm\). We will concentrate on the case of PL unoriented balls.
Examples

Let T be a topological space.

$C_k(X^k) = \text{Maps}(X \to T)$, for $k < n$, X a k-ball.

$C_n(X^n) = \text{Maps}(X \to T)$ modulo homotopy rel boundary
(fundamental n-groupoid of T)

$C_k(X^k) = \text{Maps}(X \to T)$, for $k < n$, X a k-ball.

$C_n(X^n) = C_\ast(\text{Maps}(X \to T))$ (singular chains)
(∞ version of fundamental groupoid of T)
\[C_k(X^k) = \{ \text{embedded decorated cell complexes in } X \}, \text{ for } k < n. \]
\[C_n(X^n) = \{ \text{embedded decorated cell complexes in } X \} \mod \text{iso and other local relations} \]

\[
\begin{align*}
\bigcirc & = q^5 + q^4 + q + 1 + q^{-1} + q^{-4} + q^{-5} \\
\bigcirc & = q^3 + q^2 + q + q^{-1} + q^{-2} + q^{-3} \\
& = 0 \\
\bigcirc & = -(q^3 + q^2 + q + q^{-1} + q^{-2} + q^{-3}) \\
\bigcirc & = (q^2 + 1 + q^{-2}) \\
\bigcirc & = -(q + q^{-1}) \left(\bigcirc + \bigcirc \right) + (q + 1 + q^{-1}) \left(\bigcirc + \bigcirc \right) \\
\bigcirc & = -\left(\bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc \right) + \left(\bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc \right) \\
\bigcirc & = -\left(\bigcirc - \bigcirc - \frac{1}{q^2 - 1 + q^{-2}} \right) \left(\bigcirc + \frac{1}{q + 1 + q^{-1}} \right) \\
\end{align*}
\]

(Kuperberg)

More examples
More examples

Let A be a traditional linear n-category with strong duality (e.g. pivotal 2-category).

$C_k(X^k) = \{A\text{-string diagrams in } X\}$, for $k < n$.

$C_n(X^n) = \{\text{finite linear combinations of } A\text{-string diagrams in } X\}$ modulo diagrams which evaluate to zero.

$C_k(X^k) = \{A\text{-string diagrams in } X\}$, for $k < n$.

$C_n(X^n) = \text{blob complex of } X \text{ based on } A\text{-string diagrams}$
Boundaries (domain and range), part 1: For each $0 \leq k \leq n - 1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.
Boundaries (domain and range), part 1: For each $0 \leq k \leq n - 1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial : C(X) \to C(\partial X)$. These maps, for various X, comprise a natural transformation of functors.
Boundaries (domain and range), part 1: For each $0 \leq k \leq n - 1$, we have a functor C_k from the category of k-spheres and homeomorphisms to the category of sets and bijections.

Boundaries, part 2: For each k-ball X, we have a map of sets $\partial : C(X) \to C(\partial X)$. These maps, for various X, comprise a natural transformation of functors.

Domain + range → boundary: Let $S = B_1 \cup_E B_2$, where S is a k-sphere ($0 \leq k \leq n - 1$), B_i is a k-ball, and $E = B_1 \cap B_2$ is a $k-1$-sphere. Let $C(B_1) \times_{C(E)} C(B_2)$ denote the fibered product of the two maps $\partial : C(B_i) \to C(E)$. Then (axiom) we have an injective map

$$g_{1E} : C(B_1) \times_{C(E)} C(B_2) \to C(S)$$

which is natural with respect to the actions of homeomorphisms.
• Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E.
\begin{itemize}
 \item Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E
 \item Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X; c) \overset{\text{def}}{=} \partial^{-1}(c)$
\end{itemize}
• Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E

• Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X;c) \overset{\text{def}}{=} \partial^{-1}(c)$

• Given $E \subset \partial X$, let $\mathcal{C}(X)_E \overset{\text{def}}{=} \partial^{-1}(\mathcal{C}(\partial X)_E)$
• Let $\mathcal{C}(S)_E \subset \mathcal{C}(S)$ denote the image of gl_E

• Given $c \in \mathcal{C}(\partial(X))$, let $\mathcal{C}(X; c) \overset{\text{def}}{=} \partial^{-1}(c)$

• Given $E \subset \partial X$, let $\mathcal{C}(X)_E \overset{\text{def}}{=} \partial^{-1}(\mathcal{C}(\partial X)_E)$

• In most examples, we require that the sets $\mathcal{C}(X; c)$ (for all n-balls X and all boundary conditions c) have extra structure, e.g. vector space or chain complex
Composition: Let $B = B_1 \cup_Y B_2$, where B, B_1 and B_2 are k-balls ($0 \leq k \leq n$) and $Y = B_1 \cap B_2$ is a $k-1$-ball. Let $E = \partial Y$, which is a $k-2$-sphere. Note that each of B, B_1 and B_2 has its boundary split into two $k-1$-balls by E. We have restriction (domain or range) maps $C(B_i)_E \to C(Y)$. Let $C(B_1)_E \times_{C(Y)} C(B_2)_E$ denote the fibered product of these two maps. Then (axiom) we have a map

$$gl_Y : C(B_1)_E \times_{C(Y)} C(B_2)_E \to C(B)_E$$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_i. If $k < n$ we require that gl_Y is injective. (For $k = n$, see below.)
Composition: Let $B = B_1 \cup_Y B_2$, where B, B_1 and B_2 are k-balls ($0 \leq k \leq n$) and $Y = B_1 \cap B_2$ is a $k-1$-ball. Let $E = \partial Y$, which is a $k-2$-sphere. Note that each of B, B_1 and B_2 has its boundary split into two $k-1$-balls by E. We have restriction (domain or range) maps $C(B_i)_E \to C(Y)$. Let $C(B_1)_E \times_{C(Y)} C(B_2)_E$ denote the fibered product of these two maps. Then (axiom) we have a map

$$gl_Y : C(B_1)_E \times_{C(Y)} C(B_2)_E \to C(B)_E$$

which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions to the intersection of the boundaries of B and B_i. If $k < n$ we require that gl_Y is injective. (For $k = n$, see below.)

Strict associativity: The composition (gluing) maps above are strictly associative.
Multi-composition: Given any decomposition $B = B_1 \cup \cdots \cup B_m$ of a k-ball into small k-balls, there is a map from an appropriate subset (like a fibered product) of $C(B_1) \times \cdots \times C(B_m)$ to $C(B)$, and these various m-fold composition maps satisfy an operad-type strict associativity condition.
Product (identity) morphisms: Let X be a k-ball and D be an m-ball, with $k + m \leq n$. Then we have a map $\mathcal{C}(X) \to \mathcal{C}(X \times D)$, usually denoted $a \mapsto a \times D$ for $a \in \mathcal{C}(X)$. If $f : X \to X'$ and $\tilde{f} : X \times D \to X' \times D'$ are maps such that the diagram

$$\begin{align*}
X \times D & \xrightarrow{\tilde{f}} X' \times D' \\
\pi & \downarrow \quad \downarrow \pi \\
\tilde{X} & \xrightarrow{f} \tilde{X}'
\end{align*}$$

commutes, then we have

$$\tilde{f}(a \times D) = f(a) \times D'.$$

Product morphisms are compatible with gluing (composition) in both factors:

$$(a' \times D) \circ (a'' \times D) = (a' \circ a'') \times D$$

and

$$(a \times D') \circ (a \times D'') = a \times (D' \circ D'').$$

Product morphisms are associative:

$$(a \times D) \times D' = a \times (D \times D').$$

(Here we are implicitly using functoriality and the obvious homeomorphism $(X \times D) \times D' \to X \times (D \times D')$.) Product morphisms are compatible with restriction:

$$\text{res}_{X \times E}(a \times D) = a \times E$$

for $E \subset \partial D$ and $a \in \mathcal{C}(X)$.

We need something a little more general than plain products
We need something a little more general than plain products
We need something a little more general than plain products

“extended isotopy”
Extended isotopy invariance in dimension n: Let X be an n-ball and $f : X \to X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on $C(X)$.
Plain n-cat:

Extended isotopy invariance in dimension n: Let X be an n-ball and $f : X \to X$ be a homeomorphism which restricts to the identity on ∂X and is extended isotopic (rel boundary) to the identity. Then f acts trivially on $\mathcal{C}(X)$.

Infinity n-cat:

Families of homeomorphisms act in dimension n. For each n-ball X and each $c \in \mathcal{C}(\partial X)$ we have a map of chain complexes

$$C_*(\text{Homeo}_\partial(X)) \otimes \mathcal{C}(X; c) \to \mathcal{C}(X; c).$$

Here C_* means singular chains and $\text{Homeo}_\partial(X)$ is the space of homeomorphisms of X which fix ∂X. These action maps are required to be associative up to homotopy, and also compatible with composition (gluing).
Equivalences between this n-cat definition and more traditional ones (at least for n=1 or 2)

A-string diagrams with canonical relations

"topological" n-cat \(C \)

restrict \(C \) to standard \(\eta \)-ball, \(\omega \geq \eta \)

traditional n-cat \(A \)
Colimit construction

- Let \mathcal{C} be in n-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds Y, $0 \leq k \leq n$.
Colimit construction

- Let \mathcal{C} be in n-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds Y, $0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and whose morphisms are anti-refinements (coarsenings) of these decompositions.
Colimit construction

- Let \mathcal{C} be in \mathcal{n}-category.
- We want to extend \mathcal{C} to arbitrary k-manifolds Y, $0 \leq k \leq n$.
- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and whose morphisms are anti-refinements (coarsenings) of these decompositions.
- There is a functor which assigns to a decomposition $Y = \bigcup_i X_i$ the set (or vector space or chain complex) $\bigotimes_i \mathcal{C}(X_i)$.
Colimit construction

- Let \mathcal{C} be in n-category.

- We want to extend \mathcal{C} to arbitrary k-manifolds Y, $0 \leq k \leq n$.

- Let \mathcal{J} be the category (partially ordered set) whose objects are decompositions of Y into balls and whose morphisms are anti-refinements (coarsenings) of these decompositions.

- There is a functor which assigns to a decomposition $Y = \bigcup_{i} X_{i}$ the set (or vector space or chain complex) $\bigotimes_{i} \mathcal{C}(X_{i})$.

- Define $\mathcal{C}(Y)$ to be the colimit (or homotopy colimit) of this functor.
Newfangled blob complex

- Given an A_∞ n-category C, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $C(M)$.
Newfangled blob complex

- Given an A_∞ n-category C, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $C(M)$.

- Given a plain n-category C, we can construct an A_∞ n-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}_*(X)$ for each n-ball X.
Newfangled blob complex

- Given an A_∞ n-category \mathcal{C}, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $\mathcal{C}(M)$.

- Given a plain n-category \mathcal{C}, we can construct an A_∞ n-category \mathcal{D} by defining $\mathcal{D}(X) = \mathcal{B}_C^*(X)$ for each n-ball X.

- \mathcal{D} is in some sense the free resolution of \mathcal{C} as an A_∞ n-category.
Newfangled blob complex

- Given an A_∞ n-category C, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $C(M)$.

- Given a plain n-category C, we can construct an A_∞ n-category \mathcal{D} by defining $\mathcal{D}(X) = B^C_\ast(X)$ for each n-ball X.

- \mathcal{D} is in some sense the free resolution of C as an A_∞ n-category.

 - Let $M^n = F^{n-k} \times Y^k$. Let C be a plain n-category. Let \mathcal{F} be the A_∞ k-category which assigns to a k-ball X the old-fashioned blob complex $B^C_\ast(X \times F)$.
Newfangled blob complex

- Given an A_∞ n-category C, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $C(M)$.

- Given a plain n-category C, we can construct an A_∞ n-category D by defining $D(X) = B_*^C(X)$ for each n-ball X.

- D is in some sense the free resolution of C as an A_∞ n-category.

- Let $M^n = F^{n-k} \times Y^k$. Let C be a plain n-category. Let F be the A_∞ k-category which assigns to a k-ball X the old-fashioned blob complex $B_*^C(X \times F)$.

- Theorem: $\mathcal{F}(Y) \simeq B_*^C(F \times Y)$.
Newfangled blob complex

- Given an A_∞ n-category C, we define the newfangled blob complex of an n-manifold M to be the above homotopy colimit $C(M)$.

- Given a plain n-category C, we can construct an A_∞ n-category D by defining $D(X) = B^C_*(X)$ for each n-ball X.

- D is in some sense the free resolution of C as an A_∞ n-category.

 - Let $M^n = F^{n-k} \times Y^k$. Let C be a plain n-category. Let F be the A_∞ k-category which assigns to a k-ball X the old-fashioned blob complex $B^C_*(X \times F)$.

 - Theorem: $F(Y) \simeq B^C_*(F \times Y)$.

- Corollary: $D(M) \simeq B^C_*(M)$ for any n-manifold M. (Proof: Let F above be a point.) So the old-fashioned and newfangled blob complexes are homotopy equivalent.
Modules

- Let C be an n-category.
- Modules for C are defined in a similar style.
Modules

- Let \mathcal{C} be an n-category.

- Modules for \mathcal{C} are defined in a similar style.

- A marked k-ball is a pair (B, M) which is homeomorphic to the standard pair (B_k, B^{k-1}).

\[B \backslash \{ m \} \]
Modules

- Let \mathcal{C} be an n-category.

- Modules for \mathcal{C} are defined in a similar style.

- A *marked k-ball* is a pair (B, M) which is homeomorphic to the standard pair (B^k, B^{k-1}).

- A \mathcal{C}-module \mathcal{M} is a collection of functors \mathcal{M}_k from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.
Modules

- Let \mathcal{C} be an n-category.

- Modules for \mathcal{C} are defined in a similar style.

 - A *marked k-ball* is a pair (B, M) which is homeomorphic to the standard pair (B^k, B^{k-1}).

 ![Diagram of a marked k-ball]

 - A \mathcal{C}-module \mathcal{M} is a collection of functors \mathcal{M}_k from the category of marked k-balls to the category of sets, $0 \leq k \leq n$.

- In the top dimension n we have the same extra structure as \mathcal{C} (vector space, chain complex, ...).
Motivating example: Let W be an $m+1$-manifold with non-empty boundary. Let \mathcal{E} be an $m+n$-category.

Let \mathcal{C} be the n-category with $\mathcal{C}(X) \overset{\text{def}}{=} \mathcal{E}(X \times \partial W)$.
• Motivating example: Let W be an $m+1$-manifold with non-empty boundary. Let \mathcal{E} be an $m+n$-category.

• Let \mathcal{C} be the n-category with $\mathcal{C}(X) \overset{\text{def}}{=} \mathcal{E}(X \times \partial W)$.

• Define the \mathcal{C}-module \mathcal{M} by

$$\mathcal{M}(M, B) \overset{\text{def}}{=} \mathcal{E} \left((B \times \partial W) \bigcup_{M \times \partial W} (M \times W) \right).$$

![Diagram of $\mathcal{M}(M, B)$]
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

\[\text{action} \]

\[\mathcal{M}\text{-composition} \]
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.

- \mathcal{M} can be thought of as a collection of $n-1$-categories with some extra structure.
- Two different ways of cutting a marked k-ball into two pieces, so two different kinds of composition. (One is composition within \mathcal{M}, the other is the action of \mathcal{C} on \mathcal{M}.)

- Various kinds of mixed strict associativity.

- \mathcal{M} can be thought of as a collection of $n-1$-categories with some extra structure.
- For $n = 1, 2$ this is equivalent to the usual notion of module.
Decorated colimit construction

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W.

- Let \mathcal{C} be an n-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\{Y_i\}$.
Decorated colimit construction

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W.

- Let \mathcal{C} be an n-category and $\mathcal{N} = \{\mathcal{N}_i\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\{Y_i\}$.

- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k = n$) $\mathcal{C}(W, \mathcal{N})$.
Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W.

Let \mathcal{C} be an n-category and $\mathcal{N} = \{N_i\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\{Y_i\}$.

We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k = n$) $\mathcal{C}(W, \mathcal{N})$.

The object of the colimit are decompositions of W into (plain) balls X_j and marked balls (B_i, M_i), with $M_i = B_i \cap \{Y_i\}$.

$$\bigotimes_j \mathcal{C}(X_j) \bigotimes \mathcal{N}(B_i, M_i)$$
Decorated colimit construction

- Let W be a k-manifold. Let Y_i be a collection of disjoint codimension 0 submanifolds of ∂W.

- Let \mathcal{C} be an n-category and $\mathcal{N} = \{N_i\}$ be a collection of \mathcal{C}-modules, thought of as labels of $\{Y_i\}$.

- We can use a variation on the above colimit construction to define a set (or vector space or chain complex if $k=n$) $\mathcal{C}(W, \mathcal{N})$.

- The object of the colimit are decompositions of W into (plain) balls X_j and marked balls (B_l, M_l), with $M_l = B_l \cap \{Y_i\}$.

- This defines an $n-k$-category which assigns $\mathcal{C}(D \times W, \mathcal{N})$ to a ball D. (Here N_i labels $D \times Y_i$.)
Tensor products and gluing

- As a simple special case of this construction, given \mathcal{C}-modules \mathcal{N}_1 and \mathcal{N}_2, define the tensor product $\mathcal{N}_1 \otimes \mathcal{N}_2$ (an $n-1$-category) to be the result of taking W to be an interval and letting \mathcal{N}_1 and \mathcal{N}_2 label the endpoints of the interval.
Tensor products and gluing

- As a simple special case of this construction, given \mathcal{C}-modules \mathcal{N}_1 and \mathcal{N}_2, define the tensor product $\mathcal{N}_1 \otimes \mathcal{N}_2$ (an $n-1$-category) to be the result of taking W to be an interval and letting \mathcal{N}_1 and \mathcal{N}_2 label the endpoints of the interval.

- Gluing theorem: Let $M^{n-k} = M_1 \cup_Y M_2$. Let \mathcal{C} be an n-category. The above constructions give a k-category $\mathcal{C}(M)$, a $k-1$-category $\mathcal{C}(Y)$, and two $\mathcal{C}(Y)$-modules $\mathcal{C}(M_i)$. Then

$$\mathcal{C}(M) \simeq \mathcal{C}(M_1) \otimes_{\mathcal{C}(Y)} \mathcal{C}(M_2).$$