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What’s wrong with Khovanov homology?
It’s almost functorial
... but not quite
... and it ought to be!

How do we fix it?
Disorientations
Movie moves
Calculations
Confusions

Odds and ends.
Recovering the original theory
Decategorifying

What is Khovanov homology?
Khovanov homology is a map from tangles to up-to-homotopy
complexes of (matrices of) cobordisms.

I On single crossings it is given by

� //

(
• // q

saddle// q2

)

� //

(
q−2 saddle // q−1 // •

)

I It is a map of planar algebras: to compose two tangles in a
planar way, take the tensor product of the corresponding
complexes, combining objects and morphisms using the
specified planar operation.

We need to impose some relations on cobordisms in order to
make this a tangle invariant.

I Closed surface relations:

= 0 = 2 = 0

I The “neck cutting” relation:

=
1

2
+

1

2



Example
The hopf link.

Why is it actually an invariant of tangles?

We need to construct homotopy equivalences between the
complexes on either side of each Reidemeister move

Example

Khovanov homology is almost functorial

So far, I’ve described an invariant associated to tangles.
We can try to make Khovanov homology functorial, associating
to a cobordism between two tangles some chain map between
the associated complexes.
Link cobordisms can be given presentations as ‘movies’. Each
frame of a movie is a tangle diagram. Between each pair of
frames, one of the ‘elementary movies’ takes place:

I a Reidemeister move, in either direction
I the birth of death of a circle
I a morse move between two parallel arcs

We need to assign chain maps to each of the elementary
movies.

I All the morse moves are easy; there are obvious
cobordisms implementing them.

I To each Reidemeister move, we assign the chain map we
constructed when showing that the two sides of the
Reidemeister move were homotopically equivalent
complexes.

To assign a chain map to an arbitrary link cobordism, we
choose a movie presentation, and compose the chain maps
associated to each elementary piece. Is this well defined?



... but not quite

Theorem (Carter and Saito)
Two movies are presentations of the same link cobordism exactly if
they are related by a sequence of ‘movie moves’.

Example (Movie moves 6-10)
Each movie here is equivalent to the ‘do nothing’ movie.

MM6

MM10

MM7

MM9

MM8

Thus to check our proposed invariant of link cobordisms is
well defined, we ‘only’ need to check that we assign the same
chain map (up to homotopy equivalence!) to either side of each
movie move.

Theorem (Bar-Natan, 2004)
The two sides of a movie move agree up to sign!

Theorem (Jacobsson, 2002)
The signs don’t come out right. You can shuffle them around, but not
make them go away.

... and it ought to be!

It would be nice if Khovanov homology really were functorial.
I Functors are good!
I You could identify generators in the Khovanov homologies

calculated from two different presentations of a knot.
I Khovanov’s construction of a categorification of the

coloured Jones polynomial would be easier.
I You could build a doubly monoidal 4-category out of

Khovanov homology.

How do we fix it?

To fix the sign problems in Khovanov homology, we’ll make
two modifications to the ‘target category’ of cobordisms.
disorientations Objects and cobordisms will be ’piecewise

oriented’, with ’disorientation lines’ where the
orientations disagree.

confusions Extra morphisms called ‘confusions’ fix some
defects in the category, and make proofs
manageable. They are ‘spinorial’ objects.



Disorientations

We’ll replace the unoriented cobordism category previously
used with a category of ‘disoriented cobordisms’.

Objects Non-crossing arcs embedded in a disc, each
piecewise oriented. Each ‘disorientation mark’
separating oppositely oriented intervals also has a
preferred direction.

Morphisms Surfaces are piecewise oriented, with
‘disorientation’ lines marking the boundaries
between regions with opposite orientations. Each
disorientation line has a ‘fringe’, indicating a
preferred side.

Example

In the oriented regions, we impose the usual cobordism
relations. We also need some rules for removing closed
disorientation lines, and reconnecting parallel disorientation
lines.

Disorientation relations

Fix a parameter ω, such that ω4 = 1.
I At ω = 1, we recover the old theory by forgetting all

orientation data. (We also recover the sign problems!)
I At ω = i , we’ll have functoriality!

Introduce some relations on disorientations:

= ω

= ω−1

= ω−1

These are consistent!

Modifying the tangle invariant

Now tangles are mapped to (up-to-homotopy) complexes of
disoriented cobordisms. It’s obvious where to put the seams in,
if we want to preserve orientation data away from crossings.

� //

(
• // q // q2

)

� //

(
q−2 // q−1 // •

)

Disorientation marks near a crossing face to the right.



Theorem (M&W)
This is still an invariant of tangles. We’ll see all the homotopy
equivalences for Reidemeister moves soon!
It not obvious at this point what the relationship is with the old
theory. We expect that it will be equivalent for knots and links,
but different for tangles. This is only based on some small
examples, however!

Movie moves

Now we need to check 15 movie moves. These come in several
types.

Inverses These almost trivial moves insist that the time
reverse of a Reidemeister move is also its inverse.

Circular clips These ’circular’ clips should be equivalent to the
identity. These include the 3 ‘hard’ clips that
involve a type III Reidemeister move.

Non-reversible clips These pairs of clips should be equivalent,
when read either up or down.

Inverse moves

MM1 MM5MM2 MM4MM3

These are boring; we know these are identities, because the two
successive steps are a homotopy equivalence and its inverse.

MM6

MM10

MM7

MM9

MM8

These are ‘hard’; moves 6, 8 and 10 involve the third
Reidemeister move.



MM13 MM14 MM15MM11 MM12

I Each pair of clips should give the same map, whether read
up or down.

I These ones don’t seem so bad, but there are lots of sign
problems lurking here!

I Often there’s a sign problem one way but not the other.

Jacobsson’s sign tables

Jacobsson reported sign problems in almost every move!
(Unfortunately he used a different numbering.)

MM J] ±
6 15 -
7 13 +
7 (mirror) 13 -
8 6 -
8 (mirror) 6 +
9 14 -
9 (mirror) 14 +
10 7 +

MM J] ↓ ↑
11 9 + +
12 11 - +
12 (mirror) 11 + +
13 12 - +
13 (mirror) 12 + -
14 8 + -
15 10 - +

We can calculate the corresponding table for the disoriented
theory, as a function of ω.

I At ω = 1, we recover the tables above.
I At ω = i , all the signs agree.

What about all the orientations!?

I At this point is appears we need to check many
orientations of each of these movie moves; up to 16 in the
worst case.

I For now, we’ll ignore this, and just check the signs for one
oriented representative of each movie move.

I Later, the introduction of ‘confusions’ will deal with the
rest.

Bar-Natan’s proof

Bar-Natan gave a simple proof that Khovanov homology is
well-defined ’up-to-sign’.

I Certain tangles are simple, in that the automorphism group
of the associated complex consists only of multiples of the
identity.

I Each of movie moves 1-10 starts and ends with a ‘simple
tangle’, and so must be a multiple of the identity.

I (Movie moves 11-15 can be done easily by hand.)
In our situation, many small tangles are still ‘simple’ in this
sense, although now there are more units in our coefficient
ring: ±1,±i . We’ll make use of this often.



Detecting the sign

Bar-Natan’s result ensures that movie moves are well-defined
up to sign. We can relatively easily detect this sign.

I Cobordisms between loopless diagrams are all in
non-positive degree.

I Because of the grading shifts in the definition of Khovanov
homology, homotopies must be in strictly positive degree.

I Not many homotopies are possible. We call a direct
summand of an object in a complex homotopically isolated if
there are no possible homotopies in or out.

Example

The initial (and final) frame of MM8 is , whose associated

complex is

q // q2

Neither of the objects have loops, so both objects are isolated. If

f : → is homotopic to the identity, it must be the
identity on the nose; f − I = dh + hd = 0.
We can often detect the sign associated to a movie move by
choosing an isolated summand in the complex, and observing
its image under the movie move.

Calculations

It’s now time to do the real work! We need to
I calculate explicit chain maps corresponding to

Reidemeister moves.
I These are unique up to a unit, by Bar-Natan’s result.
I We can easily write these down for the R1 and R2, but R3

will take some work; we’ll use Bar-Natan’s cone
construction to organise this.

I detect the signs for each movie move, in at least one
orientation,

I and explain away all the other orientations!

Twist maps

The twist maps implement the Reidemeister I moves. There are
four variations.

Positive right twist
u+r

++

t+r

kk

Positive left twist
u+l

++

t+l

kk

Negative right twist
u−r

++

t−r

kk

Negative left twist
u−l

++

t−l

kk



The positive right twist map is

,,

(
//

u+r





)

--

( )t+r

MM

where t+r and u+r are given by

t+r =
1

2

(
− ω−2

)

u+r =

Tuck maps

RIIa The upper strand can be on the left or the right.

R2a
−1
1

11

R2a1pp
R2a2 ..

R2a
−1
2

mm

RIIb The upper strand can go from the positive
crossing to the negative crossing, or vice versa.

+-
R2b

−1
1

11

R2b1pp

+-
R2b

−1
2

11

R2b2pp

RIIa maps RIIb maps

+-



The cone construction, and RIII

Obtaining the RIII map takes some work! We follow through
Bar-Natan’s proof of RIII invariance, keeping track of the
explicit homotopy equivalence being constructed.

Lemma
The RII moves are strong deformation retracts.

Lemma
If f : A• → B• is a chain map, and r : B• → C • is a strong
deformation retract, C (rf ) ' C (f ).

Lemma
Each side of the RIII move can be realised as a cone over the morphism
switching between two smoothings of the ‘central’ crossing.

We can then compose this morphism with the ‘untuck’ move, a
strong deformation retract. Doing this to either side of the RIII
move, we obtain the same cone!

Putting this together, we have



MM13

Each
side of MM13 consists of a twist move (t+r and
t+l respectively) followed by a morse move.
Reading down the left side, we get

1

2

 − ω−2


and on the right

1

2

−ω2 +


Thus we see the two sides of MM13 differ by a sign of −ω2!

MM10

Look at the initial frame. The associated complex has one object
in homological degree 0; the object we obtain from the ‘positive
smoothing’ of each of the four crossings, and it’s homotopically
isolated:

We just need to calculate its image under the movie.

Happily, the cone construction tells us that the ‘all positive
smoothings’ diagram on one side of a Reidemeister III move is
taken, with coefficient one, to the ‘all positive smoothings’
diagram on the other side.

Thus the sign of MM10 is 18 = 1.

MM8

MM8 is the second hardest of the movie moves involving RIII,
but it turns out to barely depend on the details of the RIII map.
We calculate the image of a homotopically isolated element of
the initial complex.



Following the maps around the circular movie, starting at the
left, we obtain the following composition:

Again, the disoriented theory gets the sign right!

Theorem (M&W)
All the movie moves come out right in at least one orientation. At
ω = 1 we see the sign problem Jacobsson observed, but at ω = i movie
moves really are equivalences.
What about all the other orientations?

Confusions

The disoriented cobordism category has some defects.
I There are no cobordisms from the empty diagram to a

circle with two clockwise disorientation marks.
I If we extend the invariant to disoriented tangles, there’s no

nice equivalence allowing us to slide a disorientation mark
past a crossing.

Introducing some new morphisms called ‘confusions’ solve
both of these problems.



Definition
Confusions are points on a disorientation line at which the
‘fringe’ changes side. They have a spin framing, recorded with
a (possibly twisted) ribbon connecting the confusion to a
‘reference framing’.
Thus the simplest appearance of a confusion is

This is a map between two disoriented strands, which changes
the preferred direction of the disorientation mark.

Confusion rules

We can create and annihilate confusion pairs, according to the
following rules.

= = − =

Example

= = = − = −

We can now prove that there is a isomorphism of complexes
which allows us to slide a disorientation mark through a
crossing. (At the expense of an overall grading and degree
shift.)

The disorientation slide isomorphisms commute with
Reidemeister moves. (Warning – this hasn’t been checked
carefully!)

Now it’s easy to show all the other orientations of movie moves
are equivalent to the ones we’ve checked.

Example



Recovering the original theory

Theorem
The complex associated to a knot or link is isomorphic to the complex
constructed in the original theory.

Proof.
For each disoriented circle, fix an isomorphism with both the
anticlockwise and clockwise oriented circles. (This involves
up-to-sign choices). In the anticommutative cube associated to
a knot, replace each diagram, using these isomorphisms, with a
diagram in the ‘standard’ orientation; the orientation of a circle
is determined by its nesting depth. This cube differs from the
cube in the original theory simply by a sprinkling of units, and
so gives an isomorphic complex.

Decategorifying

I Our original motivation was to find a suitable modification
of Bar-Natan’s cobordism category which ‘decategorified’
to the disoriented su2 skein theory. (See, for example,
Kirby and Melvin.)

I There we have the relation

= −

reflecting the fact that the standard representation of su2 is
anti-symmetrically self-dual.

I To recover this in our theory, we introduce an additional
Z/2Z grading on morphisms; the parity of the number of
confusions. Now the decategorification consists of
Z[q, q−1, α] modules, with α2 = 1.

I A confusion provides an isomorphism between the two
diagrams above, but it is in the non-zero Z/2Z grading, so
in the decategorification we have the equation

= α

.

Disorientation relations are consistent

Example
We can create a disorienting seam, split it in two, then
annihilate both parts:

ω = = ω−1 = ω−1ω2

Alternatively, we could create a pair, join them, and then
annihilate:

1 = = ω−1 = ω−1ω

return to disorientation relations
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