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1. Introduction

Khovanov homology is a categorical knot invariant.
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(Actually, this description is over-optimistic; the honest statements are
for links in B3 rather than S3. We’ll return to this later.)

The definition is combinatorial. We choose presentation of links (in terms
of crossings), isotopies (in terms of Reidemeister moves) and 2-isotopies (in
terms of Roseman/Carter-Saito movie moves), and associate appropriate al-
gebraic data to the pieces, along with instructions for assembling the pieces.

In fact, Khovanov homology is somewhat stronger than the diagram above
indicates. In the second row, we can instead write

cobordisms
Kh−−→ chain maps

H∗−−→ linear maps
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How do we build a 4-manifold invariant out of these pieces? With the
right language in place, there’s an idiomatic construction. The above data
is sufficient to build a “disklike” 4-category, and then we can follow a stan-
dard recipe to produce an invariant of 4-manifolds. I’m not going to at-
tempt to describe in general what a disklike 4-category is, or give the recipe
in full generality. (Although you can find this in our “Blob complex” pa-
per, arXiv:1009.5025, or by coming to Teichner’s course this semester.)
Instead, I’ll just describe directly the 4-category associated to Khovanov
homology, and implement the recipe for this particular example.

2. 4-categories

It’s actually pretty exciting that Khovanov homology lets us build a 4-
category. In fact, this is one of the very few constructions of a higher (≥ 4)
category that is ‘dimension-specific’. (That is, you couldn’t just substitute
7 for 4 everywhere and obtain a 7-category!)

2.1. Tangles and cobordisms. To begin, let’s first describe the closely
related 4-category T of tangles and cobordisms. A disklike 4-category should
associate a set to each k-ball with an appropriately decorated boundary, for
each 0 ≤ k ≤ 4. We’ll describe the first few levels before actually explaining
what ‘appropriately decorated’ means.

T0(•) = {•}

T1( ) = { }

T2
( )

=

{ }
That is, T associates to each 0-ball the singleton set containing that 0-ball,
and similarly for each 1-ball. To any arbitrary 2-ball (i.e. any manifold
which happens to be homeomorphic to the standard 2-ball), T associates
the collection of finite subsets of the interior.

So far, we haven’t had any decorations on the boundaries. Once we reach
3-balls, T not only associates a set to each 3-ball, but also to each 3-ball
decorated with a finite subset in its boundary. In particular, it associated
the set of all tangles with the given boundary points.

T3


 =




Note that these tangles are actual particular embedded tangles, and are not
considered up to isotopy.

http://arxiv.org/abs/1009.5025
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At this point we can stop and explain what the boundary conditions are
in general. For each k-ball, consider some way of splitting the boundary
into two or more (k − 1)-balls, and labelling each of these with an element
of the corresponding set generated by Tk−1. The labels must agree on the
boundaries between the (k − 1) balls. This constitutes a possible boundary
condition for the k-ball, although later we’ll tweak this slightly to remove
the dependence on the actual splitting.

Thus T4 should associate some set to every 4-ball with a link in its bound-
ary (because if we split the boundary into 3-balls, each must be labelled by
some tangle, and at the boundaries these tangles must match up). For the
4-category of tangles and cobordisms we associate the set of all surfaces
bounding the given link, modulo isotopy fixing the boundary. Recall that
we didn’t allow isotopies at lower dimensions; this is an instance of the
common theme that ‘top level morphisms’ satisfy different axioms than the
lower ones.

Note in this example that the Tk are actually functorial : given a homeo-
morphism of a k-ball, there is an obvious isomorphism between the associ-
ated sets, given by carrying everything along. For a general n-category we’d
insist on this as part of the data.

So far we haven’t actually defined a particularly interesting example —
you might quickly realise that for any 0 ≤ k ≤ n there is an n-category of
codimension k submanifolds, which generalises this n = 4, k = 2 example.

We’ve now essentially specified the data of our 4-category. What structure
do these sets Tk(X) have? Given

• two k-balls X and Y , with

∂X = S ∪ U ∂Y = Sop ∪ V

where S,U and V are k − 1 balls, and
• fields x ∈ Tk(X), y ∈ Tk(Y ) such that

∂x = s • u ∂y = s • v

where s ∈ Tk−1(S), u ∈ Tk−1(U), v ∈ Tk−1(V ),

we notice that there’s a natural way (just gluing codimension 2 submanifolds
together!) to glue the fields x and y together, to obtain a field x • y in
Tk(X ∪S Y ). Note that this gluing operation is strictly associative as we
glue more balls together (unlike in many definitions of higher categories,
which keep track of more and more associators).

2.2. The Khovanov 4-category. We define the lower levels of the Kho-
vanov 4-category exactly as we did for the category of tangles and cobor-
disms:

Khk = Tk for 0 ≤ k ≤ 3.

All we change is the definition of Kh4 — to a 4-ball with a link in its
boundary, we simply associate the Khovanov homology of the link! (Note
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that values of Kh4 are vectors spaces rather than sets as before; this is a
4-category enriched in vector spaces, in fact doubly graded vector spaces.)

We now have more work to do, however, to specify the gluing operation on
4-balls. Now that the definition is not just topological, the gluing operation
has to reflect some of the algebraic structure from Khovanov homology.
What we need are linear maps

Kh

(
Tu Ts

)
⊗Kh

(
T̄s Tv

)
→ Kh

(
Tu Tv

)
for arbitrary tangles Tu, Ts and Tv. These linear maps can be induced by
the cobordism that cancels Ts with T̄s. Here’s an example:

→ → →

One can verify, using the functoriality of Kh, that this defines an associative
gluing rule.

In fact there’s a functor T → Kh, which is just the identity up to dimen-
sion 3, and sends

Σ : ∅ → L︸ ︷︷ ︸
a surface bounding a link

7→ Kh(Σ) : C→ Kh(L)︸ ︷︷ ︸
essentially an element of Kh(L)

The existence of this functor tells us that we can think of the Khovanov
4-category as a braided monoidal 2-category.

Now, what do we do with a 4-category?

3. 4-manifold invariants

Given a 4-manifold W , we define the poset of ball decompositions D(W ).
The elements of the poset are ways to write W as a union of balls, W =⋃

i∈I Bi. A technical detail: there should exist a sequence of maps,
⊔
Bi →

W1 → W2 → · · · → Wk = W., so that each map glues together a pair of
opposite codimension 0 submanifolds of the boundary. The arrows in the
poset are ways to glue some of the balls together into a larger ball.

Any 4-category then defines a functor from the poset of ball decompo-
sitions. In the case of Khovanov homology, enriched in vector spaces, we
get

Kh : D(W )→ Vec

Each ball decomposition is sent to the tensor product of the corresponding
vector spaces for the individual balls. In the presence of boundary condi-
tions, we also need to take an (enormous!) direct sum over all consistent
boundary conditions. For Khovanov homology, this means that for each ball
decomposition, we look at the boundaries of the 4-balls and see that these
boundaries can be divided up into 3-ball along which the 4-balls are being
glued. In each of these 3-balls we draw some tangle, so that each 3-sphere
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now contains a link. To this picture we associate the tensor product of
the Khovanov homologies of all the links, and to the ball decomposition we
associate the direct sum of the tensor products, over all ways of drawing
tangles in the boundaries. Corresponding to arrows in the poset we have
maps of the corresponding vector spaces, simply given by the gluing maps
of the 4-category.

Finally we’re ready to define the actual invariant Kh−→(W ) as the colimit

of this functor. Thus we assemble a huge vector space, which is a direct sum
indexed by D(W ) of the values of Kh, modulo the relation that following
any arrow of the poset gives an identification. That is,

Kh−→(W ) =

 ⊕
b∈D(W )

HKh(b)

 /{x−Kh(g)(x)|x ∈ Kh(b), g : b 7→ b′}

You might rightly worry about this definition: we start with such a huge
and flabby infinite dimensional space, is there any hope that the quotient
collapses down to something small enough (finite dimensional even?) to
be computable, but not just trivial? There’s some evidence we should be
optimistic. It’s not too hard to establish the following to two facts

Lemma 3.1. Kh−→(S4) = C

Lemma 3.2. Kh−→(B4;L) = HKh(L)

(That is, the TQFT invariant of the 4-ball with a link in its boundary
is just the Khovanov homology of the link. It’s easy to see that it must be
some quotient of the Khovanov homology, and slightly harder to see that
it’s no smaller.)

The other reason is hope that this definition is a reasonable one is that it’s
just a special case of a uniform recipe that encompasses (the codimension 1
part of) Turaev-Viro invariants, Reshetikhin-Turaev invariants, Dijkgraaf-
Witten invariants and more.

For example, given a 2-category and a surface, this construction pro-
duces a vector space, which is the usual Turaev-Viro space; obtaining the
3-dimensional part of the theory requires more work, and more conditions
on the 2 category. We don’t expect that construction to have an analogue
for Khovanov homology (i.e. giving numerical invariants of 5 manifolds),
although c.f. Witten’s recent paper arXiv:1101.3216.

Any invariant of manifolds built in this way from an n-category C auto-
matically satisfies some nice gluing formulas. Briefly, for an (n−1)-manifold
Y , we can look at the invariant C−→(Y × I), and realise that this vector space

actually has the structure of a category: objects are given by the bound-
ary conditions on Y × {0} and Y × {1}, and composition is via gluing two
copies of I end to end. Moreover, if an n-manifold W has a copy of Y in its
boundary, then (

−→
C)(W ) is naturally a module over C−→(Y × I): the module

action corresponds to gluing a collar on to Y . If W has two copies of Y in

http://arxiv.org/abs/1101.3216
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its boundary, then we have the following gluing formula

C−→(W
⋃
Y

) ∼= C−→(W )
⊗
C−→(Y )

.

We’ve tried doing some small calculations based on this formula, for B3×S1,
with some simple links in the boundary.

I’ll just mention briefly that there’s an integer-valued invariant (Ras-
mussen’s s-invariant) that can be extracted from the usual Khovanov ho-
mology of a link. This invariant gives a lower bound for the genus of a
surface Σ ⊂ B4 bounding the link. It appears that this result will generalize
fairly directly to the general case of a link in the boundary of an arbitrary
4-manifold.

4. Functoriality in S3

At this point we have to go back, and admit that the description of Kho-
vanov homology given at the beginning was over-optimistic. We’re going to
have to get our hands dirty with some grungy details. In practice, the reason
why Khovanov homology (for links in the 3-sphere) is computable is that it
satisfies an exact triangle. Unfortunately, in our present understanding this
exact triangle doesn’t play well with functoriality.

Historically, the first version of Khovanov homology was for unoriented
links, but it suffered from an unfortunate defect: it wasn’t actually functo-
rial, just “functorial up to sign”. This means that the chain map associated
to a cobordism of knots is not sufficiently well defined. If we modify that
cobordism by an isotopy, the new chain map might not be homotopic to
the old one, but instead could be homotopic to minus the old one. In this
setting at least it’s easy to describe the exact triangle.

Kh

( )

Kh

( )
Kh

( )

Each of the maps in the triangle is in fact induced by the obvious cobor-
dism. Here the fact that these maps are only defined up to a sign is not

so problematic; we can still calculate the isomorphism type of Kh
( )

from the (up to sign) map

Kh

( )
→ Kh

( )
.
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Later, with David Clark and Kevin Walker, we modified the definition
(now an invariant for oriented links) and fixed this problem. There’s still
one big problem, however. At the time, we only thought about links in B3,
rather than in S3. If you stop and think about the TQFT constructions
above, you’ll see that functoriality in S3 is essential. But what difference is
there, actually? Well, up to an isotopy, every link avoids the north pole of
S3, so we can just extend the usual definition of the Khovanov complex at the
level of links. Similarly every isotopy or cobordism or links generically avoids
the north pole, so there’s no problem associated chain maps to these. The
difficulty arise because 2-isotopies do not avoid the north pole; in particular
there are certain pairs of cobordisms that are not isotopic to each other in
B3, but become so in S3. Thus, to work in S3 we have to be sure that these
cobordisms induce homotopic chain maps.

In fact, all we need to check is that the chain maps induced by the fol-
lowing movies are homotopic, for any tangle T with 2 boundary points.

At this point, this seems hard!
Our hope is to extend the definition of Khovanov homology to so called

‘disoriented links’; we expect that given such an extension, there will be an
exact triangle that is nice and functorial. Using this exact triangle and the
five lemma, we’ll be able to proved that these movies give homotopic maps
by inducting on the number of crossings in the tangle T .

What are ‘disoriented links’, and why do we expect them to be helpful?
We haven’t actually mentioned this so far, but Khovanov homology is closely
related to the Jones polynomial, via

J(L)(q) =
∑
i,j

(−1)iqj dimHKhi,j(L),

and hence to the representation theory of Uq(su2). The standard represen-
tation of SU(2) is self-dual, and in particular antisymmetrically self-dual.
This means that in any diagrammatic version of the representation theory,
we expect to see a box implementing this isomorphism, which might look
something like
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and which picks up a minus sign under 180 degree rotation:

= −

A disoriented link is then a ‘piecewise oriented’ link, along with a choice
at each break of a choice of side.

Our fix to Khovanov homology incorporated a certain categorification of
these diagrammatics in the construction, but it remains unclear if we can
actually extend the definition to allow disorientations on the input links. If
so, we expect that there will be an exact triangle

Kh

( )

Kh

( )
Kh

( )

and hope that this exact triangle will be natural with respect to cobordisms
outside the indicated region.

5. Does Kh(W 4) have an exact triangle?

[[I ran out of time to write about this in detail ...]]
No, it appears not; we got as far in our B3 × S1 calculations to see this

before giving up. This isn’t unexpected, because our TQFT construction
is not an exact functor. It must be time to learn about the blob complex,
which is a ‘derived analogue’ of the TQFT construction, and where the exact
triangle for Khovanov homology should survive as a spectral sequence.


