
1 Towards functional calculus

The most powerful tool for describing linear transformations in finite dimensions is the theory
of eigenvalues and (generalized) eigenvectors.

What can we say about linear transformations in infinite dimensions?
First, why do we want to say anything at all?
1. Several of the essential equations of fundamental physics (e.g. Schrödinger’s equation from

quantummechanics, the heat equation, but not Einstein’s equations from general relativity
or the Navier-Stokes equations from fluid mechanics) are linear differential equations, and
an abstract understanding of the corresponding linear operators allows us to understand
the solutions to these equations.

2. It leads naturally to the study of Banach algebras,C∗-algebras, and von Neumann algebras,
essential tools in the study of quantum mechanics and quantum field theory.

3. It’s a beautiful mathematical theory, and a great starting place to learn functional analysis
and operator algebra.

1.1 Functional calculus

Until we’ve set up a lot of definitions, we won’t be able to precisely state the infinite dimensional
analogues of the theory of eigenvalues and eigenvectors. However, we can ask already a very
closely related question! (Why it’s so closely related, we’ll see along the way.)

As soon as we know how to diagonalize a matrix,M = UDU −1, we can also take functions of
that matrix, by making the definition f (M) = U f (D)U −1, where for a diagonal matrix D, f (D)
means taking f of each diagonal entry.

In fact, suppose we knew how to take arbitrary functions of some matrix M (but hadn’t yet
tried to diagonalize it). From these functions we could actually recover all the information coming
from diagonalization. For example, if we wanted to know ifM had the number λ as a eigenvalue,
we would take the function

f (x) =

1 if x = λ

0 otherwise,

and look at f (M). We see that f (M) is the zero matrix exactly if λ is not an eigenvalue! (And
otherwise, it’s the projection onto the λ eigenspace.)
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This somewhat abstract idea — that we understand a linear transformation exactly if we can
apply functions to it — motivates the main question for this course.

Let’s write T (H ) for the set of all linear transformations of some infinite dimensional vector
spaceH .

Recall an algebra is a vector space which additionally has a multiplicative structure.
Example 1.1.

• Complex-valued functions f : C → C form an algebra under point-wise multiplication,
and by ‘an algebra of functions’ we mean some subalgebra of this one.

• The most important example of an algebra of functions is the polynomials.
• The linear transformations ofH form an algebra under composition.

Question 1. Given a linear operator T on an infinite dimensional vector space H , and an algebra
of functions U , when can we produce a homomorphism of algebras Ψ : U → T (H ), sending the
identity function f (z) = z to T ?

Such a homomorphism of algebras is called a ‘functional calculus’. Recall that an algebra ho-
momorphism is a linear map respecting multiplication, so Ψ(f д) = Ψ(f )Ψ(д), where on the left
hand side we mean pointwise multiplication of functions, and on the right hand side composition
of linear transformations.

In this course, we’ll prove increasingly powerful theorems giving partial answers to this ques-
tion. These theorems will, at the same time, provide analogues of the theory of eigenvalues in
finite dimensions.

1.2 Hilbert spaces

Infinite dimensional vector spaces, in full generality, are hopelessly intractable objects — so we’re
going to begin by assuming a lot of additional structure. We’ll first study Hilbert spaces, and their
linear transformations. At the end of the course we’ll move to Banach spaces: there’s less to work
with, so we can’t prove as much, but for some problems they are essential.

Before we turn to the details of Hilbert spaces, I want to point out a few relatively easy facts,
which in fact provide the core tools for creating functional calculuses.

Theorem 1.2. For any linear operator T on any vector space, there is a functional calculus for the
algebra of polynomial functions.
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Proof: We send a polynomial p(x) = ∑k
i=0 aix

i to p(T ) = ∑k
i=0 aiT

k , where T k means the k-fold
composition of T with itself. It’s easy to verify this is an algebra homomorphism. □

Theorem 1.3 (Weierstrauss approximation theorem). Any continuous function on [a,b] can be
uniformly approximated by polynomials.

We’ve always got a functional calculus for polynomials, and polynomials are good enough
to approximate arbitrary continuous functions (at least on bounded intervals). This naturally
suggests an approach to defining a functional calculus for all continuous functions. We just
need to develop of a good theory of limits of linear transformations We’d like this theory to be
powerful enough so that if {pn} is a sequence of polynomials approximately some continuous
function f , and we try to define f (T ) as the limit of pn(T ), then this actually defines an algebra
homomorphism. (Thiswill onlywork for sufficiently niceT , becausewe need towork on bounded
intervals of R.)

Hilbert spaces provide the most excellent example of such a theory of limits of linear trans-
formations, and so we will begin our study there.
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