6 Fundamental solutions

The Fourier transform is the perfect tool for finding fundamental solutions of constant coefficient differential operators in \mathbb{R}^{n}

Consider the problem of solving

$$
P(D) u=f
$$

in \mathbb{R}^{n}, where D stands for $\left(D_{1}, \ldots, D_{n}\right), D_{i}=-i \partial_{x_{i}}$ is the partial derivative in the i th direction, and P is a polynomial. We suppose that $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ is given and want to find a solution u. We might also want to know, for example, if $f \in L^{2}$ implies that $u \in L^{2}$.

If there is a solution, then Fourier transforming, we have

$$
P(\xi) \hat{u}=\hat{f}
$$

Therefore, if $P(\xi)$ never vanishes, there is a solution $\hat{u}(\xi)=P(\xi)^{-1} \hat{f}(\xi)$ to this equation. Taking the inverse Fourier transform we get our solution u

Moreover, using our results on convolutions, if $\hat{u}(\xi)=P(\xi)^{-1} \hat{f}(\xi)$, then $u=\mathcal{G}\left(P(\xi)^{-1}\right) * f$, so if we can compute $\mathcal{G}\left(P(\xi)^{-1}\right)$ then we get a solution without explicit mention of the Fourier transform.

6.1 The Laplacian

Let's consider the most important PDE of all - Laplace's equation $-\Delta u=f$. Here Δ is the Laplacian, given by

$$
\Delta f(x)=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x)
$$

If we try to solve $-\Delta u=f$ in this way, we get $\hat{u}(\xi)=|\xi|^{-2} \hat{f}(\xi)$, and the singularity at $\xi=0$ causes some difficulties. To avoid these let me look instead at $\left(-\Delta+\lambda^{2}\right) u=f$ where $\lambda>0$. Now $P(\xi)=\lambda^{2}+|\xi|^{2}$ has no zeroes. Thus $P(\xi)^{-1} \in B C^{\infty}\left(\mathbb{R}^{n}\right)$. Can we compute the inverse Fourier transform of $P(\xi)^{-1}$?

Let's do this just in dimension 3, which is interesting both because it describes our physical world and because we can compute the inverse Fourier transform exactly. Note that in dimension 3, $\left(|\xi|^{2}+\lambda^{2}\right)^{-1}$ is in L^{2}, so the inverse Fourier transform is well defined, but it is not in L^{1}, so it is not defined as a convergent integral. Rather, it is defined as a limit of the inverse Fourier transform of Schwartz functions.

1

$$
\begin{aligned}
& \mathcal{G}\left(\left(|\xi|^{2}+\lambda^{2}\right)^{-1}\right)= \\
& \quad \lim _{R \rightarrow \infty}-i(2 \pi)^{-2}|x|^{-1} \int_{-R}^{R} e^{i|x| r} \frac{1}{r^{2}+\lambda^{2}} r d r .
\end{aligned}
$$

Next I claim that the function

$$
w_{R}(x) \stackrel{\text { def }}{=}-i(2 \pi)^{-2}|x|^{-1} \int_{Y} e^{i|x| r} \frac{r}{r^{2}+\lambda^{2}} d r
$$

goes to zero in $L^{2}\left(\mathbb{R}^{3}\right)$ when γ is the contour from $r=R$ to $r=-R$ anticlockwise along the circle $|r|=R$ in the complex r-plane. In fact, we can also bound $w_{R}(x)$ by (6.1), using a similar argument as for v_{R}, from which the claim follows.

We now have a closed contour around which we integrate the analytic function $e^{i|x| r} r\left(r^{2}+\right.$ $\left.\lambda^{2}\right)^{-1}$. By Cauchy's residue theorem, the integral is given by the $2 \pi i$ times the residue of the function at its unique pole in this region, which is at $r=i \lambda$. Hence the value of the integral is given by

$$
-i \cdot 2 \pi i \cdot|x|^{-1}(2 \pi)^{-2} \cdot \frac{i \lambda e^{-\lambda|x|}}{2 i \lambda}=\frac{1}{4 \pi} \frac{e^{-\lambda|x|}}{|x|} .
$$

We have thus shown that

$$
\mathcal{G}\left(\left(|\xi|^{2}+\lambda^{2}\right)^{-1}\right)=\frac{1}{4 \pi} \frac{e^{-\lambda|x|}}{|x|} .
$$

So, the solution of the equation $\left(-\Delta+\lambda^{2}\right) u=f$ on \mathbb{R}^{3} is

$$
u(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{e^{-\lambda|x-y|}}{|x-y|} f(y) d y .
$$

If we formally take the pointwise limit $\lambda \rightarrow 0$ in this integral, we obtain the putative formula

$$
\begin{equation*}
u(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} f(y) d y \tag{6.2}
\end{equation*}
$$

for 'the' solution to $-\Delta u=f$. This can be justified when, for example, f is compactly supported and L^{2}. Then u given by (6.2) is the unique solution to this equation that tends to zero at infinity. However, generally u will not be in L^{2}. In fact, we will have $u(x)=c /|x|+O\left(|x|^{-2}\right)$ as $x \rightarrow \infty$ with c usually $\neq 0$.

To compute it, choose a function $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{\geq 0}\right)$ which is equal to 1 on the interval $[0,1]$ and is zero outside $[0,2)$. Then the function $\phi(|\xi| / R)\left(|\xi|^{2}+\lambda^{2}\right)^{-1}$ is in $\mathcal{S}\left(\mathbb{R}^{3}\right)$ for all $R>0$ and converges in L^{2} to $\left(|\xi|^{2}+\lambda^{2}\right)^{-1}$ as $R \rightarrow \infty$.

Now consider the integral

$$
\mathcal{G}\left(\phi(|\xi| / R)\left(|\xi|^{2}+\lambda^{2}\right)^{-1}\right)(\xi)=(2 \pi)^{-3} \int e^{i x \cdot \xi} \frac{\phi(|\xi| / R)}{|\xi|^{2}+\lambda^{2}} d \xi
$$

Changing to polar coordinates, this is

$$
(2 \pi)^{-3} \int_{0}^{\infty} \frac{\phi(r / R)}{r^{2}+\lambda^{2}} r^{2} d r \int_{0}^{\pi} e^{i|x| r \cos \theta} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi
$$

The φ integral is trivial and gives a factor of 2π. To do the theta integral, let $u=-\cos \theta$. Then $\sin \theta d \theta=d u$ and we obtain

$$
-i(2 \pi)^{-2}|x|^{-1} \int_{0}^{\infty}\left(e^{i|x| r}-e^{-i|x| r}\right) \frac{\phi(r / R)}{r^{2}+\lambda^{2}} r d r .
$$

We can write this as an integral from $-\infty$ to ∞ :

$$
-i(2 \pi)^{-2}|x|^{-1} \int_{-\infty}^{\infty} e^{i|x| r \mid r} \frac{\phi(|r| / R)}{r^{2}+\lambda^{2}} r d r .
$$

We want the limit of this integral as $R \rightarrow \infty$. We can check that

$$
v_{R}(x) \stackrel{\text { def }}{=}-i(2 \pi)^{-2}|x|^{-1} \int_{|r| \geq R} e^{i|x| r} \frac{\phi(r / R)}{r^{2}+\lambda^{2}} r d r
$$

tends to zero in $L^{2}\left(\mathbb{R}^{3}\right)$ (as a function of x) as $R \rightarrow \infty$. In fact the integral can be bounded by $C|x|^{-1}$, or, by integrating by parts (integrate the exponential and differentiate the rest), by $C|x|^{-2} R^{-1}$. Therefore the function $v_{R}(x)$ can be bounded by

$$
\left\{\begin{array}{l}
\frac{1}{|x|}, \text { if }|x| \leq R^{-1} ; \tag{6.1}\\
\frac{1}{|x|^{2} R}, \text { if }|x| \geq R^{-1}
\end{array}\right.
$$

and one can check that the L^{2} norm here is $O\left(R^{-1 / 2}\right)$, which certainly tends to zero as $R \rightarrow \infty$. Thus we can throw out the contribution to the integral for $|r|>R$. This expression no longer depends on our cutoff function ϕ at all, since ϕ is identically 1 for $|r| \leq R$. We obtain

Let us check directly that if $f \in C_{c}^{2}\left(\mathbb{R}^{3}\right)$, then u given by (6.2) satisfies $\Delta u=f$: We compute

$$
\begin{gathered}
-\Delta_{x} \int \frac{1}{|x-y|} f(y) d y=-\Delta_{x} \int \frac{1}{|y|} f(x-y) d y \\
=\int \frac{1}{|y|}\left(-\Delta_{x} f(x-y)\right) d y \\
=\int \frac{1}{|y|}\left(-\Delta_{y} f(x-y)\right) d y \\
=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{3} \backslash B(0, \epsilon)} \frac{1}{|y|}\left(-\Delta_{y} f(x-y)\right) d y \\
=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{3} \backslash B(0, \epsilon)} \sum_{i} \partial_{y_{i}} \frac{1}{|y|}\left(\partial_{y_{i}} f(x-y)\right) d y+O(\epsilon)
\end{gathered}
$$

The $O(\epsilon)$ term is from the boundary integral, and we discard it since we are taking the limit $\epsilon \rightarrow 0$. Now the integrand is equal to

$$
\left(\Delta_{y} \frac{1}{|y|}\right) f(x-y)-\sum_{i} \partial_{y_{i}}\left(\left(\partial_{y_{i}} \frac{1}{|y|}\right) f(x-y)\right)
$$

and the first term vanishes since $\Delta_{y} \frac{1}{|y|}=0$ away from the singularity at 0 , while the second term becomes a boundary term using Green's Theorem. So we get

$$
\begin{gathered}
=\lim _{\epsilon \rightarrow 0} \int_{\partial B(0, \epsilon)} \sum_{i} v_{i}\left(\partial_{y_{i}} \frac{1}{|y|}\right) f(x-y) d y \\
=\lim _{\epsilon \rightarrow 0} \int_{\partial B(0, \epsilon)} \frac{1}{|y|^{2}} f(x-y) d y \\
=\lim _{\epsilon \rightarrow 0} \int_{\partial B(0,1)} f(x-\epsilon y) d y \\
=|\partial B(0,1)| f(x)=4 \pi f(x) .
\end{gathered}
$$

- We cannot apply the Δ_{x} operator directly to the $1 /|x-y|$ term in the first line, since the second partial derivatives of $1 /|x-y|$ are not integrable as is required by the DUTIS theorem. If you illegally did this, you would end up proving that $\Delta u=0$, which is false!
- The second line of this derivation shows that if $f \in C^{2}$, with compact support, then $u \in C^{2}$. This can be improved to $f \in C^{1} \Longrightarrow u \in C^{2}$, but it is not true that $f \in C^{0} \Longrightarrow u \in C^{2}$ as you might expect. However, there are two analogous statements that are true: if $f \in L^{2}$, then u has all its second derivatives in L^{2}; and if $f \in C^{\alpha}$, then $u \in C^{2, \alpha}$. (This expresses that u has continuous 2 nd partial derivatives, which are Hölder continuous with exponent α, i.e. satisfy $|f(x)-f(y)| \leq C|x-y|^{\alpha}$.) These statements express the 'ellipticity' of Δ.

6.2 Heat equation

The heat equation on $\mathbb{R}^{n} \times \mathbb{R}_{+}$is the equation

$$
u_{t}(x, t)=\Delta u(x, t), \quad x \in \mathbb{R}^{n}, t>0
$$

upplemented with the initial condition

$$
u(x, 0)=f(x) .
$$

Assume that f is a Schwartz function. Then we can find a solution that is a continuous function of t with values in Schwartz functions of x. Fourier transforming in the x variable but not the t variable (which would not make sense since the solution is only defined for $t \geq 0$) we get

$$
\hat{u}_{t}=-|\xi|^{2} \hat{u}, \quad \hat{u}(\xi, 0)=\hat{f}(\xi) .
$$

This is an ODE in t for each fixed ξ, and the solution is

$$
\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}(\xi, 0)=e^{-|\xi|^{2} t} \hat{f}(\xi) .
$$

Hence, the function u is given by a convolution:

$$
u(x, t)=\mathcal{G}\left(e^{-|\xi|^{2} t}\right) * f .
$$

So we need to know the inverse Fourier transform of $e^{-|\xi|^{2} t}$. But we have already worked this out, and the answer is

$$
\mathcal{G}\left(e^{-|\xi|^{2} t}\right)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t}
$$

To summarize, the solution of the PDE is

$$
u(x, t)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-|x-y|^{2} / 4 t} f(y) d y .
$$

The function $(4 \pi t)^{-n / 2} e^{-|x-y|^{2} / 4 t}$ is called the 'heat kernel' on \mathbb{R}^{n}. It may be regarded as the solution to the heat equation with initial condition $f=\delta_{y}(x)$.

