
7 Dirichlet Problem

Let Ω ⊂ Rn be a bounded open set, where n ≥ 2, and let f : ∂Ω → R be a continuous function.
The Dirichlet problem is to find a continuous function u : Ω→ R such that u is C2 in Ω, with

∆u = 0 in Ω and u |∂Ω = f .

That is,u is harmonic inΩ and continuous up to the boundary, with boundary values f . Physically,
this would represent the equilibrium temperature distribution in a region with fixed temperature
applied at the boundary of the region.

7.1 Dirichlet’s principle

There is an informal idea called Dirichlet’s principle for solving this problem. Consider all func-
tionsu ∈ C2(Ω)∩C(Ω) taking the boundary values f . Choose the one that minimizes the ‘energy’

E(u) =

∫
Ω
|∇u(x)|2 dx . (7.1)

Then, for any C2 function v on Ω, with zero boundary values,

d

dt
E(u + tv) = 0.

The derivative at t = 0 is
2

∫
Ω

∑
i

∇iu(x)∇iv(x)dx .

Integrating by parts which is valid since v has zero boundary values, we find that

0 =

∫
(∆u(x))v(x)dx = 0.

But this implies that ∆u = 0. So the minimizing function is automatically harmonic.

7.2 Problems with Dirichlet’s principle

There are two problems with this as a ‘proof’. One is that we need to show that a minimizer of
the energy E(u) exists. Existence could fail in two possible ways:
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• First, there might be no functions that satisfy the boundary condition and such that E(u) is
finite (let us call these admissible functions) — an example is given in the text on p233. We
shall deal, at least initially, with this problem by defining it away: we shall assume initially
that there is a C1 function F , defined in a neighbourhood of Ω, so that f = F |∂Ω. Then F

restricted to Ω is a function with E(F ) < ∞ satisfying the boundary condition, so there is a
nonempty set of admissible functions over which to minimize the energy.

• Given this, the set of energies of admissible functions clearly has an infimum. However,
that infimum may not be achieved. To deal with this, we need a condition on the boundary
of the domain.

7.3 The strategy

To introduce Hilbert space methods, we use (7.1) as a Hilbert space norm (squared) on a suitable
function space.

To define this Hilbert space, we start with the space of C1 functions on Ω with sesquilinear
form

⟨U ,V ⟩ =
∫
Ω
∇U (x) · ∇V (x)dx (7.2)

which makes sense for allU ,V ∈ C1(Ω), for example. This satisfies all the conditions of an inner
product, except for strict positivity, which requires that ⟨U ,U ⟩ = 0 =⇒ U = 0. However, here
⟨U ,U ⟩ = 0 only implies that U is constant. So we take the quotient H0 of C1(Ω) by constant
functions; on this space, we have a genuine inner product; hence, H0 is a pre-Hilbert space
(satisfying every property of Hilbert spaces except completeness).

Let H be the completion of H0. This is a Hilbert space. It is perhaps not obvious what the
elements ofH actually ‘are’, since they are formally equivalence classes of Cauchy sequences of
elements ofH0. In fact, we only need to know about the subspace of elements ofH that vanish
at the boundary.

Proposition 7.1 (S&S Lemma 4.9 ff.).
(i) Suppose that v ∈ C1(Ω) and vanishes at ∂Ω. Then∫

Ω
|v(x)|2 dx ≤ 1

n
(diamΩ)2

∫
Ω
|∇v(x)|2 dx .

(ii) Let S be the closure inH of the subspace of functions inC1(Ω) vanishing at ∂Ω. Then elements
of S are L2 functions.
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Remark. This is not claiming (and it is not true) that every w ∈ L2(Ω) is an element of S . In fact,
elements of S are ‘somewhat smoother’ than the typical element of L2(Ω). S is a ‘Sobolev space’,
denotedW 1,2

0 (Ω) or H1
0 (Ω).

Generally, W k,p is the set of Lp functions, all of whose ≤ k-th order partial derivatives are
also in Lp . The subscript zero inW 1,2

0 denotes those functions which additionally vanish on the
boundary.

Proof: We first note that if f ∈ C1(I) for some real interval I = [a,b], and f vanishes at one
endpoint of I , say at a, then ∫

I
| f (t)|2 dt ≤ |I |2

∫
I
| f ′(t)|2 dt

which is an application of the fundamental theorem of calculus and Cauchy-Schwarz.
We have

∫ ��f (t)��2 dt ≤ |I | (max ��f (t)��)2. Now

f (t) =

∫ t

a
f (s)ds

≤
∫ t

a
| f (s)|ds

≤
∫
I
| f (s))ds .

Thus ∫ ��f (t)��2 dt ≤ |I | ∫
I
| f ′(s)|ds

≤ |I | |I |
∫
I
| f ′(s)|2ds

by Cauchy-Schwarz.
To prove (i), write x ∈ Rn as x = (x1,x

′) and fix x′; then Ωx ′ = {x1 | (x1,x′) ∈ Ω} is a disjoint
union of open intervals Ij . For each one, we have∫

Ij

|v(x1,x′)|2 dx1 ≤ |Ij |2
∫
Ij

|∇1v(x1,x′)|2 dx1

and summing over j, we get (since |Ij | ≤ diamΩ),∫
Ωx ′
|v(x1,x′)|2 dx1 ≤ (diamΩ)2

∫
Ωx ′
|∇1v(x1,x′)|2 dx1.
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Integrating over x′, and then performing the same estimate in each of the coordinate directions
and then summing, gives (i).

(ii) Let (vn) be a sequence in C1(Ω) all of which vanish at ∂Ω, which is Cauchy in the norm
∥vn∥H =

√
⟨vn,vn⟩ defined in (7.2). Then, by (i), the sequence is also Cauchy in the L2 norm, so

they converge to an L2 function v . The element in H corresponding to the Cauchy sequence
(vn) can be unambiguously identified with v . □

Now, recall that we are assuming the boundary data f is the restriction to ∂Ω of a function
F ∈ C1(Ω). Consider the space of all functions inH0 with boundary data f . This is precisely the
space of functions equal to the sum of F and a function with zero boundary data. That is, it is the
translate S0 + F of the subspace S0 of C1(Ω) functions with zero boundary data by the function
F . Let S be the closure of S0 inH . Then the closure of S0 + F is S + F .

Consider the problem of finding the elementu of S+F of minimum norm. By translating, it is
equivalent to finding the element of S closest to the element −F ∈ H . As we have seen, there is a
unique such element, namely the orthogonal projection PS(−F ) onto S applied to −F . Translating
back again, let

u = F − PS(F ).

This function u is our candidate for the solution to the Dirichlet problem.
There are still two major problems with this:
•We don’t know that u is harmonic. In fact, a priori, u is only L2, so we don’t even know that

u is differentiable, let alone that it satisfies a second order PDE.
• We also don’t know that u attains the boundary data f . And in fact, it need not, without

extra conditions on the boundary.
It turns out, however, that the Hilbert space formalism allows us to resolve these questions.
In what follows, I’ll state the results that solve these problems, but not go through all the

proofs, which appear at the end of the notes. (You can read these if you like; they are good
examples!)

7.4 Weakly harmonic functions

Let us say that an L2 function u is weakly harmonic in Ω if∫
Ω
u(x)(∆ψ (x))dx = 0

for all C∞ functionsψ supported in Ω.
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(Notice that this support condition means that the support ofψ is a positive distance from ∂Ω,
since by assumption the support of Ω is compact, and contained in the open set Ω.)

Ifu happens to be smooth, then we can integrate by parts twice and we see thatu is harmonic
in the usual sense, i.e. twice continuously differentiable and satisfying ∆u = 0 at each point.

Lemma 7.2. Our candidate solution u is weakly harmonic.

Proof: Since u = F − PS(F ), u is orthogonal to S . Let un be a sequence of elements of S0 + F

converging tou in the norm ofH . Then, ⟨un,ψ ⟩ → 0 for allψ ∈ S , in particular for allψ ∈ C∞c (Ω).
Now

⟨un,ψ ⟩ =
∫
Ω
∇un(x) · ∇ψ (x)dx

= −
∫
Ω
un(x)(∆ψ (x))dx → 0.

Butun−F → u−F in S , implying thatun−F → u−F in L2, and henceun → u in L2(Ω). Therefore∫
Ω
u(x)∆ψ (x)dx = 0

for allψ ∈ C∞c (Ω), i.e., u is weakly harmonic. □

In fact, we can replace u with a smooth u that is actually harmonic:

Theorem 7.3. Suppose that u ∈ L1
loc
(Ω) is weakly harmonic in Ω. Then u can be modified on a set

of measure zero so that it becomes C∞ and harmonic in Ω.

(Here L1loc denotes the locally integrable Stone-Weierstrass functions, i.e. those functions so
that for every compact K ⊂ Ω, the restriction to K is an L1 function.)

This follows from the following very important characterization of harmonic functions:

Proposition 7.4. Suppose thatu isC2 and harmonic. Then it has the mean value property: for each
x ∈ Ω and each r > 0 such that B(x , r) ⊂ Ω, we have

u(x) =
1

|B(x , r)|

∫
B(x ,r)

u(y)dy

=
1

|∂B(x , r)|

∫
∂B(x ,r)

u(θ)dσ (θ).

Conversely, if u is C2 and satisfies the mean value property, then u is harmonic.
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We know our function u is in L2, but does it have finite energy? This should be the case if we
believe Dirichlet’s principle.

Lemma 7.5. The function u satisfies ∫
Ω
|∇u(x)|2 dx < ∞.
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7.5 Boundary values

Does our proposed u actually have the desired boundary values f ?
To simplify matters let’s assume that n = 2 and that the domain is convex. That is, for every

point x ∈ ∂Ω, there is a line π through x so that Ω is on one side of π . Under this condition, let
us show that u is continuous up to the boundary and attains the boundary value f .

For z ∈ Ω, write δ(z) for the distance from ∂Ω. Let Av(д)(z) denote the mean value of the
function д over the ball B(z,δ(z)/2).

The key technical point is:

Lemma 7.6. Assume that Ω is convex. Let v ∈ C1(Ω), and zero on the boundary. Then

Av(v)(x) ≤ 16

π

∫
B(x ,2δ(x))∩Ω

|∇v(x)|2 dx . (7.3)

Lemma 7.7. Equation (7.3) applies to the function F − u, even though it isn’t C1.

Proof: The function F −u lies in the subspace S which is the closure ofC1 functions vanishing at
the boundary. Let vn be a sequence of such functions converging in theH norm to F − u. Then
∥vn − (F −u)∥H → 0 and ∥vn − (F −u)∥L2 → 0. So applying equation (7.3) to each vn and taking
the limit as n → ∞, we see that (7.3) is valid also for F − u. □

Finally,

Theorem 7.8. If we extendu by defining it to be f on the boundary, then this extension is continuous.

Proof: Let z ∈ Ω be an interior point, and let δ(z) be the distance from z to the boundary. Then,
using Cauchy Schwarz, and Lemma 7.6, we show (the details appear later)

|Av(F )(z) − Av(u)(z)|2

≤ 16

π

∫
B(z,2δ)∩Ω

|∇F (w)|2 + |∇u(w)|2 dw . (7.4)

Now, as z approaches y, then δ → 0, and the integral above tends to zero.
This follows from the following
Exercise: show that if д ∈ L2(E), that if zn is a convergent sequence of points in E and if

δn > 0 tends to zero as n → ∞, then

lim
n→∞

∫
B(zn ,δn)

|д(x)|2 dx → 0.

7



Thus, we have from (7.4)

|Av(F )(z) − Av(u)(z)| → 0 as z → y.

However, as u is harmonic, Av(u)(z) = u(z), while since F is continuous, Av(F )(z) → F (y) =

f (y). Thus we see that u(z)→ f (y) as z → y □

The final thing to do is to take arbitrary continuous boundary data f (not necessarily given
by the restriction to ∂Ω of F ).

Theorem 7.9. Assume that Ω is convex. Let f : ∂Ω → R be continuous. Then there exists a
harmonic function u ∈ C∞(Ω) ∩C(Ω) with boundary values coinciding with f .

• Much more is true than what we’ve described here. In any dimension, if Ω satisfies an
‘exterior cone condition’, then there is a solution to the Dirichlet problem for arbitrary continuous
boundary data f . We will not pursue this question any further in this course, however.

7.6 Deferred proofs

Proof of Proposition 7.4: Let

B(r) =
1

|∂B(x , r)|

∫
∂B(x ,r)

u(θ)dσ (θ).

Then we compute d/drB(r) and show that it is zero:

d

dr
B(r) =

1

|∂B(x , 1)|
d

dr

∫
∂B(0,1)

u(x + ry)dσ (y)

=

∫
∂B(0,1)

dnu(x + ry)dσ (y)

= r

∫
B(0,1)

(∆u)(x + ry)dy = 0.

So B(r) is constant in r . But the limit as r → 0 is u(x). This proves the equality of the first and
third terms. The remaining equality comes from integrating in r .

Conversely, if u ∈ C2(Ω) satisfies the mean value property, then ∆u integrated over any ball
is zero, showing that ∆u is pointwise zero. □
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Proof of Theorem 7.3: To prove the theorem, we use properties of convolutions. Let Ωϵ be the
set of points in Ω distance at least ϵ from the boundary. Let φ(x) be a bump function that is
supported in B(0, 1), has integral 1 and is also radially symmetric, i.e. φ(x) = φ̃(|x |). I claim that
if u is weakly harmonic, then u ∗ φr is weakly harmonic in Ωϵ for every r < ϵ . To see this, we
compute forψ ∈ C∞c (Ωϵ)∫

Ω
(u ∗ φr )∆ψ =

∫ ∫
u(x − ry)φ(y)∆ψ (x)dy dx

=

∫
φ(y)

∫
u(x − ry)∆ψ (x)dx dy

which vanishes since u is weakly harmonic. But u ∗ φr is smooth: therefore it is harmonic in Ωϵ .
Now we exploit the mean value property. Since ur1 = u ∗ φr1 is harmonic in Ωϵ , for r1 < ϵ , it

satisfies the mean value property, and therefore, we have for x ∈ Ωϵ and r1 + r2 < ϵ ,

(ur1 ∗ φr2)(x) =
∫
B(0,1)

ur1(x + r2y)φ(y)dy

=

∫ 1

0
dssn−1

∫
∂B(0,1)

ur1(x + r2sω)φ(sω)dω

=

∫ 1

0
sn−1φ̃(s)

∫
∂B(0,1)

ur1(x + rsω)dω ds

= ur1(x)

∫ 1

0
sn−1φ̃(s)ds = ur1(x).

Thus, (u ∗φr1) ∗φr2 = ur1 in Ωϵ . However, we also have (u ∗φr1) ∗φr2 = (u ∗φr2) ∗φr1 = ur2 .
So ur1 = ur2 in Ωϵ . Now we take the limit r1 → 0 keeping r2 fixed, and we find that u = ur2 a.e.
inΩϵ , since byTheorem 2.1 of Chapter 3 of the text, u ∗φr1 converges tou(x) a.e. as r1 → 0. Thus,
we correct u on a set of measure zero in Ωϵ to make it equal to ur2 there, and we have shown that
it becomes harmonic. Taking a sequence of ϵ ’s tending to zero completes the argument. □

Proof of Lemma 7.5: We note that for all д ∈ C∞c (Ω), we have∫
Ω
u(x)∇iд(x) = −

∫
Ω
∇iu(x)д(x)dx .

Now recall thatu−F is the limit of a sequence of functionsφn ∈ S0 in the norm ofH . In particular,
the functions ∇iφn are Cauchy for each i in L2, and therefore converge in L2(Ω) to a function vi .
Also, by Proposition 7.1, the φn are Cauchy in L2, and therefore converge to u − F in L2. Hence
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we have, for any д ∈ C∞c (Ω),∫
Ω
(u(x) − F (x))∇iд(x) = lim

n→∞

∫
Ω
φn(x)∇iд(x) =

− lim
n→∞

∫
Ω
∇iφn(x)д(x) = −

∫
Ω
viд(x).

On the other hand, integrating by parts directly we have∫
Ω
(u(x) − F (x))∇iд(x) = −

∫
Ω
∇i(u(x) − F (x))д(x).

As this is true for allд ∈ C∞c (Ω), the two identities above imply that ∇i(u−F ) = vi for each i . And
since eachvi is in L2, we see that ∇(u − F ) ∈ L2(Ω). As ∇F ∈ L2(Ω), we find that ∇u ∈ L2(Ω). □

Proof of Lemma 7.6: Let y ∈ ∂Ω be a closest point on the boundary to x . Then the hyperplane
through y normal to the line xy is a supporting hyperplane for Ω. Choose coordinates so that y
is the origin and x is the point (0,δe2).

We use Proposition 7.1. Let ∂Ω be given near by z2 = k(z1), where z = (z1, z2) is a general
point in R2. For |z1 | ≤ δ/2, let Iz1 be the interval from k(z1) to δ +

√
(δ/2)2 − |z1 |2 which is the

‘upper’ boundary of the ball B(x ,δ/2). Applying Proposition 7.1 on the interval Iz1 we get∫
Iz1

|v(z1, t)|2 dt ≤ |Iz1 |2
∫
Iz1

|∇2v(z1, t)|2 dt .

Estimating |Iz1 | ≤ 2δ , we integrate over the ball of radius δ/2 in z1 to get∫
dz1

∫
Iz1

|v(z1, t)|2 dt ≤ 4δ2
∫

dz1

∫
Iz1

|∇znv(z1, t)|2 dt .

The integral on the left is bounded below by the LHS of (7.3), while the RHS is bounded above by
the RHS of (7.3). This establishes (7.3). □

Derivation of Equation (7.4):

|Av(F )(z) − Av(u)(z)|2

=
1

|B(z,δ/2)|2
����
∫
B(z,δ/2)

(F (w) − u(w))dw
����2

≤ 1

|B(z,δ/2)|2
∫

B(z,δ/2)

dw ×
∫

B(z,δ/2)

|F (w) − u(w)|2 dw

≤ 16

π

∫
B(z,2δ)∩Ω

|∇F (w) − ∇u(w)|2 dw
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where we used (7.3) in the last step. (Notice that this step would not work in higher dimensions,
as we would get negative powers of δ in the last step.) □

Proof of Theorem 7.9: I will only sketch the proof for n = 2. The text has more details.
We use a density argument. Thus, we first extend f to a continuous function f̃ on a ball B

containing Ω. The text has a proof that this is possible. It involves use of the Urysohn Lemma,
and a limiting argument. Then we find a sequence ofC1 functions Fn on B converging uniformly
to f̃ . This is possible using, say, the density of polynomials in C(B). For each Fn we solve the
Dirichlet problem as above, obtaining a harmonic function un. Clearly, un converges uniformly
on the boundary to f .

I claim that un converges uniformly on Ω to a harmonic function. This follows from the
following properties of harmonic functions:

Lemma 7.10. (i) (Maximum Principle) Let u ∈ C(Ω) be harmonic in Ω. Then the maximum and
minimum values of u occur on the boundary.

(ii) Let (un) be a sequence of harmonic functions converging uniformly on Ω. Then the limit
function is also harmonic.

Proof: The mean value property. □

Part (i) of the lemma shows that the sequence (un) converges uniformly on Ω, and part (ii)
finishes the proof. □
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