
11 Radon-Nikodym derivatives

11.1 Signed measures

Let (X ,M) be a measurable space. A signed measure is a map ν fromM to (−∞,∞] with the
property that if E1,E2, . . . are disjoint elements ofM, then

ν(∪jEj) =
∞∑

j=1

ν(Ej).

Notice that this implies that if ν(∪jEj) < ∞, then the sum on the RHS is absolutely convergent, for
otherwise it would not be independent of the ordering of the Ej . Sometimes we refer to (unsigned)
measures as positive measures to make the distinction clear.

An example of a signed measure is

ν(E) =

∫

E
f dµ

where (X ,M, µ) is a measure space and f is a fixed real-valued function such that f−, the negative
part of f , is integrable. (This ensures that ν can never take the value −∞, which is not allowed.)
In fact, we shall soon prove that this is the only possibility.

Given a signed measure ν , we define the total variation |ν | :M → R as follows:

|ν |(E) = sup
∞∑

j=1

|ν(Ej)|,

where we sup over all ways of decomposing E into a countable disjoint union of measurable sets
Ej .

Proposition 11.1. The total variation |ν | is a positive measure satisfying

ν ≤ |ν |.

Proof: We need to show that

|ν |(E) ≤
∞∑

j=1

|ν |(Ej) and |ν |(E) ≥
∞∑

j=1

|ν |(Ej)

whenever E is written as a countable disjoint union of measurable sets Ej .
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To prove ≥, we choose numbers αj < |ν |(Ej). Then, we can find a partition Ej = ∪iFi,j into
measurable sets such that

αj ≤
∑

j

|ν(Fi,j)|.

Then ∪i,jFi,j is a partition of E, so we get
∑

j

αj ≤
∑

i,j

|ν(Fi,j)| ≤ |ν |(E).

Taking the sup over all possible αj proves ≥.
To prove ≤, we take a partition of E into measurable sets Fk . Then we have

∑

k

|ν(Fk)| =
∑

k

���
∑

j

ν(Fk ∩ Ej)���
≤
∑

k,j

|ν(Fk ∩ Ej)| ≤
∑

j

|ν |(Ej).

Since this is true for each way of partitioning E, we find that

|ν |(E) ≤
∑

j

|ν |(Ej)

as required.
The statement ν ≤ |ν | is obvious. □

We can then write any signed measure as the difference of two positive measures, by writing

ν =
ν + |ν |

2
+
ν − |ν |

2
= ν+ + ν−.

We say that ν is σ -finite if |ν | is, and then ν+ and ν− automatically are as well.
Notice that the finite signed measures on a measurable space (X ,M) form a vector space,

denotedM(X ).

Theorem 11.2. M(X ) is a complete normed space under the norm

∥ν ∥M(X ) = |ν |(X ).

Proof: It is straightforward to show that ∥ · ∥M(X ) is a norm. Suppose that νj is a Cauchy sequence
inM(X ). Then for each E ∈ M, |νn(E) − νm(E)| → 0 asm,n → ∞, so limn νn(E) exists for each E.
Define ν(E) to be limn νn(E). We need to show that ν is a finite signed measure.

To show countable additivity, suppose that E = ∪iEi is a disjoint union of measurable sets.
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Lemma 11.3. For ϵ > 0 there exists an N (ϵ) so
∞∑

i=1

|νn(Ei) − νm(Ei)| < ϵ for n,m ≥ N (ϵ).

Proof: We write X = Ec ⊔ ⊔i Ei , and use
∞∑

i=1

|νn(Ei) − νm(Ei)| ≤ |νn(Ec) − νm(Ec)| +
∞∑

i=1

|νn(Ei) − νm(Ei)|

(as we are adding a non-negative quantity), and then from the definition of the total variation
norm, this is

≤ ||νn − νm | |.
As νj is a Cauchy sequence with respect to the total variation norm, this gives the result. □

Certainly then, for every integerM ,
M∑

i=1

|νn(Ei) − νm(Ei)| < ϵ for n,m ≥ N (ϵ).

Takingm to infinity, we find that
M∑

i=1

|νn(Ei) − ν(Ei)| ≤ ϵ for n ≥ N (ϵ).

Since this is true for allM , we get
∞∑

i=1

|νn(Ei) − ν(Ei)| ≤ ϵ for n ≥ N (ϵ). (11.1)

Now we can compute

|ν(E) −
∑

i

ν(Ei)| = lim
n
|νn(E) −

∑

i

ν(Ei)|

= lim
n

������
∑

i

(νn(Ei) − ν(Ei))
������

= lim sup
n

������
∑

i

(νn(Ei) − ν(Ei))
������

≤ lim sup
n

∑

i

|νn(Ei) − ν(Ei)|

≤ ϵ
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by (11.1). Since this is true for all ϵ , we see that ν(E) =
∑

i ν(Ei), so ν is countably additive, and
hence a signed measure. Now (11.1) with Ei a partition of X shows that ∥νn − ν ∥M(X ) → 0. This
shows that ν is a finite measure and that νn → ν under the total variation norm, completing the
proof. □

11.2 Absolute continuity

Definition 11.4.
1. We say that a signed measure µ is supported on a set A if µ(E) = µ(E ∩A) for all E ∈ M.
2. Two signedmeasures µ and ν aremutually singular if they are supported on disjoint subsets.

This is denoted µ ⊥ ν .
3. If ν is a signed measure and µ a positive measure, we say that ν is absolutely continuous

w.r.t. µ if
µ(E) = 0 =⇒ ν(E) = 0.

If |ν | is a finite measure then this last condition is equivalent to the assertion that for each
ϵ > 0 there exists δ > 0 such that

µ(E) < δ =⇒ |ν |(E) < ϵ,

while in general this is a strictly stronger assertion.
Example. Lebesgue measure, delta measures, and E 7→

∫
E
f on Rn.

Exercise. Give an example where |ν | is not finite, and the first assertion does not imply the
second.

Theorem 11.5 (Radon-Nikodym).
Let µ be a σ -finite positive measure on the measurable space (X ,M) and ν a σ -finite signed measure.
Then we can write ν = νa + νs where νa is absolutely continuous w.r.t. µ, and νs and µ are mutually
singular. Moreover, there exists an extended µ-integrable function f such that

νa(E) =

∫

E
f dµ .

• A function is extended µ-integrable if its negative part is integrable.

Proof: We first prove when µ and ν are both positive and finite measures. Once we have done
that, the general case is then not difficult.
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We use Hilbert space ideas. Consider the Hilbert space L2(X , ρ) where ρ = µ + ν . Consider
the map

L2(X , ρ) ∋ ψ 7→ l(ψ ) =

∫
ψ dν .

This is a bounded linear functional, since

|l(ψ )| ≤
∫
|ψ |dν ≤

∫
|ψ |dρ ≤ ρ(X )1/2∥ψ ∥L2

using Cauchy-Schwarz. Therefore l is inner product with some element д of L2(X , ρ):
∫

ψ dν =

∫
ψдdρ for allψ ∈ L2(X , ρ). (11.2)

For any measurable set E, with ρ(E) > 0, setψ = 1E . Then we find that

ν(E) =

∫
1E dν =

∫
1Eдdρ,

so
0 ≤
∫

1Eдdρ ≤ ρ(E),

which implies that д ≤ 1 a.e. w.r.t. ρ. By changing д on a set of ρ-measure zero, we can assume
that д ≤ 1 everywhere.

Now we define A to be the set where д < 1 and B to be the set where д = 1. Putting ψ = 1B ,
we find that

ν(B) =

∫
1B dν =

∫
1Bдdρ =

∫
1B dρ = ν(B) + µ(B).

Therefore, µ(B) = 0. Since µ is a positive measure, this means that µ is supported in Bc = A. So
define

νa(E) = ν(E ∩A), νs(E) = ν(E ∩ B).

We have just shown that νs and µ are mutually singular. Now we show that νa is absolutely
continuous w.r.t. µ.

First we reformulate Equation (11.2) as
∫

ψ (1 − д)dν =

∫
ψдdµ .

It is tempting to tryψ = (1 − д)−1, which would then give

ν(E) =

∫

E
dν =

∫

E
(1 − д)−1(1 − д)dν =

∫

E
(1 − д)−1дdµ
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and the desired conclusion.
However, this is not allowed since (1 − д)−1 < L2(X , ρ) necessarily. Instead, we approximate,

setting
ψ = (1 + д + д2 + . . .дn)1E∩A

which is bounded and therefore in L2. We obtain
∫

E∩A
(1 − дn+1)dν =

∫

E∩A
д
1 − дn+1

1 − д dµ .

Since д < 1 on A, 1 − дn+1 ↑ 1 pointwise, so by MCT we get

νa(E) = ν(E ∩A) =

∫

E∩A
dν =

∫

E∩A
д

1 − д dµ .

This shows that νa is absolutely continuous and we may take f = д(1 − д)−1, which (by putting
E = X ) the above equation shows is integrable w.r.t. µ.

To prove for σ -finite, positive measures µ,ν , we write X as the disjoint union of a countable
family Ej of sets of finite measure. Let µj , νj be the restrictions of µ, ν to Ej . Then we can decom-
pose νj as νj,a + νj,s as above. Setting νa =

∑
j νj,a and νs =

∑
j νj,s we satisfy the conditions of

the theorem. To treat the case of a signed measure, we treat the positive and negative parts of ν
separately. □
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